
Pre-Warming is Not Enough: Accelerating Serverless
Inference With Opportunistic Pre-Loading
Yifan Sui

Shanghai Jiao Tong University
Shanghai, China

suiyifan@sjtu.edu.cn

Hanfei Yu
Stevens Institute of Technology

Hoboken, USA
hyu42@stevens.edu

Yitao Hu
Tianjin University
Tianjin, China

yitao@tju.edu.cn

Jianxun Li∗
Shanghai Jiao Tong University

Shanghai, China
lijx@sjtu.edu.cn

Hao Wang
Stevens Institute of Technology

Hoboken, USA
hwang9@stevens.edu

Abstract

Serverless computing has rapidly prospered as a new cloud
computing paradigm with agile scalability, pay-as-you-go
pricing, and ease-to-use features for Machine Learning (ML)
inference tasks. Users package their ML code into light-
weight serverless functions and execute them using contain-
ers. Unfortunately, a notorious problem, called cold-starts,
hinders serverless computing from providing low-latency
function executions. To mitigate cold-starts, pre-warming,
which keeps containers warm predictively, has been widely
accepted by academia and industry. However, pre-warming
fails to eliminate the unique latency incurred by loading
ML artifacts. We observed that for ML inference functions,
the loading of libraries and models takes significantly more
time than container warming. Consequently, pre-warming
alone is not enough to mitigate the ML inference function’s
cold-starts.
This paper introduces InstaInfer, an opportunistic pre-

loading technique to achieve instant inference by eliminat-
ing the latency associated with loading ML artifacts, thereby
achieving minimal time cost in function execution. InstaIn-
fer fully utilizes the memory of warmed containers to pre-
load the function’s libraries and model, striking a balance

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC ’24, November 20–22, 2024, Redmond, WA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1286-9/24/11...
https://doi.org/10.1145/3698038.3698509

between maximum acceleration and resource wastage. We
design InstaInfer to be transparent to providers and com-
patible with existing pre-warming solutions. Experiments on
OpenWhisk with real-world workloads show that InstaIn-
fer reduces up to 93% loading latency and achieves up to 8×
speedup compared to state-of-the-art pre-warming solutions.

CCS Concepts

• Computer systems organization → Cloud computing.

Keywords

Serverless Computing, Cloud Computing, Cold-Start, Ma-
chine Learning

ACM Reference Format:

Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and HaoWang. 2024. Pre-
Warming is Not Enough: Accelerating Serverless Inference With
Opportunistic Pre-Loading. In Proceedings of (SoCC ’24).ACM, New
York, NY, USA, 18 pages. https://doi.org/10.1145/3698038.3698509

1 Introduction

With the increasing popularity of machine learning (ML)
applications, e.g., image recognition and large language mod-
els (LLMs), their resource demands are booming.1 Thismakes
it imperative to develop performance- and cost-efficient
computing architectures to serve large-scale ML inference
queries. Serverless computing, as a new cloud paradigm, has
gained immense popularity for serving ML inferences due
to its agile scalability, pay-as-you-go pricing, and ease-of-
deployment. Many ML inference products proposed from
academia and industry have been shifted to serverless archi-
tectures, such as Amazon Alexa [1], Azure RAG Chatbot [11],
Nuclio [57], and ServerlessLLM [28].

ML inference applications are packaged as lightweight
serverless functions invoked by users on-demand, executed

1Facebook alone serves over 200 trillions of inference queries daily [45].

https://doi.org/10.1145/3698038.3698509
https://doi.org/10.1145/3698038.3698509

SoCC ’24, November 20–22, 2024, Redmond, WA Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and Hao Wang

Pull image
Env. setup
Load model

Create container
Extract func. package
Transfer to GPU

GPU binding
Load library
Inference

Warming Loading

InstaInfer
Histogram

Pagurus
FaaSCache
OpenWhisk

Time cost (min)
0 100 200 300 400 500 600

Figure 1: Cumulative time cost and breakdown of real-

world serverless inference invocations driven by Azure

traces [72]. The blue bars indicate the container warm-

ing stage, and the orange bars indicate the ML artifact

loading stage.

in containers.2 When an invocation arrives yet no available
initialized (also known as “warmed”) containers, it has to
wait for a container to be launched from scratch—the notori-
ous cold-starts [41]. Existing works [4, 16, 24, 30, 48, 72, 73,
77] have been extensively proposed to mitigate cold-starts in
serverless computing. The predominant approach is referred
to as “pre-warming” [16, 30, 48, 72]: creating the container
and setting up the runtime in advance, while keeping the
container alive after serving a query.3 Thus, the warmed
containers can avoid the cold-starts.

A serverless function typically goes through three stages:
1) containerwarming, 2) loading dependencies such as Python
libraries, and 3) serving the query. For serverless workloads,
the container warming dominates the cold-start, while the
time cost to load dependencies is negligible. Thus, pre-warming
methods suit well for these functions. However, we observed
that for ML inference functions, the time spent on loading
dependencies—which falls outside the scope of pre-warming
strategies—is considerably significant.
Fig. 1 shows a real-world experiment of serving eight

popular ML inference functions with invocation patterns
following 4-hour industrial traces [72], with state-of-the-art
pre-warming methods [30, 48, 72]. Loading the ML artifacts,
including large libraries (e.g., PyTorch) and model files (e.g.,
BERT [23]) from disk into memory, and transferring the
model into a GPU, accounts for 70% of the whole latency be-
fore the inference is actually executed. Such loading latency
cannot be simply mitigated by pre-warming—we argue that
pre-warming is not enough for accelerating serverless ML
inferences.

2The term “container” here denotes virtual environments that execute func-
tion invocations in serverless computing, such as Docker containers and
Firecracker MicroVMs.
3In the context of this paper, we use the term "pre-warming" to encompass
both the techniques of pre-warm and keep-alive.

A few recent studies also noticed this issue and proposed
to pre-load ML models [35, 46, 63], allow user-defined warm-
up triggers [52], and enable snapshots [8, 80]. However,
they cannot completely mitigate the ML artifacts loading
stage. Some solutions [35, 46, 63] ignored the library loading,
some [8, 80] are incompatible with GPUs, and some [8, 52, 80]
introduced additional constraints and delays.
To fully accelerate ML inference functions and achieve a

minimal end-to-end latency, we aim to take a step further
beyond pre-warming—pre-loading the ML artifacts into con-
tainers and GPU instances in advance. Therefore, upon an
upcoming invocation, the function can jointly avoid the con-
tainer warming and ML artifact loading stages to execute
inference immediately.

However, two challenges remain to be addressed in achiev-
ing our goals: 1) Pre-loading is memory costly. For the
whole workload, higher acceleration performance means
pre-loading more functions, leading to huge memory cost
due to the large size of libraries and model files. 2) Pre-
loading must avoid any extra function startup over-

heads. Serverless functions usually have critical latency re-
quirements (sub-second level) [72]. Pre-loading libraries and
ML artifacts should be lightweight and transparent to avoid
incurring any additional overheads.
This paper proposes InstaInfer, an opportunistic pre-

loading system for serverless inference tasks to tackle these
challenges. To balance the trade-off between minimizing
loading latency and avoiding memory wastage, InstaInfer
pre-loads functions only in existing warmed containers and
GPU instances created by the platform, rather than proac-
tively reserving memory.4 To consistently provide optimal
function acceleration, InstaInfer efficiently utilizes idle re-
sources by dynamically loading and offloading functions. Be-
sides, InstaInfer is compatible with existing pre-warming
and keep-alive schemes by avoiding interfering with the
container creation or removal policies.

We summarize InstaInfer’s key contributions as follows:
• We observe the bottleneck of loading ML artifacts in
serverless inference systems and propose the oppor-
tunistic ML model pre-loading technique to achieve
minimal function startup latency.

• We design a pre-loading scheduler that accelerates
the cluster-wide workload, which is compatible with
existing pre-warming solutions.

• We implement InstaInfer atop OpenWhisk, deploy
it on an AWS EC2 cluster, and evaluate it using in-
dustrial traces and popular inference functions. Ex-
tensive experiments show that InstaInfer reduces
the end-to-end function latency by 87% compared to
start-of-the-art solutions.

4The warmed containers include both pre-warmed and kept-alive containers

Pre-Warming is Not Enough: Accelerating Serverless Inference With Opportunistic Pre-Loading SoCC ’24, November 20–22, 2024, Redmond, WA

W
ar
m
in
g

Create
container

Pull
image

Env.
Setup

GPU
binding

CUDA init.

In
fe
re
nc

e

Lo
ad

in
g

Transfer
the model
to GPU

GPU GPU GPU GPU

Load
PyTorch,
Numpy…

GPU

Re
qu

es
t

Re
sp

on
se

Read &
deserialize

the ML model

GPU

import torch
import resnet152
import ...

m.load_state_dict(
 torch.load(
 'resnet152.pth')
)
...

m.to(device(“cuda”))

Executing user code

docker run
 func --gpus 1

container.init(
 env, timeout, ...)
...

file, err :=
container.extract(
 user_code_pkg)

Extract
 package

Figure 2: The life cycle of a serverless inference func-

tion with the ResNet152 model.

2 Motivation and Background

2.1 Dissecting Serverless Inference

We carefully profile real-world serverless inference invo-
cations and summarize their lifecycle into three stages: 1)
container warming, 2) ML artifact (e.g., libraries and models)
loading, and 3) ML inference. Fig. 2 shows a dissection of
a serverless inference process invoking a SeBS benchmark
function [21] running the ResNet152 model.
Container warming. Upon an inference request to the

model, the serverless platform begins to prepare and warm
up the container, including pulling the base runtime image
to create the container instance, initializing and bounding a
GPU to the container, and configuring the required runtime
environment. The configuration process involves setting up
networks (e.g., VPC), security configurations (e.g., configur-
ing firewalls, establishing secure connections), setting envi-
ronmental variables (e.g., model path, log level, and API key
of remote storage), and deploying user custom configurations
(e.g., timeout and concurrency settings). Then, the container
retrieves and unzips the function package uploaded by the
developer. The package contains the ResNet152 model’s bi-
nary “.pth” file, associated Python scripts, and dependent
libraries.
ML artifact loading. After the container is warmed up,

it starts to load ML artifacts (e.g., ML library and model files)
into CPU and GPU memory. Specifically, each library un-
dergoes a initialization process to be loaded into memory.
Then, the ML inference model, i.e., a pre-trained ResNet152
model, stored in the binary “.pth” format, is read and de-
serialized into the container’s CPU memory to reconstruct
the model structure and weight parameters. The process of
reading and deserializing models is I/O- and CPU-intensive.
Finally, if a GPU is attached to the container, the model will
be transferred from the CPU memory to the GPU memory.

Inference. After the warming and loading stages, the
function executes the inference on the incoming user data
with the loaded ResNet152 model on the GPU. When the
user receives the returned inference results, the function will
be either terminated or kept alive based on the serverless
platform’s policy.

2.2 Container Warming vs.ML Artifact

Loading

As Fig. 2 shows, a major indicator to distinguish the two
stages, i.e., container warming and ML artifact loading, is
whether the container starts executing user code. General
serverless workloads share the container warming stage,
known as the “cold-start” issues. These issues have prompted
extensive research on mitigating the latency introduced by
“cold-starts,” resulting in various solutions such as container
caching [13, 16–18, 30, 32, 48, 49, 55, 61, 67, 68, 72, 77, 85] and
sharing [4, 26, 48, 51, 59, 71, 85], snapshotting [8, 17, 24, 69,
80, 82], and virtualization refactoring [3, 8, 24, 31, 69, 73, 75].

