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ABSTRACT

As ARM architecture becomes more prevalent in personal comput-
ers, users transitioning from x86-based Windows platforms face
compatibility issues, particularly with x86 applications like games.
Existing solutions, such as QEMU, Box64, and Apple’s Rosetta 2,
either incur high latency, face performance bottlenecks, or are lim-
ited to specific ecosystems. A key challenge remains the efficient
translation of x86 status flags, which impacts performance.

We propose a novel optimization method that enhances com-
patibility and performance by leveraging software-only strategies
tailored to ARM hardware features. Using data flow analysis, our
approach identifies when ARM’s hardware flags can replace x86
flags, reducing reliance on software emulation and lowering transla-
tion overhead. This results in improved speed and compatibility for
x86 applications on ARM, supporting demanding applications like
games across x86 and ARM platforms without specialized hardware.
Experimental results show significant performance gains, with com-
putational tasks improving by up to 18%, and graphics rendering
(FPS) also increasing by up to 18%. In particular, real-world testing
on popular Steam titles demonstrates FPS improvements ranging
from about 7% to over 12%.
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Figure 1: Trends in ARM market share and Steam ARM sup-
port (2022-2027).

1 INTRODUCTION

The Advanced RISC Machine (ARM) architecture has secured dom-
inance in the smartphone and tablet markets, holding 99% of the
smartphone segment and powering nearly all high-end devices.
This supremacy is due to ARM’s exceptional power efficiency and
thermal performance [5, 8], which are vital for battery-operated
devices, especially in high-demand applications like gaming where
low power usage extends battery life. In 2022, mobile gaming gen-
erated 50% of total game revenues, outpacing both console and
PC gaming [31], highlighting ARM’s crucial role in mobile gam-
ing [15, 17, 36].

ARM processors use a Reduced Instruction Set Computer (RISC)
design, executing simpler instructions than Complex Instruction
Set Computer (CISC) processors. This leads to lower energy use and
less heat generation [26, 33], allowing longer gameplay without
draining the battery [2, 10, 37].

ARM’s success in mobile has extended to personal computing.
ARM-based processors like Apple’s M1 and M2 chips offer strong
performance and energy efficiency in desktops and laptops [4, 23].
However, software support, particularly for gaming, has not kept
pace with ARM’s growth in personal computing. As shown in Fig-
ure 1, despite ARM’s increasing market share in PCs, native ARM
game support has stagnated, indicating a disconnect between hard-
ware potential and software development. While companies such
as Nintendo [29] and Steam [14] are working on ARM compatibil-
ity, most PC games remain optimized for x86 architectures. This
presents a challenge in integrating ARM into markets traditionally
dominated by x86 processors [1, 11, 20, 22].

A major barrier is the compatibility with existing software. While
new games can target ARM, the vast library of existing games is
vital to the ecosystem. Enabling x86 games to run on ARM without
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Figure 2: Analysis of EFLAGS operations and their implications in binary translation and real-world contexts.

modifications would preserve gaming history and leverage ARM’s
mobile dominance to attract desktop and gaming users.

To solve this, a method is needed to run x86 applications, espe-
cially games, on ARM devices efficiently. Creating separate versions
for each architecture is costly and time-consuming, particularly for
legacy code. Additionally, maintaining multiple versions can lead
to inconsistencies and increased development complexity.

Binary translation is a promising solution, converting x86 in-
structions to ARM instructions at runtime. This allows legacy games
to run on ARM without changes, with dynamic binary translation
enhancing performance. Existing tools like QEMU [7] offer broad
compatibility by fully emulating x86 on ARM but add significant
computational overhead, making them unsuitable for real-time
gaming. Box64 [25] improves performance through dynamic trans-
lation but still faces translation overhead issues. Apple’s Rosetta
2 [3] optimizes translation using hardware-specific features but is
limited to Apple devices.

