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Abstract

Serverless computing has rapidly prospered as a new cloud
computing paradigm with agile scalability, pay-as-you-go
pricing, and ease-to-use features for Machine Learning (ML)
inference tasks. Users package their ML code into light-
weight serverless functions and execute them using contain-
ers. Unfortunately, a notorious problem, called cold-starts,
hinders serverless computing from providing low-latency
function executions. To mitigate cold-starts, pre-warming,
which keeps containers warm predictively, has been widely
accepted by academia and industry. However, pre-warming
fails to eliminate the unique latency incurred by loading
ML artifacts. We observed that for ML inference functions,
the loading of libraries and models takes significantly more
time than container warming. Consequently, pre-warming
alone is not enough to mitigate the ML inference function’s
cold-starts.
This paper introduces InstaInfer, an opportunistic pre-

loading technique to achieve instant inference by eliminat-
ing the latency associated with loading ML artifacts, thereby
achieving minimal time cost in function execution. InstaIn-
fer fully utilizes the memory of warmed containers to pre-
load the function’s libraries and model, striking a balance
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between maximum acceleration and resource wastage. We
design InstaInfer to be transparent to providers and com-
patible with existing pre-warming solutions. Experiments on
OpenWhisk with real-world workloads show that InstaIn-
fer reduces up to 93% loading latency and achieves up to 8×
speedup compared to state-of-the-art pre-warming solutions.
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1 Introduction

With the increasing popularity of machine learning (ML)
applications, e.g., image recognition and large language mod-
els (LLMs), their resource demands are booming.1 Thismakes
it imperative to develop performance- and cost-efficient
computing architectures to serve large-scale ML inference
queries. Serverless computing, as a new cloud paradigm, has
gained immense popularity for serving ML inferences due
to its agile scalability, pay-as-you-go pricing, and ease-of-
deployment. Many ML inference products proposed from
academia and industry have been shifted to serverless archi-
tectures, such as Amazon Alexa [1], Azure RAG Chatbot [11],
Nuclio [57], and ServerlessLLM [28].

ML inference applications are packaged as lightweight
serverless functions invoked by users on-demand, executed

1Facebook alone serves over 200 trillions of inference queries daily [45].
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Figure 1: Cumulative time cost and breakdown of real-

world serverless inference invocations driven by Azure

traces [72]. The blue bars indicate the container warm-

ing stage, and the orange bars indicate the ML artifact

loading stage.

in containers.2 When an invocation arrives yet no available
initialized (also known as “warmed”) containers, it has to
wait for a container to be launched from scratch—the notori-
ous cold-starts [41]. Existing works [4, 16, 24, 30, 48, 72, 73,
77] have been extensively proposed to mitigate cold-starts in
serverless computing. The predominant approach is referred
to as “pre-warming” [16, 30, 48, 72]: creating the container
and setting up the runtime in advance, while keeping the
container alive after serving a query.3 Thus, the warmed
containers can avoid the cold-starts.

A serverless function typically goes through three stages:
1) containerwarming, 2) loading dependencies such as Python
libraries, and 3) serving the query. For serverless workloads,
the container warming dominates the cold-start, while the
time cost to load dependencies is negligible. Thus, pre-warming
methods suit well for these functions. However, we observed
that for ML inference functions, the time spent on loading
dependencies—which falls outside the scope of pre-warming
strategies—is considerably significant.
Fig. 1 shows a real-world experiment of serving eight

popular ML inference functions with invocation patterns
following 4-hour industrial traces [72], with state-of-the-art
pre-warming methods [30, 48, 72]. Loading the ML artifacts,
including large libraries (e.g., PyTorch) and model files (e.g.,
BERT [23]) from disk into memory, and transferring the
model into a GPU, accounts for 70% of the whole latency be-
fore the inference is actually executed. Such loading latency
cannot be simply mitigated by pre-warming—we argue that
pre-warming is not enough for accelerating serverless ML
inferences.

2The term “container” here denotes virtual environments that execute func-
tion invocations in serverless computing, such as Docker containers and
Firecracker MicroVMs.
3In the context of this paper, we use the term "pre-warming" to encompass
both the techniques of pre-warm and keep-alive.

A few recent studies also noticed this issue and proposed
to pre-load ML models [35, 46, 63], allow user-defined warm-
up triggers [52], and enable snapshots [8, 80]. However,
they cannot completely mitigate the ML artifacts loading
stage. Some solutions [35, 46, 63] ignored the library loading,
some [8, 80] are incompatible with GPUs, and some [8, 52, 80]
introduced additional constraints and delays.
To fully accelerate ML inference functions and achieve a

minimal end-to-end latency, we aim to take a step further
beyond pre-warming—pre-loading the ML artifacts into con-
tainers and GPU instances in advance. Therefore, upon an
upcoming invocation, the function can jointly avoid the con-
tainer warming and ML artifact loading stages to execute
inference immediately.

However, two challenges remain to be addressed in achiev-
ing our goals: 1) Pre-loading is memory costly. For the
whole workload, higher acceleration performance means
pre-loading more functions, leading to huge memory cost
due to the large size of libraries and model files. 2) Pre-
loading must avoid any extra function startup over-

heads. Serverless functions usually have critical latency re-
quirements (sub-second level) [72]. Pre-loading libraries and
ML artifacts should be lightweight and transparent to avoid
incurring any additional overheads.
This paper proposes InstaInfer, an opportunistic pre-

loading system for serverless inference tasks to tackle these
challenges. To balance the trade-off between minimizing
loading latency and avoiding memory wastage, InstaInfer
pre-loads functions only in existing warmed containers and
GPU instances created by the platform, rather than proac-
tively reserving memory.4 To consistently provide optimal
function acceleration, InstaInfer efficiently utilizes idle re-
sources by dynamically loading and offloading functions. Be-
sides, InstaInfer is compatible with existing pre-warming
and keep-alive schemes by avoiding interfering with the
container creation or removal policies.

We summarize InstaInfer’s key contributions as follows:
• We observe the bottleneck of loading ML artifacts in
serverless inference systems and propose the oppor-
tunistic ML model pre-loading technique to achieve
minimal function startup latency.

• We design a pre-loading scheduler that accelerates
the cluster-wide workload, which is compatible with
existing pre-warming solutions.

• We implement InstaInfer atop OpenWhisk, deploy
it on an AWS EC2 cluster, and evaluate it using in-
dustrial traces and popular inference functions. Ex-
tensive experiments show that InstaInfer reduces
the end-to-end function latency by 87% compared to
start-of-the-art solutions.

4The warmed containers include both pre-warmed and kept-alive containers
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Figure 2: The life cycle of a serverless inference func-

tion with the ResNet152 model.