However, the ML artifact loading stage is specific to
serverless ML workloads due to the lengthy loading time
of increasingly larger neural network models and their de-
pendent libraries. General serverless workloads (e.g., web
serving and video processing) also have this loading stage
but typically take much less time than the warming stage.
Fig. 1 shows that the loading stage has dominated the end-
to-end latency of serverless ML inference requests, yet it
is overlooked by the aforementioned “cold-start” solutions,
which are designed for general serverless workloads. There-
fore, we argue that pre-warming is not enough for serverless
inference functions.

2.3 The Necessity of Pre-loading

To further demonstrate that pre-warming alone is insufficient
for eliminating inference functions’ cold-starts, we select the
eight most popular ML models based on their GitHub popu-
larity.We conduct an experiment using real-world workloads
driven by 4-hour industrial invocation traces fromAzure [72].
Four NVIDIA A10 GPUs are used for inference. The Azure
trace records the timing and frequency of real-world function
invocations over the four hours. We swipe the whole Azure
trace and randomly select eight function traces to build the
workload. Each trace is mapped to one benchmark function
and drives the invocations in the experiment. The detailed
experimental setup is described in Sec 7.2.

We implement OpenWhisk’s default keep-alive policy and
three state-of-the-art pre-warming methods, including His-
togram [72], FaaSCache [30], and Pagurus [48], inside Open-
Whisk as baselines. These strategies are compared against

SoCC ’24, November 20–22, 2024, Redmond, WA Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and Hao Wang

InstaInfer
AsyFunc

REAP
Histogram

Cold-start

E2
E

tim
es

0

2000

4000

ResNet152 GoogleNet InceptionV3 Bert-Base

Figure 3: Time cost of executing inference functions.

our proposed method, InstaInfer, which focuses on pre-
loading. We report the total time spent on warming, loading,
and inference stages for the entire workload for each method.

As shown in Fig. 1, existing pre-warmingmethodsmitigate
the warming latency over OpenWhisk. However, loading ML
artifacts dominates the overall latency before inference with
over 68% of the time, while only 25% is spent on warming
and just 6% for inference. Thus, existing approaches severely
overlooked the pre-loading opportunity for serverless infer-
ence tasks. In contrast, InstaInfer reduces the time for the
entire workload by over 55%, demonstrating that pre-loading
significantly reduces the overall latency.
Although the loading stage can be accelerated through

other methods like using snapshot [8, 80], compressed mem-
ory [70], and RDMA [83] to minimize the I/O overhead asso-
ciated with reading library and model files, these methods
cannot enhance the library initialization and model dese-
rialization stages. Consequently, they are insufficient for
accelerating inference function.

2.4 Existing Solutions’ Limitations

Current works attempts to eliminate functions’ cold-starts in
three directions: container pre-warming [16, 30, 48, 72, 73, 77],
snapshot [8, 17, 24, 69, 80, 82], and model pre-loading [35, 46,
63].

Pre-warming, the most mainstream method for mitigating
cold-starts, assumes that functions start execution immedi-
ately after warming. Thus, the warming stage is identified
as the primary bottleneck. It predictively initializes the con-
tainer before request arrivals and keeps the container alive
after function executions. However, for inference functions,
the unique loading delay prevents pre-warming methods
from fully mitigating the whole latency.

Snapshot methods capture functions’ completed states as
checkpoints on disk. When requests arrive, the snapshots are
restored into the process and start execution. For inference
functions, snapshots can freeze the state with loaded models
and libraries to skip the loading stage, hence outperforming
pre-warming. However, the large size of model and library
files introduces high latency when loading the snapshot from
disk. Moreover, these solutions rely on Linux’s memory map-
ping, which is incompatible with GPUs due to the difficulty
in capturing and restoring the GPU memory and context as
they are separate from CPU memory.

Naive model pre-loading methods address the model load-
ing bottleneck by either sharing common layers among dif-
ferent models [35, 46] or pre-loading part of the layers post-
warming [63] However, they largely ignore crucial stages
such as loading libraries and transferring models to the GPU.
Additionally, the assumptions of layer similarity across mod-
els severely limit their effectiveness, hindering function ac-
celeration across the whole workload.

Several works in other fields propose to employ pre-loading
for acceleration. For example, [33, 93] focus on reducing the
data fetching latency in databases. [39, 60] pre-load appli-
cations on mobile devices. [12, 74] pre-load information on
network devices. However, these approaches do not cover
the loading stage of inference tasks.
In conclusion, none of the existing works can eliminate

the inference function’s loading delay. To further motivate
the need for pre-loading, we evaluate the latency of different
inference functions with all types of cold-start mitigation
schemes. Detailed evaluation setup is in Section 7.2. We
implement Histogram [72], REAP [80], and AsyFunc [63]
as baselines to represent pre-warming, snapshot, and naive
model pre-loading, respectively. Fig. 3 shows that InstaInfer
outperforms all other baselines by achievingminimal loading
latency via its pre-loading.

2.5 The Opportunity of Pre-loading

A straightforward idea for realizing pre-loading is to load
all inference functions in advance, which is infeasible due to
excessive CPU and GPU memory requirements. Therefore,
an ideal solution must seek a balance in reducing loading
latency and resource costs. Fortunately, the existence of idle
containers created by providers and the over-allocation phe-
nomenon of functions [27, 32, 66, 72, 86, 87, 92, 92, 94] present
an opportunity for pre-loading without extra resource costs.

Serverless providers like Microsoft Azure, AWS, and IBM
usually keep large volumes of idle containers on standby to
serve incoming requests [9, 16, 72]. We only leverage those
existing idle containers for pre-loading, avoiding any extra
containers and additional resource costs.
Furthermore, due to the fixed proportion between func-

tion’s computation ability and memory size [10], numerous
studies [27, 32, 66, 72, 92] have demonstrated that for optimal
execution speed and handling peak workload, inference func-
tions tend to over-provision memory to hold the libraries and
models. Therefore, the vast memory gap between containers’
running and idle states presents another opportunity for our
opportunistic pre-loading.

3 An Overview of InstaInfer

3.1 Objectives & Challenges

InstaInfer aims to achieve the following objectives:

Pre-Warming is Not Enough: Accelerating Serverless Inference With Opportunistic Pre-Loading SoCC ’24, November 20–22, 2024, Redmond, WA

Frontend

Worker Node m

Proactive
Pre-Loader

Function
Scheduler

Cold-start
Manager

Cold-start
Agent

Pre-loading
Scheduler

W
ar

m
ed

 C
on

ta
in

er
 P

oo
l

…

Intra-container Manager
Container
Warmup

1

Code / ML Artifact Database
2 4

5

6
7

Controller

3

Pr
e-

lo
ad

ing

Container
initialization

Environment
preparation

User library
installation…

ML inference requests

GP
U

Po
ol

7

…

Co
nt

ai
ne

r A

GP
U

A

Figure 4: System overview. Boxes with red bold italic
names are new components introduced by InstaInfer.

• Instant inference: Minimizing the overall end-to-end
(E2E) latency of ML inference invocations.

• Zero wastage: Utilizing only the idle capacities in ex-
isting containers and GPU instances to pre-load func-
tions.

• Transparent to providers: Pre-loading should avoid
conflicts with the platform’s inherent pre-warming
mechanism.

To achieve the above objectives, we seek answers to the
three challenging questions:
How to maximize the acceleration performance with

limited idle containers and GPU instances?With only
idle containers and GPU instances, we cannot pre-load all
functions simultaneously. We must identify and select func-
tions with a high potential for latency improvement and
accurately assign them to each container instance.
How to avoid extra resource overheadswhenpre-loading

functions? Holding libraries and models in containers can
be memory-costly. We must seek a balance between memory
waste and more pre-loading for optimal acceleration.
How to enable pre-loading without incurring addi-

tional function startup overheads? Serverless functions
typically have critical latency requirements. For example,

over 50% of functions on Azure Functions execute in less
than one second [72]. We must design the pre-loading pro-
cess in a lightweight and transparent manner to avoid any
extra function startup overheads.

3.2 InstaInfer’s System Architecture

We introduce the design of InstaInfer, an opportunistic pre-
loading framework to mitigate the loading stage of inference
functions. To achieve optimal acceleration within resource
constraints, we design a secure instance-sharing mechanism
that allows multiple functions to be pre-loaded simultane-
ously into a single container and share a GPU. InstaInfer
includes three principal components: Proactive Pre-Loader,
Pre-Loading Scheduler, and Intra-Container Manager.

Proactive Pre-Loader leverages the prediction model of
the platform’s pre-warming mechanism to forecast function
invocation arrivals. The prediction results are then used to
determinewhen to pre-load each function. To achieve cluster-
wide acceleration, when receiving a request, it routes the
request to the worker node that has pre-loaded the function.
Pre-Loading Scheduler runs on each worker node and

assigns functions that need pre-loading to proper contain-
ers and GPUs. To maintain optimal acceleration over time,
it dynamically makes pre-loading and offloading decisions
based on the worker node’s container creation and removal
events triggered by the platform’s pre-warm and keep-alive
policies.
Intra-Container Manager independently operates the

loading and offloading executions for each function. We de-
sign a three-tier security protection mechanism to ensure
the security and privacy of each pre-loaded function that
shares the same container.

3.3 InstaInfer’s Workflow

Fig. 4 shows the workflow and architecture of InstaInfer.
Upon the arrival of an ML inference function invocation,
InstaInfer follows a five-step workflow:
Stage 1: The Proactive Pre-Loader records the arrival of

each inference function’s requests. It then predicts the ar-
rival time of the next invocation to determine the optimal
moments for loading and offloading each function (Step 1
in Fig. 4).

Stage 2: The Proactive Pre-Loader selects a worker node
with enough available resources and sends the prediction re-
sult to the node’s Pre-Loading Scheduler. The scheduler then
pre-loads the function in a suitable idle container, extracting
the function’s code, and unzipping ML artifacts from the
platform’s database (Step 4).
Stage 3: Concurrently, each request activates the plat-

form’s cold-start manager, which prompts the cold-start
agent to control the creation and removal of containers based

SoCC ’24, November 20–22, 2024, Redmond, WA Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and Hao Wang

on the pre-warming mechanism (Steps 2 and 3). The
events of container removal and creation trigger the Pre-
Loading Scheduler to make pre-load and offload decisions,
which are asynchronous with Stage 2.

Stage 4: When the request arrives, the Proactive Pre-
loader routes the request to a worker node that has pre-
loaded the corresponding function. Then the node’s Pre-
Loading Scheduler selects an idle container that pre-loads
the function and an idle GPU that pre-loads the function’s
model. The request is then sent to the corresponding con-
tainer’s Intra-Container Manager (Step 5).
Stage 5: Once receiving the request, the Intra-Container

Manager immediately calls the corresponding function’s pre-
loading process (Step 6) and off-loads all other pre-loaded
function states (Step 7). We ensure that only one function
can use the container during inference to guarantee security
and privacy. Meanwhile, the Pre-Loading Scheduler selects
other idle containers and GPUs to migrate the off-loaded
functions to serve future invocations.

4 Proactive Pre-Loader

Because one container has limited CPU and GPU memory,
not all functions can be pre-loaded concurrently. Pre-loading
a function too early preempts the loading of other functions
while doing this too late misses serving function invoca-
tions. Therefore, to achieve optimal acceleration, we design
a Proactive Pre-Loader that decides when to pre-load a func-
tion based on its invocation arrival prediction. We offload
the function to make room for pre-loading other functions if
mispredictions occur.

4.1 Function Invocation Prediction

A straightforward approach is to load all functions and never
offload them. However, due to the limited memory capacity,
pre-loading all functions is infeasible. In contrast, we design
InstaInfer to opportunistically pre-load a function right
before the invocation arrival and offload the function to
allow other pre-loadings if mispredicted.