A key bottleneck in binary translation is managing the EFLAGS

register in x86. Minimizing the overhead of EFLAGS emulation is a
central challenge addressed in this paper.
Key Insight and Methodology. We discovered that not all EFLAGS
status flags need emulation, as many are overwritten before use.
This allows for optimization. To evaluate this, we analyzed real-
world gaming workloads—spanning logic, physics, and render-
ing—using representative benchmarks like Jolt Physics [19], In-
tel OSPRay [18], and SPEC CPU, allowing us to capture EFLAGS
overhead without analyzing entire games.

Our analysis of QEMU [7] revealed a high percentage of EFLAGS-
related instructions when TCG binary translation is unoptimized,
such as 25.11% in xalancbmk, 17.72% in sjeng, and up to 79.38%

in synthetic benchmarks. After translation, instruction counts sig-
nificantly increased, for example, a 174X rise in async_render,
highlighting the inefficiency of direct EFLAGS emulation. To isolate
this, we created controlled workloads comparing "flag-heavy" ver-
sions (relying on EFLAGS-based conditions) with "flag-minimized"
versions. On native x86 systems, flag-heavy code benefited from op-
timized flag handling. However, on ARM—where QEMU optimiza-
tions were disabled—the flag-heavy code slowed significantly, tak-
ing up to 460.23 seconds versus 295.33 seconds for flag-minimized
code, due to costly EFLAGS emulation. The corresponding assembly
code is presented in Listings 1 and 2,

To overcome these issues, we present a software-only optimiza-
tion strategy that reduces unnecessary EFLAGS emulation, enhanc-
ing performance without specialized hardware. Our contributions
are:

¢ Efficient Software-Only Mapping for x86 to ARM Flag
Mapping. We use data flow analysis to map x86 status flags
to ARM’s native flags when possible, reducing translation
overhead while maintaining compatibility with ARM de-
vices.

Resource Sharing and Taint Analysis for Syscall Emula-
tion. Our method enhances syscall emulation by leveraging
resource sharing and taint analysis to allow ARM flags to
substitute software-emulated x86 flags, improving respon-
siveness in flag-intensive gaming.

Graphics Optimization via ARM’s Conditional Execu-
tion. Utilizing ARM’s efficient conditional execution, we re-
duce redundant computations, enhancing gameplay smooth-
ness through optimized instruction handling without relying
on hardware-specific features.
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C code of Function foo

x86 Assembly code of Function foo

ARM Assembly code of Function foo

int foo (int a, int b) { :0'0 ______________ _l
while (a > b) { » foo: » | LDR re, =a
b += aj; mov a, %eax LDR ri, [re] |
} cnp a, b # sets CF, ZF, SF, OF, PF. AF | R r2, = . e
return b * aj; jge end # uses SF, LDR r3, [r2] |
} | P ri, r3 :
§ | BGE end |
oop: o |- -
Challenges add a, b # sets CF, SF, OF, PE, AF .
; cmp a, b # sets CF, SF, OF, PE, AF —_— e — e — ey
OUnnecessary Flag Setting jg loop # uses SF, ZF # Parity calculation function (if needed) '
.calculate_parity: |
R . AND re, ra4, #OXFF 1 9
9 Instruction Bloating end: I or  ro ro ro. LSR |
[inui b, & # sets oF, cr| | EoR r0, re, re, LSR |
. ret . EOR ©, ro, re, LSR
eEmulatmg Uncommon Flags | v :0 :a ;1 |
Compiled with GCC —02 Optimization SoBX 1r
e ¢ o ¢ o ¢ o e e — — — — —

Figure 3: Foo Program Diagram. (Function foo compiled with gcc at the -O2 optimization level.)

2 OBSERVATION AND MOTIVATION

At the core of binary translation lies a fundamental challenge: bridg-
ing the gap between source and target architectures. As shown in
Figure 3, the x86 assembly for function foo uses instructions like
cmp to update EFLAGS, and subsequent conditional branches—like
jge—use those updated flags to determine control flow. Such fine-
grained flag handling in x86 adds complexity to translation, par-
ticularly when targeting ARM. While binary translation provides
cross-platform compatibility, several issues arise when translating
x86’s extensive and implicitly updated flags into ARM’s more lim-
ited and explicitly controlled flag set. These observations highlight
key performance challenges.