2 Motivation and Background

2.1 Dissecting Serverless Inference

We carefully profile real-world serverless inference invo-
cations and summarize their lifecycle into three stages: 1)
container warming, 2) ML artifact (e.g., libraries and models)
loading, and 3) ML inference. Fig. 2 shows a dissection of
a serverless inference process invoking a SeBS benchmark
function [21] running the ResNet152 model.
Container warming. Upon an inference request to the

model, the serverless platform begins to prepare and warm
up the container, including pulling the base runtime image
to create the container instance, initializing and bounding a
GPU to the container, and configuring the required runtime
environment. The configuration process involves setting up
networks (e.g., VPC), security configurations (e.g., configur-
ing firewalls, establishing secure connections), setting envi-
ronmental variables (e.g., model path, log level, and API key
of remote storage), and deploying user custom configurations
(e.g., timeout and concurrency settings). Then, the container
retrieves and unzips the function package uploaded by the
developer. The package contains the ResNet152 model’s bi-
nary “.pth” file, associated Python scripts, and dependent
libraries.
ML artifact loading. After the container is warmed up,

it starts to load ML artifacts (e.g., ML library and model files)
into CPU and GPU memory. Specifically, each library un-
dergoes a initialization process to be loaded into memory.
Then, the ML inference model, i.e., a pre-trained ResNet152
model, stored in the binary “.pth” format, is read and de-
serialized into the container’s CPU memory to reconstruct
the model structure and weight parameters. The process of
reading and deserializing models is I/O- and CPU-intensive.
Finally, if a GPU is attached to the container, the model will
be transferred from the CPU memory to the GPU memory.

Inference. After the warming and loading stages, the
function executes the inference on the incoming user data
with the loaded ResNet152 model on the GPU. When the
user receives the returned inference results, the function will
be either terminated or kept alive based on the serverless
platform’s policy.

2.2 Container Warming vs.ML Artifact

Loading

As Fig. 2 shows, a major indicator to distinguish the two
stages, i.e., container warming and ML artifact loading, is
whether the container starts executing user code. General
serverless workloads share the container warming stage,
known as the “cold-start” issues. These issues have prompted
extensive research on mitigating the latency introduced by
“cold-starts,” resulting in various solutions such as container
caching [13, 16–18, 30, 32, 48, 49, 55, 61, 67, 68, 72, 77, 85] and
sharing [4, 26, 48, 51, 59, 71, 85], snapshotting [8, 17, 24, 69,
80, 82], and virtualization refactoring [3, 8, 24, 31, 69, 73, 75].

However, the ML artifact loading stage is specific to
serverless ML workloads due to the lengthy loading time
of increasingly larger neural network models and their de-
pendent libraries. General serverless workloads (e.g., web
serving and video processing) also have this loading stage
but typically take much less time than the warming stage.
Fig. 1 shows that the loading stage has dominated the end-
to-end latency of serverless ML inference requests, yet it
is overlooked by the aforementioned “cold-start” solutions,
which are designed for general serverless workloads. There-
fore, we argue that pre-warming is not enough for serverless
inference functions.

2.3 The Necessity of Pre-loading

To further demonstrate that pre-warming alone is insufficient
for eliminating inference functions’ cold-starts, we select the
eight most popular ML models based on their GitHub popu-
larity.We conduct an experiment using real-world workloads
driven by 4-hour industrial invocation traces fromAzure [72].
Four NVIDIA A10 GPUs are used for inference. The Azure
trace records the timing and frequency of real-world function
invocations over the four hours. We swipe the whole Azure
trace and randomly select eight function traces to build the
workload. Each trace is mapped to one benchmark function
and drives the invocations in the experiment. The detailed
experimental setup is described in Sec 7.2.

We implement OpenWhisk’s default keep-alive policy and
three state-of-the-art pre-warming methods, including His-
togram [72], FaaSCache [30], and Pagurus [48], inside Open-
Whisk as baselines. These strategies are compared against
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Figure 3: Time cost of executing inference functions.

our proposed method, InstaInfer, which focuses on pre-
loading. We report the total time spent on warming, loading,
and inference stages for the entire workload for each method.

As shown in Fig. 1, existing pre-warmingmethodsmitigate
the warming latency over OpenWhisk. However, loading ML
artifacts dominates the overall latency before inference with
over 68% of the time, while only 25% is spent on warming
and just 6% for inference. Thus, existing approaches severely
overlooked the pre-loading opportunity for serverless infer-
ence tasks. In contrast, InstaInfer reduces the time for the
entire workload by over 55%, demonstrating that pre-loading
significantly reduces the overall latency.
Although the loading stage can be accelerated through

other methods like using snapshot [8, 80], compressed mem-
ory [70], and RDMA [83] to minimize the I/O overhead asso-
ciated with reading library and model files, these methods
cannot enhance the library initialization and model dese-
rialization stages. Consequently, they are insufficient for
accelerating inference function.

2.4 Existing Solutions’ Limitations

Current works attempts to eliminate functions’ cold-starts in
three directions: container pre-warming [16, 30, 48, 72, 73, 77],
snapshot [8, 17, 24, 69, 80, 82], and model pre-loading [35, 46,
63].

Pre-warming, the most mainstream method for mitigating
cold-starts, assumes that functions start execution immedi-
ately after warming. Thus, the warming stage is identified
as the primary bottleneck. It predictively initializes the con-
tainer before request arrivals and keeps the container alive
after function executions. However, for inference functions,
the unique loading delay prevents pre-warming methods
from fully mitigating the whole latency.

Snapshot methods capture functions’ completed states as
checkpoints on disk. When requests arrive, the snapshots are
restored into the process and start execution. For inference
functions, snapshots can freeze the state with loaded models
and libraries to skip the loading stage, hence outperforming
pre-warming. However, the large size of model and library
files introduces high latency when loading the snapshot from
disk. Moreover, these solutions rely on Linux’s memory map-
ping, which is incompatible with GPUs due to the difficulty
in capturing and restoring the GPU memory and context as
they are separate from CPU memory.

Naive model pre-loading methods address the model load-
ing bottleneck by either sharing common layers among dif-
ferent models [35, 46] or pre-loading part of the layers post-
warming [63] However, they largely ignore crucial stages
such as loading libraries and transferring models to the GPU.
Additionally, the assumptions of layer similarity across mod-
els severely limit their effectiveness, hindering function ac-
celeration across the whole workload.

Several works in other fields propose to employ pre-loading
for acceleration. For example, [33, 93] focus on reducing the
data fetching latency in databases. [39, 60] pre-load appli-
cations on mobile devices. [12, 74] pre-load information on
network devices. However, these approaches do not cover
the loading stage of inference tasks.
In conclusion, none of the existing works can eliminate

the inference function’s loading delay. To further motivate
the need for pre-loading, we evaluate the latency of different
inference functions with all types of cold-start mitigation
schemes. Detailed evaluation setup is in Section 7.2. We
implement Histogram [72], REAP [80], and AsyFunc [63]
as baselines to represent pre-warming, snapshot, and naive
model pre-loading, respectively. Fig. 3 shows that InstaInfer
outperforms all other baselines by achievingminimal loading
latency via its pre-loading.

2.5 The Opportunity of Pre-loading

A straightforward idea for realizing pre-loading is to load
all inference functions in advance, which is infeasible due to
excessive CPU and GPU memory requirements. Therefore,
an ideal solution must seek a balance in reducing loading
latency and resource costs. Fortunately, the existence of idle
containers created by providers and the over-allocation phe-
nomenon of functions [27, 32, 66, 72, 86, 87, 92, 92, 94] present
an opportunity for pre-loading without extra resource costs.