Existing pre-warming approaches typically hold a predic-
tor to forecast invocation arrivals (e.g., Histogram in [48, 72],
ARIMA in [72], Poisson Distribution in [85], Variable Or-
der Markov Model in [13]). InstaInfer employs the plat-
form’s inherent prediction model to maintain transparency
for serverless providers, avoiding introducing extra opera-
tional costs such as building new models.

4.2 Function Pre-Loading and Offloading

To effectively manage pre-loading and offloading of a func-
tion, denoted as 𝑓 , we define two thresholds: a probability
𝑃load (𝑓) for pre-loading and a probability 𝑃offload (𝑓) for of-
floading. As the invocation’s arrival probability increases,

the function is immediately pre-loaded if the probability
reaches 𝑃load (𝑓). Conversely, if the function remains pre-
loaded without being invoked for an extended period, such
that the probability exceeds 𝑃offload (𝑓), InstaInfer identifies
that the prediction is incorrect and offloads the function to
free up resources for pre-loading other functions.

Invocation patterns can vary over time [72, 90], and using
outdated data severely degrades the prediction accuracy. To
enhance pre-loading accuracy, we use a sliding window to
capture each function’s temporal shifts and align predictions
with the latest data. It is compatible with various prediction
models as we only adjust the temporal scope without altering
the underlying model.

We take the PoissonDistributionmodel of RainbowCake [85]
as an example to show how to compute optimal timings for
loading and offloading functions. Let𝑊 denote the window
size and𝑇𝑤 denote the duration between the last and first in-
vocations within the window.We can compute the request ar-
rival rate as 𝜆𝑓 = 𝑊

𝑇𝑤
. Thus, the probability distribution of the

arrival time for the next request is: 𝐹 (𝑡 ; 𝜆𝑓) = 1−𝑒−𝜆𝑓 𝑡 , 𝑡 ≥ 0.
The future timestamp to load and offload function 𝑓 ,𝑇load (𝑓)

and 𝑇offload (𝑓) are given by

𝑇load (𝑓) = − 1
𝜆𝑓

ln(1 − 𝑃load (𝑓))

𝑇offload (𝑓) = − 1
𝜆𝑓

ln(1 − 𝑃offload (𝑓))

We set the default 𝑃load (𝑓) and 𝑃offload (𝑓) to be 6% and
94%, respectively. These values are derived from a sensitivity
analysis detailed in Section 7.11.

5 Pre-Loading Scheduler

We design a Pre-Loading Scheduler that dynamically selects
and assigns functions to appropriate instances for optimal
acceleration. To optimize performance over time, the sched-
uler adaptively adjusts the pre-loading policy to changes.

5.1 Latency-Aware Function Mapping

The simplest way to load functions is one-to-one mapping,
where each instance holds only one pre-loaded function.
However, this method cannot fully utilize all idle memory to
pre-load more functions for further acceleration. To strike a
balance between maximum acceleration and avoiding addi-
tional costs, we propose an instance-sharing mechanism that
allows multiple functions to be pre-loaded simultaneously
into a single container until its idle memory runs out while
their models share the same GPU.
To select an appropriate container for each function to

pre-load, we propose a Latency-Aware Bin-Packing Policy.

Pre-Warming is Not Enough: Accelerating Serverless Inference With Opportunistic Pre-Loading SoCC ’24, November 20–22, 2024, Redmond, WA

Time to pre-load C

t1 t3 Wall clockt2

A

Function A’s invocation

B

t4 t5

Pre-loaded functionsContainer Non-loaded function

D

C
Re-load D

B D

C
Execution

B D

C

A

B D

A

Container removal

A

Off-load B, D

Load C

Container creation

B D

A C

t6

Off-load A
B

DC

A

Time to off-load AExecution
finished

A D A

GPU

B C B CD

A

B D

A B

D C A D

B

Container
Pool:

GPU
Pool:

A

A

B CD

C

C

C

B D

A

B D

C C

Load B, D

Transferred models Transferred back model

Transfer
D back

Transfer
C

Transfer
B

Transfer
C back

Transfer
C

Transfer
A back

Figure 5: The scheduler’s operation after detecting each event.

Our goal is to maximize the acceleration of the entire work-
load, i.e., to maximize the expected value of the saved loading
latency among all selected functions. As function loading
latency and container capacity are known, this problem fits
well with the multiple knapsack bin-packing, wherein con-
tainers and functions are treated as bins and items. A bin’s ca-
pacity is the container memory limit, while an item’s weight
is the memory cost for loading the function. The item’s value
is the expected latency saved by pre-loading (calculated as
the product of function arrival probability and the loading
latency). The objective is to maximize the overall value of
the assigned items.
The Latency-Aware Bin-Packing Policy takes functions

and idle containers as inputs, using dynamic programming
to optimize assignments. The policy computes maximum
latency savings 𝐷𝑃 [𝑖] [𝑗] for 𝑖 functions in 𝑗 containers
by determining whether to place a function based on con-
tainer capacity and the latency saved. The DP table is up-
dated as: 𝐷𝑃 [𝑖] [𝑗] = max(𝐷𝑃 [𝑖 − 1] [𝑗], 𝐷𝑃 [𝑖 − 1] [𝑗 − 1] +
latency_savings(𝑖)). The algorithm iterates over all func-
tions and containers to fill the DP table, with the optimal
configuration found at 𝐷𝑃 [𝑛] [𝑚]. A backtracking method
is used to determine the function-to-container assignments
that yield this optimal latency savings.

Besides library and model loading, transferring the model
from container to GPUmemory also introduce non-negligible
overhead due to IO and CUDA operations such as memory
allocation, especially for large models. For further accelera-
tion, the pre-loaded function’s model can be pre-transferred
to GPU. As GPU pool’s capacity are usually smaller than
that of container pool, only part of models can be kept on
GPU. To determine which model to be kept on GPU, we use
the same bin-packing policy wherein GPUs are treated as
bins and models as items. The item’s value is the expected
latency saved (calculated as the product of function’s arrival
probability and the transformation overhead).

5.2 Optimal Pre-loading Over Time

Due to time-varying workloads, a series of events will cause
a fixed bin-packing policy to be sub-optimal: pre-loading or
offloading a function, invocation arrivals, container creations,
and container removals. We describe how our scheduler
reacts to these events to maintain optimal acceleration over
time as follows.

As shown in Fig. 5, Functions A, B, and D are pre-loaded on
containers, while models of Function A and D are transferred
to GPU. In the first case at 𝑡1, when Function A’s invoca-
tion arrives, the scheduler first forwards the request to the
GPU container that loads Functions A and D. Immediately,
Function D is re-assigned to another container to ensure
Function A execution performance. Since no GPUs are avail-
able, Function D’s model is transferred from the GPU back
to the container memory. In 𝑡2, after execution, Function A
follows the platform’s keep-alive mechanism and remains
in the GPU container. Note that since each function has a
unique resource configuration, the scheduler adjusts the con-
tainer’s resource limitations immediately upon receiving the
invocation to match the function’s configuration. The second
case is function pre-loading. As shown in 𝑡3, the scheduler se-
lects a container along with its GPUs that have enough space
to load Function C. The third case is container removals. In
𝑡4, when terminating the container that loads Functions B
and D, the scheduler is enforced to offload models of B and
D. The fourth case is the container creations. In 𝑡5, once
detecting a new idle container is available, the scheduler pre-
loads Functions B and D inside the new container. The last
kind of event is function offloading. The scheduler offloads
Function A from both the container and its associated GPU
directly, as shown in 𝑡6. Subsequently, Function C’s model is
transferred to the GPU to utilize the newly freed resources.
The event-driven scheduler dynamically optimizes the bin-
packing policy over time while ensuring compatibility with
the platform’s inherent pre-warming mechanism.

SoCC ’24, November 20–22, 2024, Redmond, WA Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and Hao Wang

Intra-Container Manager

Function A
Process

Start process

Load libraries & model
finished

Block process

Function B
Process

Start process

Block process

Terminate function B x
Awake function A

Return resultReturn result

Pre-load
Function A

Pre-loading
Scheduler

Pre-load
Function B

Invoke
Function A

Load libraries & model
finished

Figure 6: Timeline of InstaInfer’s pre-loading.

6 Intra-Container Manager

The Intra-Container Manager interfaces with the scheduler
to control the process-level execution of functions, including
loading, off-loading, and model transfer. Besides, for func-
tions in the same container, it ensures no resource conflicts,
and maintains security.

6.1 Pre-Loading Management

As each container holds multiple function’s pre-loading pro-
cesses, the design principle follows three steps: waiting for
future invocations and forwarding them to corresponding
processes, terminating all processes irrelevant to the incom-
ing invocation, and guaranteeing each function’s security
and privacy. Upon receiving a pre-loading message from
the scheduler, the manager executes the function code to
load the library and model. It then transfers the model to
the container’s corresponding GPU based on the scheduler’s
decision. After loading, the process enters a blocked state,
awaiting future invocations.
The manager’s workflow is shown in Fig. 6. After pre-

loading function A and B, upon receiving function A’s in-
vocation, the manager forwards the request to function A
process’s input pipeline, awakening the process to start infer-
ence and return the result. To avoid memory preemption and
to guarantee function’s security, the arrival of a function A’s
invocation prompts the immediate termination of all other
pre-loading processes and the clearing of their memory allo-
cations. This design ensures that the invoked function runs
in a clean and isolated environment.

Similarly, while receiving the off-loading message from
the scheduler, the manager terminates the corresponding
function’s process and erases all related data to protect user
privacy. While functions are served as black-box, user code
only needs slight changes to expose the model and library
files to InstaInfer. We offer two modification options with
different objectives:

Original
model.load_state_dict(torch.load(model_path))
inference ()...

InstaInfer
model.load_state_dict(InstaInfer.load(model_path))
sys.stdin.readline () # wait for request
inference ()...

Maximum transparency. As the following Python code
snippet shows, developers only need to modify two lines of
code: First, replace the model loading line (torch.load) with
the InstaInfer API to expose the model file’s path. Second,
add the sys.stdin.readline() line after loading the model for
listening invocations. The function process will be resumed
upon receiving requests.
Maximum privacy. If non-intrusive pre-loading is pre-
ferred, developers can simply implement a LOAD function
similar to AzureWarmup Trigger [52] to hold the pre-loading
content. The manager calls the LOAD API to perform pre-
loading without accessing any function-specific data.

6.2 Privacy & Security Guarantee

As multiple functions’ code and data are stored in the same
container, it’s necessary to guarantee the privacy and secu-
rity of each function. InstaInfer provides a three-layer secu-
rity protection mechanism. In the user layer, only functions
belonging to the same user can be pre-loaded on one con-
tainer. In the process layer, as shown in Fig. 6, when function
A’s invocation arrives, all other functions in the same con-
tainer are off-loaded. Their data and code are deleted immedi-
ately. In the OS layer, each function’s pre-loading process and
data are allocated with a unique non-root user managed by
Linux privilege domain and privilege control. Meanwhile, the
isolation is enhanced with jail techniques [42] such as chroot
jails [19]. These designs ensures that a function’s process is
restricted from accessing the data of other processes, both
in memory and on disk. The OS-level isolation also avoids
library version conflicts across functions, as the libraries
for each function are isolated and stored under the path of
its specific Linux user. Furthermore, for the strictest secu-
rity guarantee that completely forbids container sharing and
only allows a container to pre-load one function, InstaInfer
still significantly outperforms existing pre-warmingmethods
(Sec. 7.10).