2.1 Observation

Observation @: Unnecessary flag updates introduce overhead in
binary translation. Many x86 instructions update multiple flags
even if not all are needed by subsequent instructions. For example,
the cmp instruction sets CF, ZF, SF, OF, PF, and AF, even though
a following instruction may only rely on SF and PF. Simulating
all these flags wastes computation. In loops, flags set by an add
instruction might be immediately overwritten by a cmp, making
some flag computations pointless. Minimizing these extraneous
computations is crucial for performance.

Challenge 1: How to avoid unnecessary flag setting in x86 in-
structions during binary translation?

Observation @: Divergent flag storage mechanisms cause instruc-
tion bloat. ARM and x86 handle flags differently. x86 instructions
often update flags implicitly, whereas ARM requires explicit instruc-
tions to manipulate individual flags. Directly translating x86’s flag
logic to ARM often results in longer code sequences and instruction
inflation. This expanded code footprint can degrade performance
by increasing instruction cache misses and pipeline inefficiencies.

Challenge 2: How to prevent instruction bloating when trans-
lating x86 instructions to ARM?

Observation ®: Certain x86 flags have no direct ARM equivalents.
Flags like the Parity Flag (PF) and the Auxiliary Carry Flag (AF)
are unique to x86. ARM offers no direct counterparts, requiring

explicit emulation and additional instructions. This increases com-
plexity and introduces performance penalties by augmenting the
computational burden needed to replicate these flag behaviors.

Challenge 3: How to efficiently handle flags that have no ARM
equivalents, such as the Parity Flag?

2.2 Implications in Cross-Platform Gaming

The overhead introduced by EFLAGS handling in binary transla-
tion significantly impacts cross-platform gaming where latency and
performance are paramount. Modern games require high computa-
tional efficiency to deliver smooth, responsive experiences. When
running x86-based games on ARM platforms through binary trans-
lation, the additional instructions required to simulate EFLAGS can
lead to increased execution times and reduced frame rates.

Gaming workloads are latency-sensitive. Frame rates below cer-
tain thresholds cause noticeable lag and player dissatisfaction. As
shown in Figure 2, EFLAGS-related instructions can constitute a
substantial portion of the total instruction count in gaming work-
loads. The overhead from unnecessary flag simulation both inflates
the translated code and consumes more processing time.

Figure 2 conceptually illustrates how excessive EFLAGS-related
instructions burden the execution pipeline, increasing CPU load
and latency. Resource-constrained environments—such as mobile
devices or consoles reliant on ARM architectures—face even greater
performance challenges due to limited processing power and strin-
gent energy constraints.

These observations—minimizing unnecessary flag setting, avoid-
ing instruction bloat, and efficiently handling non-native flags—are
especially critical in gaming contexts. Traditional binary translation
approaches that ignore EFLAGS optimizations risk rendering cross-
platform gaming impractical, owing to unacceptable performance
degradation [13, 35].

This underscores the need for advanced binary translation tech-
niques that intelligently optimize EFLAGS handling. By selectively
simulating only essential flags, it is possible to substantially re-
duce overhead and improve performance. Such innovations can
narrow the performance gap, enabling gamers to enjoy high-quality
experiences across diverse ARM platforms.
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Algorithm 1 Flag Generation with Parity Calculation

1: Register_flags < 0

2: Register_temp « 0

3: for each flag in flags do

4 GenerateFlag(Register_temp, flag)

5: BitFieldInsert(Register_flags, Register_temp, flag)
6: end for

7: parity < 0

8: for each bit in result do

9 parity « parity @ bit

10: end for

11: BitFieldInsert(Register_flags, parity, parity_flag)
12: return Register_flags

3 BACKGROUND

Binary Translation for x86. Binary translation is a critical tech-
nique that enables the execution of binaries compiled for one In-
struction Set Architecture (ISA) on a different ISA. When translating
from x86 to ARM, one of the most significant challenges involves
accurately replicating the semantics of the x86 EFLAGS register. On
x86 processors, the EFLAGS register holds status flags that reflect
the outcome of arithmetic and logical operations. These flags in-
clude the Sign Flag (SF), Zero Flag (ZF), Carry Flag (CF), Overflow
Flag (OF), Parity Flag (PF), and Auxiliary Flag (AF), among others.
Correct emulation of these flags is essential since their values in-
fluence branching and condition evaluation in x86 code. A single
operation in an x86 binary can set multiple flags simultaneously,
thus translators must carefully model and propagate these flags to
maintain functional equivalence.