Serverless providers like Microsoft Azure, AWS, and IBM
usually keep large volumes of idle containers on standby to
serve incoming requests [9, 16, 72]. We only leverage those
existing idle containers for pre-loading, avoiding any extra
containers and additional resource costs.
Furthermore, due to the fixed proportion between func-

tion’s computation ability and memory size [10], numerous
studies [27, 32, 66, 72, 92] have demonstrated that for optimal
execution speed and handling peak workload, inference func-
tions tend to over-provision memory to hold the libraries and
models. Therefore, the vast memory gap between containers’
running and idle states presents another opportunity for our
opportunistic pre-loading.

3 An Overview of InstaInfer

3.1 Objectives & Challenges

InstaInfer aims to achieve the following objectives:
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Figure 4: System overview. Boxes with red bold italic
names are new components introduced by InstaInfer.

• Instant inference: Minimizing the overall end-to-end
(E2E) latency of ML inference invocations.

• Zero wastage: Utilizing only the idle capacities in ex-
isting containers and GPU instances to pre-load func-
tions.

• Transparent to providers: Pre-loading should avoid
conflicts with the platform’s inherent pre-warming
mechanism.

To achieve the above objectives, we seek answers to the
three challenging questions:
How to maximize the acceleration performance with

limited idle containers and GPU instances?With only
idle containers and GPU instances, we cannot pre-load all
functions simultaneously. We must identify and select func-
tions with a high potential for latency improvement and
accurately assign them to each container instance.
How to avoid extra resource overheadswhenpre-loading

functions? Holding libraries and models in containers can
be memory-costly. We must seek a balance between memory
waste and more pre-loading for optimal acceleration.
How to enable pre-loading without incurring addi-

tional function startup overheads? Serverless functions
typically have critical latency requirements. For example,

over 50% of functions on Azure Functions execute in less
than one second [72]. We must design the pre-loading pro-
cess in a lightweight and transparent manner to avoid any
extra function startup overheads.

3.2 InstaInfer’s System Architecture

We introduce the design of InstaInfer, an opportunistic pre-
loading framework to mitigate the loading stage of inference
functions. To achieve optimal acceleration within resource
constraints, we design a secure instance-sharing mechanism
that allows multiple functions to be pre-loaded simultane-
ously into a single container and share a GPU. InstaInfer
includes three principal components: Proactive Pre-Loader,
Pre-Loading Scheduler, and Intra-Container Manager.

Proactive Pre-Loader leverages the prediction model of
the platform’s pre-warming mechanism to forecast function
invocation arrivals. The prediction results are then used to
determinewhen to pre-load each function. To achieve cluster-
wide acceleration, when receiving a request, it routes the
request to the worker node that has pre-loaded the function.
Pre-Loading Scheduler runs on each worker node and

assigns functions that need pre-loading to proper contain-
ers and GPUs. To maintain optimal acceleration over time,
it dynamically makes pre-loading and offloading decisions
based on the worker node’s container creation and removal
events triggered by the platform’s pre-warm and keep-alive
policies.
Intra-Container Manager independently operates the

loading and offloading executions for each function. We de-
sign a three-tier security protection mechanism to ensure
the security and privacy of each pre-loaded function that
shares the same container.

3.3 InstaInfer’s Workflow

Fig. 4 shows the workflow and architecture of InstaInfer.
Upon the arrival of an ML inference function invocation,
InstaInfer follows a five-step workflow:
Stage 1: The Proactive Pre-Loader records the arrival of

each inference function’s requests. It then predicts the ar-
rival time of the next invocation to determine the optimal
moments for loading and offloading each function (Step 1
in Fig. 4).

Stage 2: The Proactive Pre-Loader selects a worker node
with enough available resources and sends the prediction re-
sult to the node’s Pre-Loading Scheduler. The scheduler then
pre-loads the function in a suitable idle container, extracting
the function’s code, and unzipping ML artifacts from the
platform’s database (Step 4 ).
Stage 3: Concurrently, each request activates the plat-

form’s cold-start manager, which prompts the cold-start
agent to control the creation and removal of containers based
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on the pre-warming mechanism (Steps 2 and 3 ). The
events of container removal and creation trigger the Pre-
Loading Scheduler to make pre-load and offload decisions,
which are asynchronous with Stage 2.

Stage 4: When the request arrives, the Proactive Pre-
loader routes the request to a worker node that has pre-
loaded the corresponding function. Then the node’s Pre-
Loading Scheduler selects an idle container that pre-loads
the function and an idle GPU that pre-loads the function’s
model. The request is then sent to the corresponding con-
tainer’s Intra-Container Manager (Step 5 ).
Stage 5: Once receiving the request, the Intra-Container

Manager immediately calls the corresponding function’s pre-
loading process (Step 6 ) and off-loads all other pre-loaded
function states (Step 7 ). We ensure that only one function
can use the container during inference to guarantee security
and privacy. Meanwhile, the Pre-Loading Scheduler selects
other idle containers and GPUs to migrate the off-loaded
functions to serve future invocations.

4 Proactive Pre-Loader

Because one container has limited CPU and GPU memory,
not all functions can be pre-loaded concurrently. Pre-loading
a function too early preempts the loading of other functions
while doing this too late misses serving function invoca-
tions. Therefore, to achieve optimal acceleration, we design
a Proactive Pre-Loader that decides when to pre-load a func-
tion based on its invocation arrival prediction. We offload
the function to make room for pre-loading other functions if
mispredictions occur.

4.1 Function Invocation Prediction

A straightforward approach is to load all functions and never
offload them. However, due to the limited memory capacity,
pre-loading all functions is infeasible. In contrast, we design
InstaInfer to opportunistically pre-load a function right
before the invocation arrival and offload the function to
allow other pre-loadings if mispredicted.

Existing pre-warming approaches typically hold a predic-
tor to forecast invocation arrivals (e.g., Histogram in [48, 72],
ARIMA in [72], Poisson Distribution in [85], Variable Or-
der Markov Model in [13]). InstaInfer employs the plat-
form’s inherent prediction model to maintain transparency
for serverless providers, avoiding introducing extra opera-
tional costs such as building new models.

4.2 Function Pre-Loading and Offloading

To effectively manage pre-loading and offloading of a func-
tion, denoted as 𝑓 , we define two thresholds: a probability
𝑃load (𝑓 ) for pre-loading and a probability 𝑃offload (𝑓 ) for of-
floading. As the invocation’s arrival probability increases,

the function is immediately pre-loaded if the probability
reaches 𝑃load (𝑓 ). Conversely, if the function remains pre-
loaded without being invoked for an extended period, such
that the probability exceeds 𝑃offload (𝑓 ), InstaInfer identifies
that the prediction is incorrect and offloads the function to
free up resources for pre-loading other functions.

Invocation patterns can vary over time [72, 90], and using
outdated data severely degrades the prediction accuracy. To
enhance pre-loading accuracy, we use a sliding window to
capture each function’s temporal shifts and align predictions
with the latest data. It is compatible with various prediction
models as we only adjust the temporal scope without altering
the underlying model.