Pre-Warming is Not Enough: Accelerating Serverless Inference With Opportunistic Pre-Loading SoCC ’24, November 20–22, 2024, Redmond, WA

7 Evaluation

7.1 Implementation

We implement a prototype of InstaInfer using Apache
OpenWhisk [9]. We implement the Proactive Pre-Loader
and Pre-Loading Scheduler as OpenWhisk components us-
ing 4K lines of Scala code and implement the Intra-Container
Manager in each container’s proxy using 2K lines of Golang
code. We use PyTorch [62] as the ML environment, although
InstaInfer is compatible with any other ML frameworks
(e.g., TensorFlow).

Proactive Pre-Loader. We implement the Proactive Pre-
Loader in OpenWhisk’s load balancer module where all in-
vocations passed by. The Proactive Pre-Loader records the
timestamp of invocations, thereby updating each function’s
prediction.
Pre-Loading Scheduler. OpenWhisk runs a container

pool module in each node to manage each container’s cre-
ation and removal. We implement the scheduler in this mod-
ule so that the scheduler can acquire all information it needs
for pre-loading. The scheduler sends loading and off-loading
message to Intra-Container Manager through HTTP request.
To align container’s resource limitation matches the invoked
function’s configuration, the scheduler specifies limits using
the –memory, –cpu, and –gpus flag when running Docker
container.

Intra-Container Manager. We implement the manager
in each container’s proxy which is used to communicate
with OpenWhisk. The manager is written in Golang. We
modify the Action Proxy module to receive the message from
the scheduler. We modify the Executor module to execute
loading and off-loading. Each pre-loaded function runs as an
independent process.

GPU support. As all functions run in Docker containers,
we apply the NVIDIA container toolkit [58] that can let
the container use the CUDA devices without any additional
configuration. To improve GPU resource utilization, we use
NVIDIA MPS [22] to partition a GPU for multiple functions
and control the GPU limitation of each function.

7.2 Experiment Settings

We describe the experimental settings for evaluating InstaIn-
fer and state-of-the-art baselines.
Testbed: We evaluate InstaInfer on three OpenWhisk

clusters: 1) Single-nodeCPU cluster on anAWSm5.16xlarge
EC2 instance with 64 Intel Xeon Platinum-8175 CPU cores
and 256 GB memory. We perform the E2E latency evalua-
tion, comparisons with snapshot-based solutions, ablation
study, sensitivity analysis, and scalability tests on this clus-
ter. 2) Single-node GPU server on an AWS g5.12xlarge
EC2 instance with 48 CPU cores, 196 GB of memory, and 4
NVIDIA A10 GPUs. We conduct the E2E latency evaluation,

and memory cost evaluation on this cluster. 3) Multi-node

cluster that includes one controller node and four worker
nodes, each an AWS m5.8xlarge EC2 instance with 32 CPU
cores and 128 GB of memory.We perform E2E latency evalua-
tion, large-scale evaluation of 1000 functions, and prediction
evaluation on this cluster.
Workloads: We select the inference function of SeBS

benchmark [21] to load each model. For simplicity, each
function only runs one model. To optimize subsequent re-
quests and avoid re-loading if warm containers have cached
the function process, we follow the optimization approach
of AWS Lambda [7]. We place the model and library loading
code within the “INIT” structure, and the inference code
within the “Handler” structure.

To approximate the real-world invocation patterns, we
sample the invocations from the Azure Function traces [72],
which are collected in production environments. We scan
the 14-day Azure invocation trace files and randomly select
eight different 4-hour traces that satisfy the Coefficient of
Variation (CoV) requirement for each benchmark function.
Each trace is then mapped to an inference function, which
drives the invocations during the evaluation. For generality,
we define three patterns based on the CoV: Predictable (CoV
<1), Normal (1<CoV <4), and Bursty (CoV >4).

Models and Libraries: We use PyTorch [62] as the ML
framework. We collect eight most popular ML models in
computer vision (CV) and natural language processing (NLP)
as evaluation benchmarks based on the number of stars
on GitHub: AlexNet [44], Inception_V3 [79], ResNet18 [34],
ResNet50, ResNet152, VGG19 [76], GoogleNet [78], and Bert-
Base [23]. Themodel size varies from 45MB to 549MB, provid-
ing sufficient diversity for evaluating InstaInfer’s efficiency.
We expand the function type to 1000 for further evaluation
in Section 7.8.
InstaInfer+* Settings: As InstaInfer can be easily

integrated with pre-warming solutions, InstaInfer+* indi-
cates integration with three solutions: Histogram [72], Pagu-
rus [48], and FaaSCache [30]. InstaInfer pre-loads functions
in the warmed containers created by these solutions.

Baselines: we compare InstaInfer with the state-of-the-
art baselines that mitigate cold-starts in serverless comput-
ing: 1) OpenWhisk [9], the default keep-alive policy of
OpenWhisk that keeps each container alive for a fixed 10
minutes after invocation. 2)Histogram Policy, a histogram-
based container caching approach to dynamically determine
when to pre-warm the container and how long the container
is kept alive by predicting the inter-arrival time of function
invocations. We implemented the Histogram Policy inside
OpenWhisk. 3) FaaSCache proposes a Greedy-Dual keep-
alive caching policy to keep functions alive. Our evaluation
reused FaaSCache’s open-sourced code repository [29] in
OpenWhisk. 4) Pagurus avoids cold start by “lending” other

SoCC ’24, November 20–22, 2024, Redmond, WA Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and Hao Wang

Table 1: The average E2E latency, warming+loading latency, and pre-loading rate of baselines.

Metrics Avg. E2E (ms) (Speedup ×) Avg. warming+loading (ms) (Speedup ×) Pre-loading Rate (%)

Workload Predictable Normal Bursty Predictable Normal Bursty Predictable Normal Bursty

InstaInfer+Histogram 538 (5.6×) 707 (4.7×) 814 (4×) 295 (9.4×) 462 (6.6×) 567 (5.3×) 79 66 48
Histogram 2642 (1.14×) 2661 (1.24×) 2630 (1.24×) 2397 (1.15×) 2409 (1.27×) 2387 (1.26×) - - -

InstaInfer+Pagurus 468 (6.4×) 552 (6×) 618 (5.3×) 223 (12.4×) 309 (9.8×) 376 (8×) 85 78 71
Pagurus 2553 (1.18×) 3017 (1.1×) 2624 (1.3×) 2304 (1.2×) 2771 (1.1×) 2382 (1.26×) - - -

InstaInfer+FaaSCache 826 (3.6×) 955 (3.5×) 1165 (2.8×) 581 (4.7×) 709 (4.3×) 917 (3.3×) 63 51 45
FaaSCache 2537 (1.19×) 2715 (1.2×) 2690 (1.21×) 2292 (1.2×) 2469 (1.24×) 2445 (1.24×) - - -
OpenWhisk 3012 (N/A) 3309 (N/A) 3274 (N/A) 2767 (N/A) 3059 (N/A) 3025 (N/A) - - -

functions’ idle containers to the function being invoked.5 5)
REAP [80] is a snapshot-based cold start mitigation method
that stores function completion states as snapshots on disk.
6) Azure Function with warmup trigger [52] allows pre-
loading user-defined content while scaling up new instances.

Evaluation Metrics: 1) End-to-End (E2E) latency: the
total time of an invocation from being triggered to com-
pleting response. 2) Warming+Loading latency: the time
period before the inference is actually executed, including
both container warming and ML artifacts loading. 3) Pre-
loading rate: the ratio of invocations whose function has
already been pre-loaded to the total invocations. 4) Speedup:
the acceleration performance against baselines. 5) Memory

cost: the platform’s CPU and GPU memory consumption
for running the whole workload.

7.3 Reducing E2E Latency

We evaluate InstaInfer+* and baselines on the single-node
cluster. Fig. 7 shows that integrating InstaInfer with the
baseline solutions reduces up to 86% E2E latency and 93%
warming+loading latency compared with the pre-warming
baselines and vanilla OpenWhisk, as InstaInfer effectively
mitigates the latency with library and model pre-loading.
The Azure Function baseline utilizes the warmup trig-

ger [52] to pre-load user-defined contents, including libraries
andmodels. Deviating from the traditional on-demand server-
less products, warmup trigger is only available on the Pre-
mium plan [53] which keeps at least one “always-on” con-
tainer and scales dynamically. For fair comparisons, we select
the “EP2” configuration with two “always-on” containers,
each with 4 vCPUs and 7 GB memory, totaling at least 64
vCPUs, compared to 48 vCPUs in InstaInfer.

Fig. 7 shows that InstaInfer outperforms Azure Function
when serving most of the functions. Despite Azure’s minimal
warming latency due to “always-on” containers, it exhibited
three main drawbacks compared with InstaInfer: 1) The
function’s library files are stored on Azure Files [54]. During
loading, reading many small files incurs heavy overhead

5Pagurus’s original implementation [47] is not for OpenWhisk. We repro-
duced Pagurus in OpenWhisk and tuned its performance to the best for a
fair comparison.

InstaInfer+Histogram
InstaInfer+Pagurus

InstaInfer+FaaSCache
Histogram

Pagurus
FaaSCache

OpenWhisk

0

2000

4000

ResNet18 ResNet50ResNet152 AlexNet GoogleNetInceptionV3 VGG19 Bert

InstaInfer+Histogram
InstaInfer+Pagurus

InstaInfer+FaaSCache
Histogram

Pagurus
FaaSCache

OpenWhisk

0

2000

4000

ResNet18 ResNet50ResNet152 AlexNet GoogleNetInceptionV3 VGG19 Bert

Predictable (CoV < 1)

Normal (1 < CoV < 4)

Bursty (CoV > 4)

Azure

Av
er

ag
e

la
te

nc
y

(m
s)

0

1k

2k

3k

4k

ResNet18
ResNet50

ResNet152
AlexNet

GoogleNet
InceptionV3

VGG19
Bert

Av
er

ag
e

la
te

nc
y

(m
s)

0

1k

2k

3k

4k

ResNet18
ResNet50

ResNet152
AlexNet

GoogleNet
InceptionV3

VGG19
Bert

Av
er

ag
e

la
te

nc
y

(m
s)

0

1k

2k

3k

4k

ResNet18
ResNet50

ResNet152
AlexNet

GoogleNet
InceptionV3

VGG19
Bert

Figure 7: Average E2E latency of InstaInfer+* and

baselines running the Predictable, Normal, and Bursty

workloads.

(over 10 seconds). 2) Warmup triggers only work during
scaling and never proactively pre-load functions in “always-
on” containers, losing the opportunity to mitigate loading
latency. 3) Unlike traditional serverless products that charge
per use, the Premium plan has fixed hourly or monthly fees,
leading to over 20× higher expense (Sec. 7.5).

Table 1 presents the average E2E latency, warming+loading
latency, speedup, and pre-load rate of each each baseline. In-
staInfer+* outperforms each corresponding baseline on
each metric. InstaInfer+Pagurus achieves the best perfor-
mance due to having more idle containers for pre-loading.
This is because Pagurus removes fewer containers and keeps
more warmed containers over other baselines.

To further explore E2E latency reduction, we show the E2E
latency’s cumulative distribution function (CDF) of running
the Normal workload for InstaInfer and each baselines

Pre-Warming is Not Enough: Accelerating Serverless Inference With Opportunistic Pre-Loading SoCC ’24, November 20–22, 2024, Redmond, WA

Instalnfer+Histogram
Histogram

0

0.5

1.0

E2E Latency (ms)
0 5000

Instalnfer+Pagurus
Pagurus

0

0.5

1.0

E2E Latency (ms)
0 5000

Instalnfer+FaaSCache
FaaSCache

0

0.5

1.0

E2E Latency (ms)
0 5000

CD
F

Figure 8: CDF of InstaInfer+* and baselines running

the Normal workload.