In binary translation frameworks, a dedicated and systematic

approach is required to handle flag computation. One strategy in-
volves generating the required flags after each arithmetic operation
based on the result, and then storing these flags in a structure that
mimics x86’s EFLAGS. For instance, as illustrated in Algorithm 1,
all relevant flags are computed and integrated into a single regis-
ter, ensuring that conditions reliant on these flags are preserved.
Special attention must be paid to the parity flag, as it has no direct
counterpart in ARM, necessitating an explicit parity computation
in the translator’s code.
Flag Mapping in ARM: Unlike x86, the ARM architecture does not
maintain a dedicated flags register analogous to EFLAGS (details of
this can be seen in Section B). Instead, ARM condition codes are
distributed in the program status register (PSR), which contains
four primary condition flags: Negative (N), Zero (Z), Carry (C), and
Overflow (V). These flags are updated conditionally, depending
on the instruction and whether the instruction is suffixed with
an update directive (e.g., ‘S* in ARM’s assembly language). This
architectural difference introduces complications when translating
x86 binaries that rely on implicit flag updates after nearly every
arithmetic operation.

To address the lack of a direct parity or auxiliary flag in ARM,
the translator must either recompute these flags as needed or adjust
the code logic to avoid reliance on them. For instance, as shown in
Table 1, some x86 flags can be directly mapped to ARM flags (such as

Yen et al.

Table 1: Correspondence between x86 and ARM Flag

x86 Flag Bit Corresponding ARM Flag Bit

Sign Flag (SF) Negative Flag (N)
Carry Flag (CF) Carry Flag (C)
Zero Flag (ZF) Zero Flag (Z)
Overflow Flag (OF) Overflow Flag (V)
Parity Flag (PF) No Direct Correspondence
Auxiliary Flag (AF) No Direct Correspondence

Table 2: Carry Flag Behavior in x86 versus ARM

Operation x86 CF ARMC
Subtraction

No borrow (A > B) 0

Borrow occurs (A < B) 1 0
Comparison (CMP)

A>B 0

A<B 1 0
Relationship x86 CF = =(ARM C)

SFtoN, CF to C, ZF to Z, and OF to V). However, others, like PF and
AF, have no direct equivalence. In these cases, binary translators
often resort to explicit computations or additional bookkeeping
to ensure correct semantics. Likewise, the difference in how ARM
and x86 treat carry and borrow operations, summarized in Table 2,
must be taken into account when implementing subtraction and
comparison operations to maintain correct program behavior.

In summary, modeling and translating x86 EFLAGS behavior in
ARM environment is a non-trivial task. It involves careful condi-
tion code computation, explicit parity calculations, and additional
logic to handle the ARM condition flags properly. Such meticulous
handling of status flags is crucial for robust and reliable binary
translation.

4 DESIGN & IMPLEMENTATION

To address the identified challenges, we propose an innovative bi-
nary translation system that combines dynamic recompilation with
advanced analysis techniques. This system efficiently translates
x86 binaries to ARM64 architecture without relying on platform-
specific hardware optimizations.

A key innovation of our system is its accurate flag emulation.
Rather than emulating all flags, the system uses data flow and taint
analysis to identify which CPU flags are truly needed at each execu-
tion point. This targeted approach ensures that only the necessary
flags are emulated, preventing the performance penalties associated
with full flag emulation. By mapping compatible flags to ARM’s
condition flags, we ensure correctness while minimizing overhead.

In addition to flag emulation, the system optimizes performance
by focusing on translating only the instructions required for the
game’s execution, avoiding full-system emulation. This approach
reduces unnecessary overhead, improving frame rates and reducing
latency. To ensure hardware-independent optimization, the system
employs software-based techniques such as speculative execution
and dynamic recompilation, which are not tied to specific hardware
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Figure 4: System Design Diagram

features. This enables high-performance, cross-platform gaming
on a wide range of ARM64 devices, expanding the potential user
base beyond proprietary ecosystems like Apple’s.