We take the PoissonDistributionmodel of RainbowCake [85]
as an example to show how to compute optimal timings for
loading and offloading functions. Let𝑊 denote the window
size and𝑇𝑤 denote the duration between the last and first in-
vocations within the window.We can compute the request ar-
rival rate as 𝜆𝑓 = 𝑊

𝑇𝑤
. Thus, the probability distribution of the

arrival time for the next request is: 𝐹 (𝑡 ; 𝜆𝑓 ) = 1−𝑒−𝜆𝑓 𝑡 , 𝑡 ≥ 0.
The future timestamp to load and offload function 𝑓 ,𝑇load (𝑓 )

and 𝑇offload (𝑓 ) are given by

𝑇load (𝑓 ) = − 1
𝜆𝑓

ln(1 − 𝑃load (𝑓 ))

𝑇offload (𝑓 ) = − 1
𝜆𝑓

ln(1 − 𝑃offload (𝑓 ))

We set the default 𝑃load (𝑓 ) and 𝑃offload (𝑓 ) to be 6% and
94%, respectively. These values are derived from a sensitivity
analysis detailed in Section 7.11.

5 Pre-Loading Scheduler

We design a Pre-Loading Scheduler that dynamically selects
and assigns functions to appropriate instances for optimal
acceleration. To optimize performance over time, the sched-
uler adaptively adjusts the pre-loading policy to changes.

5.1 Latency-Aware Function Mapping

The simplest way to load functions is one-to-one mapping,
where each instance holds only one pre-loaded function.
However, this method cannot fully utilize all idle memory to
pre-load more functions for further acceleration. To strike a
balance between maximum acceleration and avoiding addi-
tional costs, we propose an instance-sharing mechanism that
allows multiple functions to be pre-loaded simultaneously
into a single container until its idle memory runs out while
their models share the same GPU.
To select an appropriate container for each function to

pre-load, we propose a Latency-Aware Bin-Packing Policy.
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Figure 5: The scheduler’s operation after detecting each event.

Our goal is to maximize the acceleration of the entire work-
load, i.e., to maximize the expected value of the saved loading
latency among all selected functions. As function loading
latency and container capacity are known, this problem fits
well with the multiple knapsack bin-packing, wherein con-
tainers and functions are treated as bins and items. A bin’s ca-
pacity is the container memory limit, while an item’s weight
is the memory cost for loading the function. The item’s value
is the expected latency saved by pre-loading (calculated as
the product of function arrival probability and the loading
latency). The objective is to maximize the overall value of
the assigned items.
The Latency-Aware Bin-Packing Policy takes functions

and idle containers as inputs, using dynamic programming
to optimize assignments. The policy computes maximum
latency savings 𝐷𝑃 [𝑖] [ 𝑗] for 𝑖 functions in 𝑗 containers
by determining whether to place a function based on con-
tainer capacity and the latency saved. The DP table is up-
dated as: 𝐷𝑃 [𝑖] [ 𝑗] = max(𝐷𝑃 [𝑖 − 1] [ 𝑗], 𝐷𝑃 [𝑖 − 1] [ 𝑗 − 1] +
latency_savings(𝑖)). The algorithm iterates over all func-
tions and containers to fill the DP table, with the optimal
configuration found at 𝐷𝑃 [𝑛] [𝑚]. A backtracking method
is used to determine the function-to-container assignments
that yield this optimal latency savings.

Besides library and model loading, transferring the model
from container to GPUmemory also introduce non-negligible
overhead due to IO and CUDA operations such as memory
allocation, especially for large models. For further accelera-
tion, the pre-loaded function’s model can be pre-transferred
to GPU. As GPU pool’s capacity are usually smaller than
that of container pool, only part of models can be kept on
GPU. To determine which model to be kept on GPU, we use
the same bin-packing policy wherein GPUs are treated as
bins and models as items. The item’s value is the expected
latency saved (calculated as the product of function’s arrival
probability and the transformation overhead).

5.2 Optimal Pre-loading Over Time

Due to time-varying workloads, a series of events will cause
a fixed bin-packing policy to be sub-optimal: pre-loading or
offloading a function, invocation arrivals, container creations,
and container removals. We describe how our scheduler
reacts to these events to maintain optimal acceleration over
time as follows.

As shown in Fig. 5, Functions A, B, and D are pre-loaded on
containers, while models of Function A and D are transferred
to GPU. In the first case at 𝑡1, when Function A’s invoca-
tion arrives, the scheduler first forwards the request to the
GPU container that loads Functions A and D. Immediately,
Function D is re-assigned to another container to ensure
Function A execution performance. Since no GPUs are avail-
able, Function D’s model is transferred from the GPU back
to the container memory. In 𝑡2, after execution, Function A
follows the platform’s keep-alive mechanism and remains
in the GPU container. Note that since each function has a
unique resource configuration, the scheduler adjusts the con-
tainer’s resource limitations immediately upon receiving the
invocation to match the function’s configuration. The second
case is function pre-loading. As shown in 𝑡3, the scheduler se-
lects a container along with its GPUs that have enough space
to load Function C. The third case is container removals. In
𝑡4, when terminating the container that loads Functions B
and D, the scheduler is enforced to offload models of B and
D. The fourth case is the container creations. In 𝑡5, once
detecting a new idle container is available, the scheduler pre-
loads Functions B and D inside the new container. The last
kind of event is function offloading. The scheduler offloads
Function A from both the container and its associated GPU
directly, as shown in 𝑡6. Subsequently, Function C’s model is
transferred to the GPU to utilize the newly freed resources.
The event-driven scheduler dynamically optimizes the bin-
packing policy over time while ensuring compatibility with
the platform’s inherent pre-warming mechanism.
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Figure 6: Timeline of InstaInfer’s pre-loading.

6 Intra-Container Manager

The Intra-Container Manager interfaces with the scheduler
to control the process-level execution of functions, including
loading, off-loading, and model transfer. Besides, for func-
tions in the same container, it ensures no resource conflicts,
and maintains security.

6.1 Pre-Loading Management

As each container holds multiple function’s pre-loading pro-
cesses, the design principle follows three steps: waiting for
future invocations and forwarding them to corresponding
processes, terminating all processes irrelevant to the incom-
ing invocation, and guaranteeing each function’s security
and privacy. Upon receiving a pre-loading message from
the scheduler, the manager executes the function code to
load the library and model. It then transfers the model to
the container’s corresponding GPU based on the scheduler’s
decision. After loading, the process enters a blocked state,
awaiting future invocations.
The manager’s workflow is shown in Fig. 6. After pre-

loading function A and B, upon receiving function A’s in-
vocation, the manager forwards the request to function A
process’s input pipeline, awakening the process to start infer-
ence and return the result. To avoid memory preemption and
to guarantee function’s security, the arrival of a function A’s
invocation prompts the immediate termination of all other
pre-loading processes and the clearing of their memory allo-
cations. This design ensures that the invoked function runs
in a clean and isolated environment.

Similarly, while receiving the off-loading message from
the scheduler, the manager terminates the corresponding
function’s process and erases all related data to protect user
privacy. While functions are served as black-box, user code
only needs slight changes to expose the model and library
files to InstaInfer. We offer two modification options with
different objectives:

# Original
model.load_state_dict(torch.load(model_path))
inference ()...

# InstaInfer
model.load_state_dict(InstaInfer.load(model_path))
sys.stdin.readline () # wait for request
inference ()...

Maximum transparency. As the following Python code
snippet shows, developers only need to modify two lines of
code: First, replace the model loading line (torch.load) with
the InstaInfer API to expose the model file’s path. Second,
add the sys.stdin.readline() line after loading the model for
listening invocations. The function process will be resumed
upon receiving requests.
Maximum privacy. If non-intrusive pre-loading is pre-
ferred, developers can simply implement a LOAD function
similar to AzureWarmup Trigger [52] to hold the pre-loading
content. The manager calls the LOAD API to perform pre-
loading without accessing any function-specific data.