Warming Load Libary Inference Load Model

alexnet
bert-base
googlenet

inceptionV3
resnet152

resnet18
resnet50

vgg19

Wall-clock time
3:47 3:48 3:49 3:50

alexnet
bert-base
googlenet

inceptionV3
resnet152

resnet18
resnet50

vgg19

Wall-clock time
3:47 3:48 3:49 3:50

Pagurus

InstaInfer

Figure 9: E2E latency breakdown of individual invoca-

tions served by Pagurus and InstaInfer+Pagurus.

in Fig. 8. As the result shows, InstaInfer can effectively
accelerate the workload without increasing the tail latency.

To show InstaInfer’s acceleration effect more intuitively,
we present a time breakdown of the E2E latency of Pagu-
rus and InstaInfer+Pagurus running a “Normal” workload
in Fig. 9. Pagurus is selected in this case since it outper-
forms Histogram and FaaSCache. Fig. 9 shows that InstaIn-
fer+Pagurus eliminates not just the warming stage, but also
the library and model loading stage for most invocations.

Note that in Pagurus’s timeline in Fig. 9, several functions
are invoked multiple times within a minute and are required
to load everything from scratch due to two main reasons:
First, if the request concurrency of a function exceeds the
number of cached containers, additional warmed containers
must be spawned to serve the extra requests. Second, to share
the container among multiple functions, Pagurus transforms
a dedicated container into a shareable one, which clears the
cached states inside the container. Thus, if a request is served

InstaInfer+Histogram
InstaInfer+Pagurus

InstaInfer+FaaSCache
Histogram

Pagurus
FaaSCache

OpenWhisk

0

2000

4000

ResNet18 ResNet50ResNet152 AlexNet GoogleNetInceptionV3 VGG19 Bert

InstaInfer+Histogram
InstaInfer+Pagurus

InstaInfer+FaaSCache
Histogram

Pagurus
FaaSCache

OpenWhisk

0

2000

4000

ResNet18 ResNet50ResNet152 AlexNet GoogleNetInceptionV3 VGG19 Bert

Predictable (CoV < 1)

Normal (1 < CoV < 4)

Bursty (CoV > 4)

Av
er

ag
e

la
te

nc
y

(m
s)

0

1k

2k

3k

4k

ResNet18
ResNet50

ResNet152
AlexNet

GoogleNet
InceptionV3

VGG19
Bert

Av
er

ag
e

la
te

nc
y

(m
s)

0

1k

2k

3k

4k

ResNet18
ResNet50

ResNet152
AlexNet

GoogleNet
InceptionV3

VGG19
Bert

Av
er

ag
e

la
te

nc
y

(m
s)

0

1k

2k

3k

4k

ResNet18
ResNet50

ResNet152
AlexNet

GoogleNet
InceptionV3

VGG19
Bert

Figure 10: Average E2E latency of InstaInfer+* and

baselines running each workload on GPUs.

InstaInfer+Histogram
InstaInfer+FaaSCache

Histogram
FaaSCache

InstaInfer+Pagurus
OpenWhisk

Pagurus

M
em

or
y

co
st

 (G
B
×

s)

0
1×

10
5

2×
10

5

CPU memory cost GPU memory cost

Figure 11: Average memory cost of InstaInfer+* and

baselines running the same workload.

by a shared container, it must re-load the ML artifacts even
if it’s already warm-started.

7.4 InstaInfer GPU Evaluation

To show the benefits of opportunistic pre-loading in both
CPU memory and GPU memory, we evaluate the E2E la-
tency of workloads with InstaInfer in the GPU cluster with
4 NVIDIA A10 GPUs. As shown in Fig. 10, integrating In-
staInfer with each baseline can significantly reduce at most
93% average E2E latency for each inference function. Com-
pared with CPU based InstaInfer in Section 7.3, InstaInfer
with GPU pre-loading further improves the function execu-
tion time cost as it mitigates the CUDA runtime initialization
and model swapping latency.

SoCC ’24, November 20–22, 2024, Redmond, WA Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and Hao Wang

Table 2: Multi-node cluster’s average E2E latency, warming+loading latency, and pre-loading rate of baselines.

Metrics Avg. E2E (ms) (Speedup ×) Avg. warming+loading (ms) (Speedup ×) Pre-loading Rate (%)

Workload Predictable Normal Bursty Predictable Normal Bursty Predictable Normal Bursty

InstaInfer+Histogram 559 (5.6×) 712 (4.4×) 903 (3.8×) 310 (9.2×) 461 (6.9×) 656 (4.9×) 78 66 52
Histogram 2703 (1.16×) 2729 (1.24×) 2861 (1.28×) 2452 (1.17×) 2480 (1.3×) 2614 (1.23×) - - -

InstaInfer+Pagurus 452 (7.7×) 564 (6.2×) 623 (5.6×) 203 (14.1×) 313 (10.3×) 375 (8.6×) 86 79 70
Pagurus 2493 (1.25×) 2917 (1.2×) 2624 (1.3×) 2203 (1.3×) 2663 (1.2×) 2377 (1.35×) - - -

InstaInfer+FaaSCache 821 (3.8×) 968 (3.6×) 1043 (3.6×) 576 (5×) 725 (4.5×) 811 (4×) 61 46 42
FaaSCache 2526 (1.23×) 2751 (1.27×) 2723 (1.27×) 2289 (1.26×) 2508 (1.3×) 2476 (1.3×) - - -
OpenWhisk 3124 (N/A) 3496 (N/A) 3459 (N/A) 2879 (N/A) 3247 (N/A) 3216 (N/A) - - -

InstaInfer+Histogram
InstaInfer+Pagurus
InstaInfer+FaaSCache
Azure Premium

Histogram
Pagurus
FaaSCache

M
on

et
ar

y
co

st
 ($

)

1
10

Methods

Figure 12: Monetary cost of InstaInfer+* and other

baselines running the same workload.

7.5 Memory and Monetary Cost

We evaluate the monetary cost of InstaInfer, baseline pre-
warming methods, and naive pre-loading while running the
same Azure trace workload. In the evaluation, InstaInfer is
combined with each baseline. In the OpenWhisk Pre-loading
baseline, each container can only hold one pre-loaded func-
tion. To achieve the same acceleration performance as In-
staInfer, more containers are created proactively for pre-
loading. Shown in Fig. 11, the container and GPU memory
consumption of InstaInfer+* are nearly identical to those
of corresponding baselines alone. That’s because InstaIn-
fer only reuses the idle container created by the baseline
method and does not proactively create new containers. Con-
sequently, InstaInfer does not incur additional resource
costs. In contrast, to achieve comparable acceleration per-
formance, OpenWhisk Pre-loading creates more containers
than InstaInfer, resulting in at most 2.4× the memory cost
and 2× the GPU cost compared to InstaInfer.

Then we evaluate the monetary cost of running the above
4-hour workload using Azure Function pricing model [2]. As
the result shown in Fig. 12, the monetary cost of InstaIn-
fer+* is nearly identical to that of corresponding baseline
alone. Although Azure Premium Plan achieves lower E2E
latency for several functions according to Fig. 7 than InstaIn-
fer, its expense is 20 times higher than other methods.

7.6 Multi-Node Evaluation

Av
er

ag
e

la
te

nc
y

(m
s)

0

1k

2k

3k

4k

ResNet18
ResNet50

ResNet152
AlexNet

GoogleNet
InceptionV3

VGG19
Bert

Av
er

ag
e

la
te

nc
y

(m
s)

0

1k

2k

3k

4k

ResNet18
ResNet50

ResNet152
AlexNet

GoogleNet
InceptionV3

VGG19
Bert

InstaInfer+Histogram
InstaInfer+Pagurus

InstaInfer+FaaSCache
Histogram

Pagurus
FaaSCache

OpenWhisk

0

2000

4000

ResNet18 ResNet50ResNet152 AlexNet GoogleNetInceptionV3 VGG19 Bert

InstaInfer+Histogram
InstaInfer+Pagurus

InstaInfer+FaaSCache
Histogram

Pagurus
FaaSCache

OpenWhisk

0

2000

4000

ResNet18 ResNet50ResNet152 AlexNet GoogleNetInceptionV3 VGG19 Bert

Predictable (CoV < 1)

Normal (1 < CoV < 4)

Bursty (CoV > 4)

Av
er

ag
e

la
te

nc
y

(m
s)

0

1k

2k

3k

4k

ResNet18
ResNet50

ResNet152
AlexNet

GoogleNet
InceptionV3

VGG19
Bert

Figure 13: Average E2E latency of InstaInfer+* and

other baselines running on the multi-node cluster.

We evaluate the scalability of InstaInfer by conduct-
ing experiments on the multi-node cluster. We evaluate the
E2E latency using the same benchmarks, metrics, baselines,
and workloads from Sec. 7.3. Fig. 13 shows that integrat-
ing InstaInfer with baselines reduces up to 87% E2E la-
tency. The performance evaluated on the multi-node cluster
is similar to the results observed from the single-node clus-
ter. This consistency suggests that InstaInfer efficiently
maintains low loading latency for a variety of workloads
in a distributed cluster. Table 2 details the average E2E la-
tency, warming+loading latency, speedup, and pre-load rate
for each baseline. The data shows InstaInfer+* consistently
outperforms existing baselines across all the metrics.

7.7 Comparisons with Snapshot Methods

To mitigate cold start, some approaches [8, 80] capture
the function’s complete state as a snapshot and store the

Pre-Warming is Not Enough: Accelerating Serverless Inference With Opportunistic Pre-Loading SoCC ’24, November 20–22, 2024, Redmond, WA

Inference
Load Snapshot

Load Model
Load Library

Container initialization

E2
E

La
te

nc
y

(s
)

0

2

4

ResNet18-OW
ResNet18-REAP

ResNet18-InstaInfer

Inception-OW
Inception-REAP

Inception-InstaInfer

Bert-OW
Bert-REAP

Bert-InstaInfer

Figure 14: E2E latency of InstaInfer, REAP, and Open-

Whisk running benchmark functions with different

model size.

Table 3: Average E2E latency in large-scale evaluation

Method

(Speedup ×)
Avg. E2E (ms)

(Speedup ×)
Warm + Load (ms)

InstaInfer+Pagurus 1482 (2.49) 1184 (2.86)
Pagurus 3201 (1.15) 2896 (1.17)
OpenWhisk 3695 (N/A) 3397 (N/A)

snapshot on disk. ForML inference functions, as the snapshot
can store the state after loading the libraries and model, it
can also address eliminating the loading delay. Thus, we
conduct an evaluation between InstaInfer and REAP [80],
a snapshot-based serverless method.
We evaluated the E2E latency of three benchmark ML

inference functions with small (ResNet18), medium (Incep-
tion_v3), large (Bert-Base) models respectively in InstaIn-
fer, REAP, and vanilla OpenWhisk in the same setup. Fig. 14
shows, REAP outperforms OpenWhisk. InstaInfer further
enhances execution by 1.5 to 2.5× over REAP.
The reason of InstaInfer’s outperformance over REAP

is that InstaInfer does not need to load and restore the
snapshot from disk to memory. As REAP’s snapshots are all
stored in disks, when request arrives, a snapshot must be read
into memory and restored to process, introducing additional
latency. Based on the experiment result, the latency is high
for inference functions (300–600ms) due to the large size
of model and library files. In contrast, InstaInfer, keeping
functions in memory, achieves negligible latency (5–14 ms)
according to our measurement in Section 7.12.
7.8 Large-Scale Evaluation

To further evaluate the performance of InstaInfer in a
more realistic scenario, we extend the workload to 1000 func-
tions on the multi-node cluster. According to Azure[72], the
top 18.6% functions make up 99.6% calls. Thus, we selected
50 often-used functions’ traces, 150 ones with a once-per-
minute call rate, and 800 rarely-called ones. All functions
are created based on the eight benchmark models. We give

Table 4: Comparison of different prediction meth-

ods under varying workloads, metrics including pre-

loading rate and speedup (×).