4.1 System Overview

As illustrated in Figure 4, the architecture of the system consists of
several key components, each working in concert to translate, ana-
lyze, and optimize x86 binaries for execution on ARM64 platforms.

4.1.1 Library Preparation and Dependency Resolution. The
Librarian module prepares the execution environment before any
code is run. Itloads all necessary external libraries, resolves symbols,
and ensures that references in the x86 binary have valid ARM64
counterparts. By creating a stable and compatible foundation, it
supports subsequent stages—whether executed via interpretation
or dynamic recompilation—and ensures that the final translated
code can find and use all resources as intended.

4.1.2 High-Performance Execution with Dynamic Recom-
pilation. Once the environment is established, the system begins
executing the x86 binary. Here, two complementary methods co-
exist: Dynamic Recompilation and Interpretation. Dynamic trans-
lates entire blocks of x86 instructions into optimized ARM64 code
on-the-fly, reducing runtime overhead and improving overall per-
formance. For complex or infrequently encountered instructions
that resist efficient translation, the system gracefully falls back to
Interpretation, which executes them instruction-by-instruction.

4.1.3 Seamless Cross-Architecture Functionality via Wrap-
pers. While execution proceeds, the Wrapper module continuously
manages interactions with the host environment. It adapts func-
tion calls, arguments, and return values from x86 conventions to
ARMB64. Likewise, it translates system calls and resource accesses,
ensuring seamless interplay between the translated code and the
underlying platform. By doing so in real-time, Wrappers maintain
stability and correctness, allowing the translated program to behave
as if it were running natively.

4.1.4 EFLAGS Optimization for Efficient Conditional Han-
dling. Once dynamic recompilation has begun to accelerate code
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execution, the focus shifts to optimizing critical architectural de-
tails. Chief among these is the handling of x86 EFLAGS, which
encode conditions for branches and other operations. At this stage,
EFLAGS are efficiently managed to minimize overhead. This in-
volves mapping “clean” flags that directly correspond to ARM’s
native N, Z, C, and V flags, so no extra instructions are needed
for their evaluation. Flags that lack direct ARM equivalents are
identified as “dirty” and emulated using a minimal set of instruc-
tions to preserve performance. By refining EFLAGS handling here,
the system reduces unnecessary computations and creates a more
efficient execution pipeline.

4.1.5 Advanced Data and Control Flow Analysis. With EFLAGS
management streamlined, the system proceeds to a deeper level
of analysis. Data Flow Analysis (DFA) examines how data moves
through instructions and constructs a Control Flow Graph (CFG).
It then applies iterative methods to understand how each instruc-
tion influences EFLAGS. Taint Analysis marks each EFLAGS bit
as Clean, Dirty, or Unknown, guiding further optimization. Clean
flags are already fully optimized, Dirty flags are known to require
limited emulation, and Unknown flags undergo additional analysis
until their status is clarified. This refined understanding of how
conditions flow through the codebase allows for more aggressive
optimization strategies.

4.1.6 Hardware-Assisted Optimization for Conditional Exe-
cution. Armed with insights from Data Flow and Taint Analysis,
the system taps into hardware capabilities to further accelerate exe-
cution. This involves establishing a direct correspondence between
x86 condition checks and ARM’s native conditional instructions.
By aligning x86 semantics with ARM’s hardware-level features
through careful Flag Mapping and Compatibility Checks, the trans-
lated code can take full advantage of ARM64’s efficient conditional
execution. This synergy ensures that the final generated code runs
with minimal overhead, leveraging the native instruction set to
handle branching and decision-making swiftly.

4.2 EFLAGS-Aware Data Flow Analysis

Our approach advances beyond the methodologies presented by Sal-
gado et al. [27] and Ottoni et al. (Harmonia) [24]. Unlike Salgado’s
reliance on hardware triggers and Harmonia’s optimization limited
to predefined code regions, our technique employs an interprocedu-
ral, per-flag liveness analysis integrated into the control-flow graph,
enabling the elimination of dead flags even mid-block. Additionally,
we utilize dynamic taint tracking to identify and skip updates of
untainted flags, surpassing Harmonia’s static data-flow analysis
and significantly reducing unnecessary flag emulation.