6.2 Privacy & Security Guarantee

As multiple functions’ code and data are stored in the same
container, it’s necessary to guarantee the privacy and secu-
rity of each function. InstaInfer provides a three-layer secu-
rity protection mechanism. In the user layer, only functions
belonging to the same user can be pre-loaded on one con-
tainer. In the process layer, as shown in Fig. 6, when function
A’s invocation arrives, all other functions in the same con-
tainer are off-loaded. Their data and code are deleted immedi-
ately. In the OS layer, each function’s pre-loading process and
data are allocated with a unique non-root user managed by
Linux privilege domain and privilege control. Meanwhile, the
isolation is enhanced with jail techniques [42] such as chroot
jails [19]. These designs ensures that a function’s process is
restricted from accessing the data of other processes, both
in memory and on disk. The OS-level isolation also avoids
library version conflicts across functions, as the libraries
for each function are isolated and stored under the path of
its specific Linux user. Furthermore, for the strictest secu-
rity guarantee that completely forbids container sharing and
only allows a container to pre-load one function, InstaInfer
still significantly outperforms existing pre-warmingmethods
(Sec. 7.10).
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7 Evaluation

7.1 Implementation

We implement a prototype of InstaInfer using Apache
OpenWhisk [9]. We implement the Proactive Pre-Loader
and Pre-Loading Scheduler as OpenWhisk components us-
ing 4K lines of Scala code and implement the Intra-Container
Manager in each container’s proxy using 2K lines of Golang
code. We use PyTorch [62] as the ML environment, although
InstaInfer is compatible with any other ML frameworks
(e.g., TensorFlow).

Proactive Pre-Loader. We implement the Proactive Pre-
Loader in OpenWhisk’s load balancer module where all in-
vocations passed by. The Proactive Pre-Loader records the
timestamp of invocations, thereby updating each function’s
prediction.
Pre-Loading Scheduler. OpenWhisk runs a container

pool module in each node to manage each container’s cre-
ation and removal. We implement the scheduler in this mod-
ule so that the scheduler can acquire all information it needs
for pre-loading. The scheduler sends loading and off-loading
message to Intra-Container Manager through HTTP request.
To align container’s resource limitation matches the invoked
function’s configuration, the scheduler specifies limits using
the –memory, –cpu, and –gpus flag when running Docker
container.

Intra-Container Manager. We implement the manager
in each container’s proxy which is used to communicate
with OpenWhisk. The manager is written in Golang. We
modify the Action Proxy module to receive the message from
the scheduler. We modify the Executor module to execute
loading and off-loading. Each pre-loaded function runs as an
independent process.

GPU support. As all functions run in Docker containers,
we apply the NVIDIA container toolkit [58] that can let
the container use the CUDA devices without any additional
configuration. To improve GPU resource utilization, we use
NVIDIA MPS [22] to partition a GPU for multiple functions
and control the GPU limitation of each function.

7.2 Experiment Settings

We describe the experimental settings for evaluating InstaIn-
fer and state-of-the-art baselines.
Testbed: We evaluate InstaInfer on three OpenWhisk

clusters: 1) Single-nodeCPU cluster on anAWSm5.16xlarge
EC2 instance with 64 Intel Xeon Platinum-8175 CPU cores
and 256 GB memory. We perform the E2E latency evalua-
tion, comparisons with snapshot-based solutions, ablation
study, sensitivity analysis, and scalability tests on this clus-
ter. 2) Single-node GPU server on an AWS g5.12xlarge
EC2 instance with 48 CPU cores, 196 GB of memory, and 4
NVIDIA A10 GPUs. We conduct the E2E latency evaluation,

and memory cost evaluation on this cluster. 3) Multi-node

cluster that includes one controller node and four worker
nodes, each an AWS m5.8xlarge EC2 instance with 32 CPU
cores and 128 GB of memory.We perform E2E latency evalua-
tion, large-scale evaluation of 1000 functions, and prediction
evaluation on this cluster.
Workloads: We select the inference function of SeBS

benchmark [21] to load each model. For simplicity, each
function only runs one model. To optimize subsequent re-
quests and avoid re-loading if warm containers have cached
the function process, we follow the optimization approach
of AWS Lambda [7]. We place the model and library loading
code within the “INIT” structure, and the inference code
within the “Handler” structure.

To approximate the real-world invocation patterns, we
sample the invocations from the Azure Function traces [72],
which are collected in production environments. We scan
the 14-day Azure invocation trace files and randomly select
eight different 4-hour traces that satisfy the Coefficient of
Variation (CoV) requirement for each benchmark function.
Each trace is then mapped to an inference function, which
drives the invocations during the evaluation. For generality,
we define three patterns based on the CoV: Predictable (CoV
<1), Normal (1<CoV <4), and Bursty (CoV >4).

Models and Libraries: We use PyTorch [62] as the ML
framework. We collect eight most popular ML models in
computer vision (CV) and natural language processing (NLP)
as evaluation benchmarks based on the number of stars
on GitHub: AlexNet [44], Inception_V3 [79], ResNet18 [34],
ResNet50, ResNet152, VGG19 [76], GoogleNet [78], and Bert-
Base [23]. Themodel size varies from 45MB to 549MB, provid-
ing sufficient diversity for evaluating InstaInfer’s efficiency.
We expand the function type to 1000 for further evaluation
in Section 7.8.
InstaInfer+* Settings: As InstaInfer can be easily

integrated with pre-warming solutions, InstaInfer+* indi-
cates integration with three solutions: Histogram [72], Pagu-
rus [48], and FaaSCache [30]. InstaInfer pre-loads functions
in the warmed containers created by these solutions.

Baselines: we compare InstaInfer with the state-of-the-
art baselines that mitigate cold-starts in serverless comput-
ing: 1) OpenWhisk [9], the default keep-alive policy of
OpenWhisk that keeps each container alive for a fixed 10
minutes after invocation. 2)Histogram Policy, a histogram-
based container caching approach to dynamically determine
when to pre-warm the container and how long the container
is kept alive by predicting the inter-arrival time of function
invocations. We implemented the Histogram Policy inside
OpenWhisk. 3) FaaSCache proposes a Greedy-Dual keep-
alive caching policy to keep functions alive. Our evaluation
reused FaaSCache’s open-sourced code repository [29] in
OpenWhisk. 4) Pagurus avoids cold start by “lending” other
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Table 1: The average E2E latency, warming+loading latency, and pre-loading rate of baselines.