Workload Poisson Histogram RF ARIMA

Predictable 67% (2.93) 61% (2.65) 50% (1.86) 62% (2.67)
Normal 56% (2.32) 51% (1.93) 47% (1.75) 51% (1.94)
Bursty 42% (1.58) 46% (1.79) 43% (1.59) 40% (1.5)

each function a unique identifier (such as ResNet50-1, . . . ,
ResNet50-125) to create 125 different functions that run the
same model under hood. As InstaInfer treats a function’s
code is a blackbox, all functions are totally different.

We evaluate the E2E and warming+loading latency of In-
staInfer+Pagurus, Pagurus, and vanilla OpenWhisk under
same workload. The result is shown in Table 3. Besides, we
evaluate the pre-loading rate of InstaInfer. For the 50 func-
tions that are frequently invoked, the pre-load rate is 73%.
For the 150 less-frequently invoked functions, the pre-load
rate is 28%. For the 800 rarely invoked functions, the pre-
load rate is less than 1%. Thus, InstaInfer can effectively
pre-load the frequently invoked functions and accelerate the
workload in large scale scenario.

7.9 Prediction Performance Evaluation

To evaluate the robustness of InstaInfer, we choose four
prediction models: Poisson distribution, Histogram policy-
based prediction [72], Random Forests (RF)[15], and Auto-
Regressive IntegratedMovingAverage (ARIMA)modeling[14].
Each model is used to decide when to load and offload a
function. We randomly select 200 function traces from pre-
dictable, normal, and bursty workloads, respectively. As
shown in Table 4, Poisson achieves the best performance
in predictable and normal workloads, whereas Histogram
performs best in bursty workloads. InstaInfer pre-loads
over 40% functions and speeds up workloads by over 1.5×.

7.10 Ablation Study

We conduct an ablation experiment on the single-node clus-
ter to evaluate the effectiveness of the Proactive Pre-Loader
and Pre-Loading Scheduler. Three variants of InstaInfer
are evaluated and compared with Histogram Policy, Pagurus,
and FaaSCache:
• InstaInfer_NP: InstaInfer without the Proactive Pre-
Loader. This variant lacks the Proactive Pre-Loader, so it
does not predict the arrival probabilities of the function.
Thus, this variant never determines pre-loading and off-
loading proactively, only reacting to container creation,
container removal, and invocation arrival.

• InstaInfer_NS: InstaInfer without the Scheduler. This
variant cannot make optimal assignments and dynamically

SoCC ’24, November 20–22, 2024, Redmond, WA Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and Hao Wang

Instalnfer+*
Instalnfer_NP+*

Instalnfer_NS+*
Instalnfer_NPS+*

Baseline
OpenWhisk

C
D

F

0
1

E2E Latency (ms)
0 2000 4000 6000

CD
F

0

0.2

0.4

0.6

0.8

1.0

E2E Latency (ms)
0 5000

*=Histogram *=FaaSCache*=Pagurus
0

0.2

0.4

0.6

0.8

1.0

E2E Latency (ms)
0 5000

0

0.2

0.4

0.6

0.8

1.0

E2E Latency (ms)
0 5000

Figure 15: The CDF of E2E latency for ablation of In-

staInfer+* and baselines.

Window Size=10
Window Size=20
Window Size=30

Av
g.

 E
2E

 L
at

en
cy

 (m
s)

580
600
620
640
660
680

Pload
0.02 0.04 0.06 0.08 0.10

Figure 16: The average E2E latency with different 𝑃load
and sliding window size.

schedule loading and unloading. For InstaInfer_NS, a
function is only pre-loaded under two situations: 1) when
receiving the pre-load message from the Proactive Pre-
Loader and 2) when a container is idle, its corresponding
function will be loaded (i.e., one-to-one mapping).

• InstaInfer_NPS: InstaInfer without either the Proac-
tive Pre-Loader or Scheduler. Each container only pre-
loads its own function’s libraries and models.
Fig. 15 shows the CDF of E2E inference latency under

2-hour “Normal” traces randomly selected from Azure. Re-
gardless of the pre-warming method used, InstaInfer al-
ways outperforms other variants due to its full utilization of
both the Proactive Pre-Loader and Scheduler. The synergy
between these two components ensures the maximum load-
ing latency reduction despite dynamic change in invocation
pattern and the number of idle containers.

On average, InstaInfer accelerates the workload by 1.16-
1.28×, 1.21-1.49×, and 1.48-1.73× when compared with In-
staInfer-NP, InstaInfer-NS, and InstaInfer-NPS.

7.11 Sensitivity Analysis

We conduct an experiment to evaluate the impact of two
InstaInfer hyper-parameters: 𝑃load, which decides when
to load libraries and models, and the size of the Proactive
Pre-Loader’s sliding window, used to adapt to recent invoca-
tion changes. Fig. 16 shows their impact on the average E2E
latency of a workload from Azure Trace.

InstaInfer+Pagurus Pagurus

Av
er

ag
e

E2
E

la
te

nc
y

(m
s)

0
1k
2k
3k
4k
5k
6k
7k
8k

Request per min
10 20 30 40 50 60 80 120 180

Figure 17: Average E2E latency vs. increasing work-

loads.

InstaInfer
Pagurus
Histogram
OpenWhisk

Av
g.

 E
2E

 L
at

en
cy

 (m
s)

0

5,000

10,000

Memory Budget (GB)
50100150200250300

Figure 18: Robustness to limited memory budgets.

As observed, the performance of InstaInfer is not sensi-
tive to the size of the Proactive Pre-Loader’s sliding window.
Meanwhile, we observed that the value of 𝑃load converges to
0.06. Furthermore, the optimal value of 𝑃load is not affected
by the sliding window size. Although a lower 𝑃load means
loading a model earlier, leading to a higher hit rate for future
invocations. However, pre-loading a function too early risks
wasting the available resources, which might be utilized for
loading other functions, leading to a sub-optimal acceler-
ation. We set InstaInfer’s 𝑃load to be 0.06 to achieve the
optimal acceleration.

7.12 Scalability and Overhead

To evaluate the scalability of InstaInfer, InstaInfer + Pagu-
rus is given increasingly heavier workloads, varying from
10 to 180 requests per minute. The performance is shown in
Fig. 17. InstaInfer consistently outperforms Pagurus across
different scales. Then we evaluate the performance of In-
staInfer against other baselines under constrained resource
budgets by varying the container pool’s size. As Fig. 18 shows,
InstaInfer consistently outperforms other baselines under
different memory budgets, showing stronger robustness.

Next, we report the latency and resource overhead of each
component. The Proactive Pre-Loader introduces less than
3ms additional latency under the heaviest workload. The
Intra-Container Manager introduces 2ms to 11ms latency
overhead, which is caused by the memory preemption of
clearing the memory of other pre-loading processes when
invocation arrives. This latency varies based on the memory
footprint of the to-be-offloaded function. As the scheduler’s
pre-loading & off-loading decision is asynchronous with
serving the invocation, it does not cause latency overhead.

Pre-Warming is Not Enough: Accelerating Serverless Inference With Opportunistic Pre-Loading SoCC ’24, November 20–22, 2024, Redmond, WA

Compared with the saved latency (1500-5000ms), the addi-
tional latency (5ms-14ms) is negligible. The overhead will be
lower when handling fewer invocations.
Under the heaviest workload, the Proactive Pre-Loader

consumes less than 0.3 CPU core and 72MB memory; the
scheduler consumes 0.3 CPU core and 135MB memory; the
Intra-Container Manager consumes 0.1 CPU core and 9MB
memory. The overall resource overhead of all InstaInfer’s
components is negligible compared to the workloads.

8 Related Work

Serverless inference. Motivated by serverless computing’s
flexibility and cost-efficiency, a few studies proposed to en-
able ML inference via serverless computing [6, 20, 25, 35,
36, 38, 40, 46, 50, 89]. However, they ignore the ML artifacts
loading latency, which extensively inflates the E2E latency.
Some works improve inference functions’ throughput by
dynamically batching requests [5, 84, 91], which is orthogo-
nal to InstaInfer. InstaInfer’s Proactive Pre-Loader treats
the batched requests as a single call and forwards them to
a container. AsyFunc [63] mitigates bursts by pre-loading
resource-intensive layers of a model while reusing others
from a warmed container, dependent on the availability of
warmed containers. Thus, it does not address the cold start
problem. Moreover, it targets model loading overhead, which
is only 52% of ML artifact loading time as observed in Fig. 1,
leaving half of the overall latency unoptimized. Tetris [46]
and Optimus [35] share identical layers across models to
address model loading bottlenecks but ignore library loading
and GPU transfer overheads. Their effectiveness depends on
layer similarity, limiting universality across diverse models.
In contrast, InstaInfer accelerates any model.
Cold-start mitigation. Many studies attempt to address
cold-start issues, which can be classified into four major
categories: 1) Pre-warming [13, 16–18, 30, 32, 48, 49, 55, 61,
67, 68, 72, 77] that predictively pre-warms container in ad-
vance [13, 18, 32, 55, 72, 77] and keeps them warmed [16, 17,
30, 48, 49, 61, 67, 68, 72]. 2) Virtualization Refactoring [3, 8,
24, 31, 69, 73, 75] that use new virtualization technique to ac-
celerate warming. 3) Container Sharing [4, 26, 48, 51, 59, 71]
that shares container among functions. 4) Snapshot based
methods [8, 17, 24, 69, 80, 82] that stores snapshots of func-
tions. Among them, pre-warming, virtualization refactoring,
and container sharing focus on container-level speedup for
general functions, overlooking the unique loading stage for
ML inference functions. Snapshot methods capture infer-
ence function states, including loaded libraries and models.
However, these snapshot files are large, containing exten-
sive model and library data, leading to a 100–1000ms startup
overhead as shown in our evaluation (Fig. 14) and the REAP
experiment results [80]. Furthermore, these techniques rely

on Linux’s memorymapping mechanism and are not compat-
ible with GPUs due to difficulties in capturing and restoring
separate GPU memory and contexts.
Pre-loading in serverless. Some works [7, 37, 52] allow
user-defined pre-loading primitives when starting a new in-
stance. Azure warmup trigger [52] pre-loads the user-defined
primitives during instance scaling. However, it only works
out during scaling up, failing to tackle the cold start problem.
For pre-warmed containers, the trigger does not pre-load
components. AWS Lambda static initialization [7] allows
components that execute only once during the first invoca-
tion to speed up subsequent operations. However, for the first
invocation, even if the container has been created, the com-
ponents cannot be pre-loaded. [37] enables executing user-
defined primitives once a container is pre-warmed. However,
as a naive pre-loading approach, it falls short of achieving
optimal performance due to underutilized idle space. Fur-
thermore, none of these methods is compatible with GPUs.
Function data caching. Some studies [43, 56, 64] cache
ephemeral data of functions in local storage or cloud server,
while others [65, 81] keep data in containers. Pheromone [88]
uses multiple cache mechanisms based on developer’s con-
figuration. InstaInfer focuses on pre-loading libraries and
models into memory, which is orthogonal to these data
caching techniques.

9 Conclusion

This paper proposed InstaInfer, a pre-loading technique for
serverless inference that alleviates the ML artifacts loading
overhead of ML inference functions by opportunistically
pre-loading their libraries and models rather than popular
cold-start mitigation approaches. InstaInfer comprises a
Proactive Pre-Loader to estimate when to load each function,
a Pre-Loading Scheduler to assign to-be-loaded functions
to suitable idle container and GPU, and an Intra-Container
Manager for controlling the loading & off-loading of each
function. Our real-world trace based experiment showed
that InstaInfer reduces startup latency by up to 93% and
accelerate the overall workload 8×.