Metrics Avg. E2E (ms) (Speedup ×) Avg. warming+loading (ms) (Speedup ×) Pre-loading Rate (%)

Workload Predictable Normal Bursty Predictable Normal Bursty Predictable Normal Bursty

InstaInfer+Histogram 538 (5.6×) 707 (4.7×) 814 (4×) 295 (9.4×) 462 (6.6×) 567 (5.3×) 79 66 48
Histogram 2642 (1.14×) 2661 (1.24×) 2630 (1.24×) 2397 (1.15×) 2409 (1.27×) 2387 (1.26×) - - -

InstaInfer+Pagurus 468 (6.4×) 552 (6×) 618 (5.3×) 223 (12.4×) 309 (9.8×) 376 (8×) 85 78 71
Pagurus 2553 (1.18×) 3017 (1.1×) 2624 (1.3×) 2304 (1.2×) 2771 (1.1×) 2382 (1.26×) - - -

InstaInfer+FaaSCache 826 (3.6×) 955 (3.5×) 1165 (2.8×) 581 (4.7×) 709 (4.3×) 917 (3.3×) 63 51 45
FaaSCache 2537 (1.19×) 2715 (1.2×) 2690 (1.21×) 2292 (1.2×) 2469 (1.24×) 2445 (1.24×) - - -
OpenWhisk 3012 (N/A) 3309 (N/A) 3274 (N/A) 2767 (N/A) 3059 (N/A) 3025 (N/A) - - -

functions’ idle containers to the function being invoked.5 5)
REAP [80] is a snapshot-based cold start mitigation method
that stores function completion states as snapshots on disk.
6) Azure Function with warmup trigger [52] allows pre-
loading user-defined content while scaling up new instances.

Evaluation Metrics: 1) End-to-End (E2E) latency: the
total time of an invocation from being triggered to com-
pleting response. 2) Warming+Loading latency: the time
period before the inference is actually executed, including
both container warming and ML artifacts loading. 3) Pre-
loading rate: the ratio of invocations whose function has
already been pre-loaded to the total invocations. 4) Speedup:
the acceleration performance against baselines. 5) Memory

cost: the platform’s CPU and GPU memory consumption
for running the whole workload.

7.3 Reducing E2E Latency

We evaluate InstaInfer+* and baselines on the single-node
cluster. Fig. 7 shows that integrating InstaInfer with the
baseline solutions reduces up to 86% E2E latency and 93%
warming+loading latency compared with the pre-warming
baselines and vanilla OpenWhisk, as InstaInfer effectively
mitigates the latency with library and model pre-loading.
The Azure Function baseline utilizes the warmup trig-

ger [52] to pre-load user-defined contents, including libraries
andmodels. Deviating from the traditional on-demand server-
less products, warmup trigger is only available on the Pre-
mium plan [53] which keeps at least one “always-on” con-
tainer and scales dynamically. For fair comparisons, we select
the “EP2” configuration with two “always-on” containers,
each with 4 vCPUs and 7 GB memory, totaling at least 64
vCPUs, compared to 48 vCPUs in InstaInfer.

Fig. 7 shows that InstaInfer outperforms Azure Function
when serving most of the functions. Despite Azure’s minimal
warming latency due to “always-on” containers, it exhibited
three main drawbacks compared with InstaInfer: 1) The
function’s library files are stored on Azure Files [54]. During
loading, reading many small files incurs heavy overhead

5Pagurus’s original implementation [47] is not for OpenWhisk. We repro-
duced Pagurus in OpenWhisk and tuned its performance to the best for a
fair comparison.
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Figure 7: Average E2E latency of InstaInfer+* and

baselines running the Predictable, Normal, and Bursty

workloads.

(over 10 seconds). 2) Warmup triggers only work during
scaling and never proactively pre-load functions in “always-
on” containers, losing the opportunity to mitigate loading
latency. 3) Unlike traditional serverless products that charge
per use, the Premium plan has fixed hourly or monthly fees,
leading to over 20× higher expense (Sec. 7.5).

Table 1 presents the average E2E latency, warming+loading
latency, speedup, and pre-load rate of each each baseline. In-
staInfer+* outperforms each corresponding baseline on
each metric. InstaInfer+Pagurus achieves the best perfor-
mance due to having more idle containers for pre-loading.
This is because Pagurus removes fewer containers and keeps
more warmed containers over other baselines.

To further explore E2E latency reduction, we show the E2E
latency’s cumulative distribution function (CDF) of running
the Normal workload for InstaInfer and each baselines
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Figure 9: E2E latency breakdown of individual invoca-

tions served by Pagurus and InstaInfer+Pagurus.

in Fig. 8. As the result shows, InstaInfer can effectively
accelerate the workload without increasing the tail latency.

To show InstaInfer’s acceleration effect more intuitively,
we present a time breakdown of the E2E latency of Pagu-
rus and InstaInfer+Pagurus running a “Normal” workload
in Fig. 9. Pagurus is selected in this case since it outper-
forms Histogram and FaaSCache. Fig. 9 shows that InstaIn-
fer+Pagurus eliminates not just the warming stage, but also
the library and model loading stage for most invocations.

Note that in Pagurus’s timeline in Fig. 9, several functions
are invoked multiple times within a minute and are required
to load everything from scratch due to two main reasons:
First, if the request concurrency of a function exceeds the
number of cached containers, additional warmed containers
must be spawned to serve the extra requests. Second, to share
the container among multiple functions, Pagurus transforms
a dedicated container into a shareable one, which clears the
cached states inside the container. Thus, if a request is served
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Figure 10: Average E2E latency of InstaInfer+* and

baselines running each workload on GPUs.
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baselines running the same workload.

by a shared container, it must re-load the ML artifacts even
if it’s already warm-started.

7.4 InstaInfer GPU Evaluation

To show the benefits of opportunistic pre-loading in both
CPU memory and GPU memory, we evaluate the E2E la-
tency of workloads with InstaInfer in the GPU cluster with
4 NVIDIA A10 GPUs. As shown in Fig. 10, integrating In-
staInfer with each baseline can significantly reduce at most
93% average E2E latency for each inference function. Com-
pared with CPU based InstaInfer in Section 7.3, InstaInfer
with GPU pre-loading further improves the function execu-
tion time cost as it mitigates the CUDA runtime initialization
and model swapping latency.
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Table 2: Multi-node cluster’s average E2E latency, warming+loading latency, and pre-loading rate of baselines.

Metrics Avg. E2E (ms) (Speedup ×) Avg. warming+loading (ms) (Speedup ×) Pre-loading Rate (%)

Workload Predictable Normal Bursty Predictable Normal Bursty Predictable Normal Bursty

InstaInfer+Histogram 559 (5.6×) 712 (4.4×) 903 (3.8×) 310 (9.2×) 461 (6.9×) 656 (4.9×) 78 66 52
Histogram 2703 (1.16×) 2729 (1.24×) 2861 (1.28×) 2452 (1.17×) 2480 (1.3×) 2614 (1.23×) - - -

InstaInfer+Pagurus 452 (7.7×) 564 (6.2×) 623 (5.6×) 203 (14.1×) 313 (10.3×) 375 (8.6×) 86 79 70
Pagurus 2493 (1.25×) 2917 (1.2×) 2624 (1.3×) 2203 (1.3×) 2663 (1.2×) 2377 (1.35×) - - -

InstaInfer+FaaSCache 821 (3.8×) 968 (3.6×) 1043 (3.6×) 576 (5×) 725 (4.5×) 811 (4×) 61 46 42
FaaSCache 2526 (1.23×) 2751 (1.27×) 2723 (1.27×) 2289 (1.26×) 2508 (1.3×) 2476 (1.3×) - - -
OpenWhisk 3124 (N/A) 3496 (N/A) 3459 (N/A) 2879 (N/A) 3247 (N/A) 3216 (N/A) - - -
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Figure 12: Monetary cost of InstaInfer+* and other

baselines running the same workload.

7.5 Memory and Monetary Cost

We evaluate the monetary cost of InstaInfer, baseline pre-
warming methods, and naive pre-loading while running the
same Azure trace workload. In the evaluation, InstaInfer is
combined with each baseline. In the OpenWhisk Pre-loading
baseline, each container can only hold one pre-loaded func-
tion. To achieve the same acceleration performance as In-
staInfer, more containers are created proactively for pre-
loading. Shown in Fig. 11, the container and GPU memory
consumption of InstaInfer+* are nearly identical to those
of corresponding baselines alone. That’s because InstaIn-
fer only reuses the idle container created by the baseline
method and does not proactively create new containers. Con-
sequently, InstaInfer does not incur additional resource
costs. In contrast, to achieve comparable acceleration per-
formance, OpenWhisk Pre-loading creates more containers
than InstaInfer, resulting in at most 2.4× the memory cost
and 2× the GPU cost compared to InstaInfer.

Then we evaluate the monetary cost of running the above
4-hour workload using Azure Function pricing model [2]. As
the result shown in Fig. 12, the monetary cost of InstaIn-
fer+* is nearly identical to that of corresponding baseline
alone. Although Azure Premium Plan achieves lower E2E
latency for several functions according to Fig. 7 than InstaIn-
fer, its expense is 20 times higher than other methods.

7.6 Multi-Node Evaluation
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Figure 13: Average E2E latency of InstaInfer+* and

other baselines running on the multi-node cluster.

We evaluate the scalability of InstaInfer by conduct-
ing experiments on the multi-node cluster. We evaluate the
E2E latency using the same benchmarks, metrics, baselines,
and workloads from Sec. 7.3. Fig. 13 shows that integrat-
ing InstaInfer with baselines reduces up to 87% E2E la-
tency. The performance evaluated on the multi-node cluster
is similar to the results observed from the single-node clus-
ter. This consistency suggests that InstaInfer efficiently
maintains low loading latency for a variety of workloads
in a distributed cluster. Table 2 details the average E2E la-
tency, warming+loading latency, speedup, and pre-load rate
for each baseline. The data shows InstaInfer+* consistently
outperforms existing baselines across all the metrics.

7.7 Comparisons with Snapshot Methods

To mitigate cold start, some approaches [8, 80] capture
the function’s complete state as a snapshot and store the
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Figure 14: E2E latency of InstaInfer, REAP, and Open-

Whisk running benchmark functions with different

model size.

Table 3: Average E2E latency in large-scale evaluation

Method

(Speedup ×)
Avg. E2E (ms)

(Speedup ×)
Warm + Load (ms)

InstaInfer+Pagurus 1482 (2.49) 1184 (2.86)
Pagurus 3201 (1.15) 2896 (1.17)
OpenWhisk 3695 (N/A) 3397 (N/A)

snapshot on disk. ForML inference functions, as the snapshot
can store the state after loading the libraries and model, it
can also address eliminating the loading delay. Thus, we
conduct an evaluation between InstaInfer and REAP [80],
a snapshot-based serverless method.
We evaluated the E2E latency of three benchmark ML

inference functions with small (ResNet18), medium (Incep-
tion_v3), large (Bert-Base) models respectively in InstaIn-
fer, REAP, and vanilla OpenWhisk in the same setup. Fig. 14
shows, REAP outperforms OpenWhisk. InstaInfer further
enhances execution by 1.5 to 2.5× over REAP.
The reason of InstaInfer’s outperformance over REAP

is that InstaInfer does not need to load and restore the
snapshot from disk to memory. As REAP’s snapshots are all
stored in disks, when request arrives, a snapshot must be read
into memory and restored to process, introducing additional
latency. Based on the experiment result, the latency is high
for inference functions (300–600ms) due to the large size
of model and library files. In contrast, InstaInfer, keeping
functions in memory, achieves negligible latency (5–14 ms)
according to our measurement in Section 7.12.
7.8 Large-Scale Evaluation

To further evaluate the performance of InstaInfer in a
more realistic scenario, we extend the workload to 1000 func-
tions on the multi-node cluster. According to Azure[72], the
top 18.6% functions make up 99.6% calls. Thus, we selected
50 often-used functions’ traces, 150 ones with a once-per-
minute call rate, and 800 rarely-called ones. All functions
are created based on the eight benchmark models. We give

Table 4: Comparison of different prediction meth-

ods under varying workloads, metrics including pre-

loading rate and speedup (×).

Workload Poisson Histogram RF ARIMA

Predictable 67% (2.93) 61% (2.65) 50% (1.86) 62% (2.67)
Normal 56% (2.32) 51% (1.93) 47% (1.75) 51% (1.94)
Bursty 42% (1.58) 46% (1.79) 43% (1.59) 40% (1.5)

each function a unique identifier (such as ResNet50-1, . . . ,
ResNet50-125) to create 125 different functions that run the
same model under hood. As InstaInfer treats a function’s
code is a blackbox, all functions are totally different.

We evaluate the E2E and warming+loading latency of In-
staInfer+Pagurus, Pagurus, and vanilla OpenWhisk under
same workload. The result is shown in Table 3. Besides, we
evaluate the pre-loading rate of InstaInfer. For the 50 func-
tions that are frequently invoked, the pre-load rate is 73%.
For the 150 less-frequently invoked functions, the pre-load
rate is 28%. For the 800 rarely invoked functions, the pre-
load rate is less than 1%. Thus, InstaInfer can effectively
pre-load the frequently invoked functions and accelerate the
workload in large scale scenario.

7.9 Prediction Performance Evaluation

To evaluate the robustness of InstaInfer, we choose four
prediction models: Poisson distribution, Histogram policy-
based prediction [72], Random Forests (RF)[15], and Auto-
Regressive IntegratedMovingAverage (ARIMA)modeling[14].
Each model is used to decide when to load and offload a
function. We randomly select 200 function traces from pre-
dictable, normal, and bursty workloads, respectively. As
shown in Table 4, Poisson achieves the best performance
in predictable and normal workloads, whereas Histogram
performs best in bursty workloads. InstaInfer pre-loads
over 40% functions and speeds up workloads by over 1.5×.

7.10 Ablation Study

We conduct an ablation experiment on the single-node clus-
ter to evaluate the effectiveness of the Proactive Pre-Loader
and Pre-Loading Scheduler. Three variants of InstaInfer
are evaluated and compared with Histogram Policy, Pagurus,
and FaaSCache:
• InstaInfer_NP: InstaInfer without the Proactive Pre-
Loader. This variant lacks the Proactive Pre-Loader, so it
does not predict the arrival probabilities of the function.
Thus, this variant never determines pre-loading and off-
loading proactively, only reacting to container creation,
container removal, and invocation arrival.

• InstaInfer_NS: InstaInfer without the Scheduler. This
variant cannot make optimal assignments and dynamically
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Figure 15: The CDF of E2E latency for ablation of In-
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Figure 16: The average E2E latency with different 𝑃load
and sliding window size.

schedule loading and unloading. For InstaInfer_NS, a
function is only pre-loaded under two situations: 1) when
receiving the pre-load message from the Proactive Pre-
Loader and 2) when a container is idle, its corresponding
function will be loaded (i.e., one-to-one mapping).