Acknowledgments

We thank our shepherd Dr. Qian Li and anonymous review-
ers for their valuable feedback. The work of Yifan Sui and
Jianxun Li was supported in part by National Natural Sci-
ence Foundation of China under grant 61673265. The work
of Hanfei Yu and Hao Wang was supported in part by NSF
2153502, 2403247, 2403398, and the AWS Cloud Credit for
Research program. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
funding agencies.

SoCC ’24, November 20–22, 2024, Redmond, WA Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and Hao Wang

References

[1] 2023. Alexa Skills - Serverless Applications Lens. https:
//docs.aws.amazon.com/wellarchitected/latest/serverless-
applications-lens/alexa-skills.html. Accessed: 2024-07-07.

[2] 2024. Pricing - Microsoft Azure Function. https://azure.microsoft.com/
en-us/pricing/details/functions/. Accessed: 2024-07-12.

[3] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications.
In Proc. the USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

[4] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. {SAND}:
Towards {High-Performance} Serverless Computing. In Proc. 2018
Usenix Annual Technical Conference (USENIX ATC). 923–935.

[5] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020.
Batch: Machine Learning Inference Serving on Serverless Platforms
With Adaptive Batching. In Proc. International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). IEEE,
1–15.

[6] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2022.
Optimizing Inference Serving on Serverless Platforms. Proc. the VLDB
Endowment 15, 10 (2022).

[7] Amazon Web Services. 2023. Optimizing static initialization - AWS
Lambda. https://docs.aws.amazon.com/lambda/latest/operatorguide/
static-initialization.html Accessed on: 2024-06-12.

[8] Lixiang Ao, George Porter, and Geoffrey M Voelker. 2022. FaaSnap:
FaaS Made Fast Using Snapshot-Based VMs. In Proc. the Seventeenth
European Conference on Computer Systems (EuroSys).

[9] Apache OpenWhisk. [n.d.]. [n. d.]. https://openwhisk.apache.org.
[10] AWS Lambda. 2024. Configure Lambda function memory. https://docs.

aws.amazon.com/lambda/latest/dg/configuration-memory.html/. Ac-
cessed: 2024-07-07.

[11] Azure Samples. 2024. Serverless AI Chat with RAG using
LangChain.js. https://learn.microsoft.com/en-us/samples/azure-
samples/serverless-chat-langchainjs/serverless-chat-langchainjs/. Ac-
cessed: 2024-07-07.

[12] Amotz Bar-Noy, Richard E Ladner, and Tami Tamir. 2008. Optimal delay
for media-on-demand with pre-loading and pre-buffering. Theoretical
Computer Science 399, 1-2 (2008), 3–11.

[13] Vivek M Bhasi, Jashwant Raj Gunasekaran, Prashanth Thinakaran,
Cyan Subhra Mishra, Mahmut Taylan Kandemir, and Chita Das. 2021.
Kraken: Adaptive Container Provisioning for Deploying Dynamic
DAGs in Serverless Platforms. In Proc. the ACM Symposium on Cloud
Computing (SoCC).

[14] George EP Box and David A Pierce. 1970. Distribution of residual
autocorrelations in autoregressive-integrated moving average time
series models. Journal of the American statistical Association 65, 332
(1970), 1509–1526.

[15] Leo Breiman. 2001. Random forests. Machine learning 45 (2001), 5–32.
[16] Marc Brooker, Mike Danilov, Chris Greenwood, and Phil Piwonka.

2023. On-demand Container Loading in {AWS} Lambda. In Proc. 2023
USENIX Annual Technical Conference (USENIX ATC). 315–328.

[17] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. 2020. SEUSS: Skip Redundant Paths to Make
Serverless Fast. In Proc. the Fifteenth European Conference on Computer
Systems (EuroSys). 1–15.

[18] Xinquan Cai, Qianlong Sang, Chuang Hu, Yili Gong, Kun Suo, Xiaobo
Zhou, and Dazhao Cheng. 2024. Incendio: Priority-Based Scheduling
for Alleviating Cold Start in Serverless Computing. IEEE Trans. Comput.
73, 7 (2024), 1780–1794.

[19] Bill Cheswick. 1992. An Evening with Berferd in which a cracker is
Lured, Endured, and Studied. In Proc. Winter USENIX Conference, San
Francisco. 20–24.

[20] Junguk Cho, Diman Zad Tootaghaj, Lianjie Cao, and Puneet Sharma.
2022. Sla-driven ML Inference Framework for Clouds with Heteroge-
neous Accelerators. Proc. Machine Learning and Systems (MLSys) 4
(2022), 20–32.

[21] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-
stawski, and Torsten Hoefler. 2021. Sebs: A Serverless Benchmark
Suite for Function-as-a-Service Computing. In Proc. the 22nd Interna-
tional Middleware Conference (Middleware). 64–78.

[22] NVIDIA Corporation. 2024. NVIDIA Multi-Process Service. Software
available from NVIDIA. https://docs.nvidia.com/deploy/mps/index.
html Accessed: 2024-05-30.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. arXiv preprint arXiv:1810.04805 (2018).

[24] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond
Startup for Serverless Computing with Initialization-less Booting. In
Proc. the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 467–481.

[25] Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gustavo Alonso.
2020. Photons: Lambdas on a Diet. In Proc. the 11th ACM Symposium
on Cloud Computing (SoCC). 45–59.

[26] Tarek Elgamal. 2018. Costless: Optimizing Cost of Serverless Com-
puting Through Function Fusion and Placement. In 2018 IEEE/ACM
Symposium on Edge Computing (SEC).

[27] Jonatan Enes, Roberto R Expósito, and Juan Touriño. 2020. Real-
time resource scaling platform for big data workloads on serverless
environments. Future Generation Computer Systems 105 (2020), 361–
379.

[28] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii
Ustiugov, Yuvraj Patel, and Luo Mai. 2024. ServerlessLLM: Locality-
Enhanced Serverless Inference for Large Language Models. arXiv
preprint arXiv:2401.14351 (2024).

[29] Alexander Fuerst. 2021. GitHub—aFuerst/openwhisk-caching. https:
//github.com/aFuerst/openwhisk-caching. [Accessed 26-10-2023].

[30] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: keeping
serverless computing alive with greedy-dual caching. In Proc. the 26th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 386–400.

[31] Google. 2018. gVisor. https://gvisor.dev/.
[32] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan Chi-

dambaram, Mahmut T Kandemir, and Chita R Das. 2020. Fifer: Tackling
Underutilization in the Serverless Era. In Proc. the 21st International
Middleware Conference (Middleware).

[33] Ajay K Gupta and Udai Shanker. 2020. OMCPR: Optimal mobility
aware cache data pre-fetching and replacement policy using spatial
K-anonymity for LBS. Wireless Personal Communications 114, 2 (2020),
949–973.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In Proc. the IEEE conference
on computer vision and pattern recognition (CVPR). 770–778.

[35] Zicong Hong, Jian Lin, Song Guo, Sifu Luo, Wuhui Chen, Roger Wat-
tenhofer, and Yue Yu. 2024. Optimus: Warming Serverless ML Infer-
ence via Inter-Function Model Transformation. In Proc. the Nineteenth
European Conference on Computer Systems (EuroSys). 1039–1053.

[36] Haichuan Hu, Fangming Liu, Qiangyu Pei, Yongjie Yuan, Zichen Xu,
and LinWang. 2024. 𝜆Grapher: A Resource-Efficient Serverless System
for GNN Serving through Graph Sharing. In Proc.. the ACM on Web
Conference 2024 (WWW). 2826–2835.

https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/alexa-skills.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/alexa-skills.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/alexa-skills.html
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://docs.aws.amazon.com/lambda/latest/operatorguide/static-initialization.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/static-initialization.html
https://openwhisk.apache.org
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html/
https://learn.microsoft.com/en-us/samples/azure-samples/serverless-chat-langchainjs/serverless-chat-langchainjs/
https://learn.microsoft.com/en-us/samples/azure-samples/serverless-chat-langchainjs/serverless-chat-langchainjs/
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://github.com/aFuerst/openwhisk-caching
https://github.com/aFuerst/openwhisk-caching
https://gvisor.dev/

Pre-Warming is Not Enough: Accelerating Serverless Inference With Opportunistic Pre-Loading SoCC ’24, November 20–22, 2024, Redmond, WA

[37] Erika Hunhoff, Shazal Irshad, Vijay Thurimella, Ali Tariq, and Eric
Rozner. 2021. Proactive Serverless Function Resource Management.
In Proc. the 2020 Sixth International Workshop on Serverless Computing
(WoSC). 61–66.

[38] Jananie Jarachanthan, Li Chen, Fei Xu, and Bo Li. 2021. Amps-inf:
Automatic Model Partitioning for Serverless Inference with Cost Effi-
ciency. In Proc. the 50th International Conference on Parallel Processing
(ICPP). 1–12.

[39] Cheng Ji, Riwei Pan, Li-Pin Chang, Liang Shi, Zongwei Zhu, Yu Liang,
Tei-Wei Kuo, and Chun Jason Xue. 2020. Inspection and characteriza-
tion of app file usage in mobile devices. ACM Transactions on Storage
16, 4 (2020), 1–25.

[40] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso,
Ana Klimovic, Ankit Singla, WentaoWu, and Ce Zhang. 2021. Towards
Demystifying Serverless Machine Learning Training. In Proc. the 2021
International Conference on Management of Data (SIGMOD). 857–871.

[41] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. 2019. Cloud Programming Sim-
plified: A Berkeley View on Serverless Computing. arXiv preprint
arXiv:1902.03383 (2019).

[42] Poul-Henning Kamp and Robert NM Watson. 2000. Jails: Confining
the omnipotent root. In Proceedings of the 2nd International SANE
Conference, Vol. 43. 116.

[43] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral
Storage for Serverless Analytics. In Proc. 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 427–444.

[44] Alex Krizhevsky, Ilya Sutskever, and Geoffrey EHinton. 2012. Imagenet
Classification with Deep Convolutional Neural Networks. Advances
in neural information processing systems (NeurIPS) 25 (2012).

[45] Kevin Lee, Vijay Rao, and William Arnold. 2019. Acceler-
ating Facebook’s Infrastructure with Application-Specific Hard-
ware. https://engineering.fb.com/2019/03/14/data-center-engineering/
accelerating-infrastructure/. Accessed: 2024-07-07.

[46] Jie Li, Laiping Zhao, Yanan Yang, Kunlin Zhan, and Keqiu Li. 2022.
Tetris: Memory-Efficient Serverless inference through tensor sharing.
In Proc. 2022 USENIX Annual Technical Conference (USENIX ATC).

[47] Zijun Li. [n. d.]. GitHub—lzjzx1122/Pagurus: Help Rather Than Recy-
cle: Alleviating Cold Startup in Serverless Computing Through Inter-
Function Container Sharing. https://github.com/lzjzx1122/Pagurus/
tree/master. [Accessed 26-10-2023].

[48] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze
Zeng, Zhuo Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo. 2022.
Help Rather Than Recycle: Alleviating Cold Startup in Serverless
Computing Through {Inter-Function} Container Sharing. In Proc. 2022
USENIX Annual Technical Conference (USENIX ATC). 69–84.

[49] Zhen Lin, Kao-Feng Hsieh, Yu Sun, Seunghee Shin, and Hui Lu. 2021.
FlashCube: Fast Provisioning of Serverless Functions with Stream-
lined Container Runtimes. In Proc. the 11th Workshop on Programming
Languages and Operating Systems (PLOS).