• InstaInfer_NPS: InstaInfer without either the Proac-
tive Pre-Loader or Scheduler. Each container only pre-
loads its own function’s libraries and models.
Fig. 15 shows the CDF of E2E inference latency under

2-hour “Normal” traces randomly selected from Azure. Re-
gardless of the pre-warming method used, InstaInfer al-
ways outperforms other variants due to its full utilization of
both the Proactive Pre-Loader and Scheduler. The synergy
between these two components ensures the maximum load-
ing latency reduction despite dynamic change in invocation
pattern and the number of idle containers.

On average, InstaInfer accelerates the workload by 1.16-
1.28×, 1.21-1.49×, and 1.48-1.73× when compared with In-
staInfer-NP, InstaInfer-NS, and InstaInfer-NPS.

7.11 Sensitivity Analysis

We conduct an experiment to evaluate the impact of two
InstaInfer hyper-parameters: 𝑃load, which decides when
to load libraries and models, and the size of the Proactive
Pre-Loader’s sliding window, used to adapt to recent invoca-
tion changes. Fig. 16 shows their impact on the average E2E
latency of a workload from Azure Trace.
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As observed, the performance of InstaInfer is not sensi-
tive to the size of the Proactive Pre-Loader’s sliding window.
Meanwhile, we observed that the value of 𝑃load converges to
0.06. Furthermore, the optimal value of 𝑃load is not affected
by the sliding window size. Although a lower 𝑃load means
loading a model earlier, leading to a higher hit rate for future
invocations. However, pre-loading a function too early risks
wasting the available resources, which might be utilized for
loading other functions, leading to a sub-optimal acceler-
ation. We set InstaInfer’s 𝑃load to be 0.06 to achieve the
optimal acceleration.

7.12 Scalability and Overhead

To evaluate the scalability of InstaInfer, InstaInfer + Pagu-
rus is given increasingly heavier workloads, varying from
10 to 180 requests per minute. The performance is shown in
Fig. 17. InstaInfer consistently outperforms Pagurus across
different scales. Then we evaluate the performance of In-
staInfer against other baselines under constrained resource
budgets by varying the container pool’s size. As Fig. 18 shows,
InstaInfer consistently outperforms other baselines under
different memory budgets, showing stronger robustness.

Next, we report the latency and resource overhead of each
component. The Proactive Pre-Loader introduces less than
3ms additional latency under the heaviest workload. The
Intra-Container Manager introduces 2ms to 11ms latency
overhead, which is caused by the memory preemption of
clearing the memory of other pre-loading processes when
invocation arrives. This latency varies based on the memory
footprint of the to-be-offloaded function. As the scheduler’s
pre-loading & off-loading decision is asynchronous with
serving the invocation, it does not cause latency overhead.
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Compared with the saved latency (1500-5000ms), the addi-
tional latency (5ms-14ms) is negligible. The overhead will be
lower when handling fewer invocations.
Under the heaviest workload, the Proactive Pre-Loader

consumes less than 0.3 CPU core and 72MB memory; the
scheduler consumes 0.3 CPU core and 135MB memory; the
Intra-Container Manager consumes 0.1 CPU core and 9MB
memory. The overall resource overhead of all InstaInfer’s
components is negligible compared to the workloads.

8 Related Work

Serverless inference. Motivated by serverless computing’s
flexibility and cost-efficiency, a few studies proposed to en-
able ML inference via serverless computing [6, 20, 25, 35,
36, 38, 40, 46, 50, 89]. However, they ignore the ML artifacts
loading latency, which extensively inflates the E2E latency.
Some works improve inference functions’ throughput by
dynamically batching requests [5, 84, 91], which is orthogo-
nal to InstaInfer. InstaInfer’s Proactive Pre-Loader treats
the batched requests as a single call and forwards them to
a container. AsyFunc [63] mitigates bursts by pre-loading
resource-intensive layers of a model while reusing others
from a warmed container, dependent on the availability of
warmed containers. Thus, it does not address the cold start
problem. Moreover, it targets model loading overhead, which
is only 52% of ML artifact loading time as observed in Fig. 1,
leaving half of the overall latency unoptimized. Tetris [46]
and Optimus [35] share identical layers across models to
address model loading bottlenecks but ignore library loading
and GPU transfer overheads. Their effectiveness depends on
layer similarity, limiting universality across diverse models.
In contrast, InstaInfer accelerates any model.
Cold-start mitigation. Many studies attempt to address
cold-start issues, which can be classified into four major
categories: 1) Pre-warming [13, 16–18, 30, 32, 48, 49, 55, 61,
67, 68, 72, 77] that predictively pre-warms container in ad-
vance [13, 18, 32, 55, 72, 77] and keeps them warmed [16, 17,
30, 48, 49, 61, 67, 68, 72]. 2) Virtualization Refactoring [3, 8,
24, 31, 69, 73, 75] that use new virtualization technique to ac-
celerate warming. 3) Container Sharing [4, 26, 48, 51, 59, 71]
that shares container among functions. 4) Snapshot based
methods [8, 17, 24, 69, 80, 82] that stores snapshots of func-
tions. Among them, pre-warming, virtualization refactoring,
and container sharing focus on container-level speedup for
general functions, overlooking the unique loading stage for
ML inference functions. Snapshot methods capture infer-
ence function states, including loaded libraries and models.
However, these snapshot files are large, containing exten-
sive model and library data, leading to a 100–1000ms startup
overhead as shown in our evaluation (Fig. 14) and the REAP
experiment results [80]. Furthermore, these techniques rely

on Linux’s memorymapping mechanism and are not compat-
ible with GPUs due to difficulties in capturing and restoring
separate GPU memory and contexts.
Pre-loading in serverless. Some works [7, 37, 52] allow
user-defined pre-loading primitives when starting a new in-
stance. Azure warmup trigger [52] pre-loads the user-defined
primitives during instance scaling. However, it only works
out during scaling up, failing to tackle the cold start problem.
For pre-warmed containers, the trigger does not pre-load
components. AWS Lambda static initialization [7] allows
components that execute only once during the first invoca-
tion to speed up subsequent operations. However, for the first
invocation, even if the container has been created, the com-
ponents cannot be pre-loaded. [37] enables executing user-
defined primitives once a container is pre-warmed. However,
as a naive pre-loading approach, it falls short of achieving
optimal performance due to underutilized idle space. Fur-
thermore, none of these methods is compatible with GPUs.
Function data caching. Some studies [43, 56, 64] cache
ephemeral data of functions in local storage or cloud server,
while others [65, 81] keep data in containers. Pheromone [88]
uses multiple cache mechanisms based on developer’s con-
figuration. InstaInfer focuses on pre-loading libraries and
models into memory, which is orthogonal to these data
caching techniques.

9 Conclusion

This paper proposed InstaInfer, a pre-loading technique for
serverless inference that alleviates the ML artifacts loading
overhead of ML inference functions by opportunistically
pre-loading their libraries and models rather than popular
cold-start mitigation approaches. InstaInfer comprises a
Proactive Pre-Loader to estimate when to load each function,
a Pre-Loading Scheduler to assign to-be-loaded functions
to suitable idle container and GPU, and an Intra-Container
Manager for controlling the loading & off-loading of each
function. Our real-world trace based experiment showed
that InstaInfer reduces startup latency by up to 93% and
accelerate the overall workload 8×.
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