[50] Yushi Liu, Shixuan Sun, Zijun Li, Quan Chen, Sen Gao, Bingsheng He,
Chao Li, and Minyi Guo. 2024. FaaSGraph: Enabling Scalable, Efficient,
and Cost-Effective Graph Processing with Serverless Computing. In
Proc. the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 385–400.

[51] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh El-
nikety, Somali Chaterji, and Saurabh Bagchi. 2022. {ORION} and
the Three Rights: Sizing, Bundling, and Prewarming for Serverless
{DAGs}. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

[52] Microsoft. 2023. Azure Functions warmup trigger. https://learn.
microsoft.com/en-us/azure/azure-functions/functions-bindings-
warmup?tabs=isolated-process%2Cnodejs-v4&pivots=programming-
language-python Accessed: 2024-06-12.

[53] Microsoft. 2024. Azure Functions Premium plan. https:
//learn.microsoft.com/en-us/azure/azure-functions/functions-
premium-plan?tabs=portal Accessed: 2024-07-12.

[54] Microsoft. 2024. Storage considerations for Azure Functions.
https://learn.microsoft.com/en-us/azure/azure-functions/storage-
considerations?tabs=azure-cli. Accessed: 2024-07-01.

[55] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. 2019. Agile Cold Starts for
Scalable Serverless. In 11th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud).

[56] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,
Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang,
Tim Wood, Daniel Hagimont, Noël De Palma, Bernabé Batchakui, and
Alain Tchana. 2021. OFC: An Opportunistic Caching System for FaaS
Platforms. In Proc. the Sixteenth European Conference on Computer
Systems (EuroSys). 228–244.

[57] Nuclio. 2024. Nuclio: Serverless Platform for Automated Data Science.
https://nuclio.io/ Accessed: 2024-07-12.

[58] NVIDIA Corporation. 2024. NVIDIA Container Toolkit. Software
available fromNVIDIA. https://github.com/NVIDIA/nvidia-container-
toolkit Accessed: 2024-05-30.

[59] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
Proc. the USENIX Conference on Usenix Annual Technical Conference
(USENIX ATC).

[60] Yi Ouyang, Bin Guo, Qianru Wang, Yunji Liang, and Zhiwen Yu. 2022.
Learning dynamic app usage graph for next mobile app recommenda-
tion. IEEE Transactions on mobile Computing (2022).

[61] Li Pan, Lin Wang, Shutong Chen, and Fangming Liu. 2022. Retention-
Aware Container Caching for Serverless Edge Computing. Proc. of
IEEE Conference on Computer Communications (INFOCOM) (2022).

[62] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Ad-
vances in Neural Information Processing Systems (NeurIPS). 8024–8035.

[63] Qiangyu Pei, Yongjie Yuan, Haichuan Hu, Qiong Chen, and Fang-
ming Liu. 2023. AsyFunc: A High-Performance and Resource-Efficient
Serverless Inference System via Asymmetric Functions. In Proc. the
ACM Symposium on Cloud Computing (SoCC). 324–340.

[64] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast
and Slow: Scalable Analytics on Serverless Infrastructure. In Proc. 16th
USENIX symposium on networked systems design and implementation
(NSDI). 193–206.

[65] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna Gopa,
Paul Batum, Neeraja J Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis,
and Ricardo Bianchini. 2021. Faa$T: A Transparent Auto-Scaling Cache
For Serverless Applications. In Proc. the ACM symposium on cloud
computing (SoCC). 122–137.

[66] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos
Kozyrakis. 2021. {INFaaS}: Automated Model-less Inference Serv-
ing. In Proc. 2021 USENIX Annual Technical Conference (USENIX ATC).
397–411.

[67] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. DayDream:
Executing Dynamic Scientific Workflows on Serverless Platforms with

https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://github.com/lzjzx1122/Pagurus/tree/master
https://github.com/lzjzx1122/Pagurus/tree/master
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-warmup?tabs=isolated-process%2Cnodejs-v4&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-warmup?tabs=isolated-process%2Cnodejs-v4&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-warmup?tabs=isolated-process%2Cnodejs-v4&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-warmup?tabs=isolated-process%2Cnodejs-v4&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan?tabs=portal
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan?tabs=portal
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan?tabs=portal
https://learn.microsoft.com/en-us/azure/azure-functions/storage-considerations?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/azure-functions/storage-considerations?tabs=azure-cli
https://nuclio.io/
https://github.com/NVIDIA/nvidia-container-toolkit
https://github.com/NVIDIA/nvidia-container-toolkit

SoCC ’24, November 20–22, 2024, Redmond, WA Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and Hao Wang

Hot Starts. In 2022 SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC).

[68] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. Icebreaker:
Warming Serverless Functions Better With Heterogeneity. In Proc. the
27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). 753–767.

[69] Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya
Akella. 2022. Memory Deduplication for Serverless Computing with
Medes. In Proc. the Seventeenth European Conference on Computer Sys-
tems (EuroSys).

[70] Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya
Akella. 2022. Memory deduplication for serverless computing with
medes. In Proc. the Seventeenth European Conference on Computer Sys-
tems (EuroSys). 714–729.

[71] Trever Schirmer, Joel Scheuner, Tobias Pfandzelter, and David
Bermbach. 2022. FUSIONIZE: Improving Serverless Application Per-
formance Through Feedback-driven Function Fusion. In 2022 IEEE
International Conference on Cloud Engineering (IC2E).

[72] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the wild:
Characterizing and optimizing the serverless workload at a large cloud
provider. In Proc. 2020 USENIX Annual Technical Conference (USENIX
ATC). 205–218.

[73] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan,
Christina Delimitrou, Robbert Van Renesse, and HakimWeatherspoon.
2019. X-containers: Breaking Down Barriers to Improve Performance
and Isolation of Cloud-Native Containers. In Proc. the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 121–135.

[74] Umair Siddiqi, Timothy Martin, Sam Van Den Eijnden, Ahmed Shamli,
Gary Grewal, Sadiq Sait, and Shawki Areibi. 2022. Faster fpga routing
by forecasting and pre-loading congestion information. In Proc. the
2022 ACM/IEEE Workshop on Machine Learning for CAD. 15–20.

[75] Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. 2020.
Prebaking Functions to Warm the Serverless Cold Start. In Proc. the
21st International Middleware Conference (Middleware). 1–13.

[76] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition. arXiv preprint
arXiv:1409.1556 (2014).

[77] Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas.
2023. SpecFaaS: Accelerating Serverless Applications with Speculative
Function Execution. In Proc. 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 814–827.

[78] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. 2015. Going Deeper with Convolutions. In Proc. the IEEE
conference on computer vision and pattern recognition (CVPR). 1–9.

[79] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. 2016. Rethinking the Inception Architecture for
Computer Vision. In Proc. the IEEE conference on computer vision and
pattern recognition (CVPR). 2818–2826.

[80] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and
Boris Grot. 2021. Benchmarking, analysis, and optimization of server-
less function snapshots. In Proc. the ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[81] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. 2020.
{InfiniCache}: Exploiting Ephemeral Serverless Functions to Build a
{Cost-Effective} Memory Cache. In Proc. 18th USENIX conference on
file and storage technologies (FAST). 267–281.

[82] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. 2019. Replayable
execution optimized for page sharing for a managed runtime envi-
ronment. In Proc. the Seventeenth European Conference on Computer
Systems (EuroSys). 1–16.

[83] Xingda Wei, Fangming Lu, Tianxia Wang, Jinyu Gu, Yuhan Yang,
Rong Chen, and Haibo Chen. 2023. No Provisioned Concurrency:
Fast {RDMA-codesigned} Remote Fork for Serverless Computing. In
USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 497–517.

[84] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang
Zhao, Xingzhen Chen, and Keqiu Li. 2022. INFless: A Native Serverless
System for Low-Latency, High-Throughput Inference. In Proc. the 27th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 768–781.

[85] Hanfei Yu, Rohan Basu Roy, Christian Fontenot, Devesh Tiwari, Jian
Li, Hong Zhang, Hao Wang, and Seung-Jong Park. 2024. Rainbow-
Cake: Mitigating Cold-starts in Serverless with Layer-wise Container
Caching and Sharing. In Proc. the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 335–350.

[86] Hanfei Yu, Christian Fontenot, HaoWang, Jian Li, Xu Yuan, and Seung-
Jong Park. 2023. Libra: Harvesting idle resources safely and timely in
serverless clusters. In Proc. the 32nd International Symposium on High-
Performance Parallel and Distributed Computing (HPDC). 181–194.

[87] Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park. 2022.
Accelerating serverless computing by harvesting idle resources. In
Proc. the ACM Web Conference (WWW). 1741–1751.

[88] Minchen Yu, Tingjia Cao,WeiWang, and Ruichuan Chen. 2023. Follow-
ing the Data, not the Function: Rethinking Function Orchestration in
Serverless Computing. In Proc. 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). 1489–1504.

[89] Minchen Yu, Ao Wang, Dong Chen, Haoxuan Yu, Xiaonan Luo, Zhuo-
hao Li, Wei Wang, Ruichuan Chen, Dapeng Nie, and Haoran Yang.
2023. FaaSwap: SLO-Aware, GPU-Efficient Serverless Inference via
Model Swapping. arXiv preprint arXiv:2306.03622 (2023).

[90] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characteriz-
ing Serverless Platforms with Serverlessbench. In Proc. the 11th ACM
Symposium on Cloud Computing (SoCC). 30–44.

[91] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019.
{MArk}: Exploiting Cloud Services for {Cost-Effective},{SLO-
Aware} Machine Learning Inference Serving. In Proc. 2019 USENIX
Annual Technical Conference (USENIX ATC). 1049–1062.

[92] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. 2021.
Faster and cheaper serverless computing on harvested resources.
In Proc. the ACM 28th Symposium on Operating Systems Principles
(SIGOPS). 724–739.

[93] Yi Zhou, Shubbhi Taneja, Chaowei Zhang, and Xiao Qin. 2018.
GreenDB: Energy-efficient prefetching and caching in database clus-
ters. IEEE Transactions on Parallel and Distributed Systems 30, 5 (2018),
1091–1104.

[94] Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou. 2022.
Aquatope: Qos-and-Uncertainty-Aware Resource Management for
Multi-Stage Serverless Workflows. In Proc. the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 1–14.

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Dissecting Serverless Inference
	2.2 Container Warming vs. ML Artifact Loading
	2.3 The Necessity of Pre-loading
	2.4 Existing Solutions' Limitations
	2.5 The Opportunity of Pre-loading

	3 An Overview of InstaInfer
	3.1 Objectives & Challenges
	3.2 InstaInfer's System Architecture
	3.3 InstaInfer's Workflow

	4 Proactive Pre-Loader
	4.1 Function Invocation Prediction
	4.2 Function Pre-Loading and Offloading

	5 Pre-Loading Scheduler
	5.1 Latency-Aware Function Mapping
	5.2 Optimal Pre-loading Over Time

	6 Intra-Container Manager
	6.1 Pre-Loading Management
	6.2 Privacy & Security Guarantee

	7 Evaluation
	7.1 Implementation
	7.2 Experiment Settings
	7.3 Reducing E2E Latency
	7.4 InstaInfer GPU Evaluation
	7.5 Memory and Monetary Cost
	7.6 Multi-Node Evaluation
	7.7 Comparisons with Snapshot Methods
	7.8 Large-Scale Evaluation
	7.9 Prediction Performance Evaluation
	7.10 Ablation Study
	7.11 Sensitivity Analysis
	7.12 Scalability and Overhead

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