Our method leverages runtime taint information to selectively
emulate only essential flags dynamically, improving efficiency be-
yond static approaches. Unlike Harmonia, which statically applies
optimizations, we dynamically adjust based on actual runtime con-
ditions. Moreover, we leverage native ARM hardware capabilities
for just-in-time emulation of critical flags, resulting in reduced
overhead and increased performance, especially beneficial in sce-
narios where precompiled static optimizations are insufficient or
unavailable. Though data flow and conditional execution are stan-
dard compiler techniques, our contribution is applying them at
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Figure 5: Comparison of Initial and Final Data Flow Graph States

Algorithm 2 Efficient Flag Setting Based on Analysis

1: for flag in flags_active do

2 GenerateFlag(Registertemp, flag)

3: BitFieldInsert(Registerf,gs, Registertemp, flag)
4: end for

Algorithm 3 Data Flow Analysis Iteration Method

Require: Data flow graph G, initial state Init, termination nodes
TerminateG
1: function ANALYZE(G, Init)
2: for ¢t in TerminateG do
3: ITERATE(Z, Init)
4: end for
5: end function
Require: Node v, current state in, flag sets defy, usep, result outy,
predecessors predp,
6: function ITERATE(v, in)
7: out « (in — defp) U usep U outy,
8: if out # outy then

9: outy < out
10: for pred in pred;, do
11: ITERATE(pred, out)
12: end for
13: end if

14: end function

runtime in an x86-to-ARM translator for scenarios like gaming,
where offline compilers do not dynamically compile EFLAGS to
ARM condition flags. We selectively emulate only essential flags,
leveraging ARM hardware in a just-in-time setting.

Specifically, our EFLAGS-aware data flow analysis identifies the
minimal set of required flags by performing backward, interproce-
dural analysis across the entire control flow graph, whereas Salgado
and Harmonia rely on conservative or limited-region analyses. Fur-
thermore, our direct mapping strategy to ARM’s status registers

exploits native hardware support extensively, improving perfor-
mance by directly aligning x86 condition flags to ARM’s hardware-
managed indicators, unlike previous methods that depend heavily
on software-based emulation.

This optimization employs a data flow analysis framework to
accurately determine when and where each EFLAG is needed. By
performing a backward analysis of the control flow, the method
identifies the specific status flags that each instruction truly depends
on, eliminating redundant computations. As illustrated in Figure 5a,
an initially broad network of flag dependencies is progressively
refined to a minimal set of essential flags that impact subsequent
operations. Shifting from a comprehensive to a selective approach
significantly improves EFLAGS management efficiency.

At the core of this method is the propagation of flag usage from
their points of use back to their setting points. Conditional opera-
tions and other flag-dependent instructions guide this propagation,
ensuring that only flags influencing future decisions remain active.
During the analysis of each control flow node, its role in defining
or using specific flags is combined with information from related
nodes. Through iterative refinement, unnecessary flag tracking is
eliminated, resulting in a stable and concise set of critical flags at
each relevant program point.

This streamlined flag dependency enhances the translation pro-
cess by allowing the generation to focus solely on required status
indicators instead of updating all flags after every arithmetic instruc-
tion. For instance, if only the Zero and Sign flags affect subsequent
decisions, maintaining the Carry or Overflow flags becomes un-
necessary. Consequently, the translated output is more efficient,
particularly in performance-critical sections, reducing overhead
and improving responsiveness.

An additional improvement involves tracking the necessity of
flags, distinguishing between redundant and required flags at spe-
cific execution points. By aligning these states with comprehensive
data flow results, instructions are introduced only when meaningful.
As macro-level constructs incorporate these insights, unnecessary
flag operations are avoided, ensuring the final outcome maintains
architectural fidelity while optimizing operational efficiency.
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Once the data flow equations converge on a minimal set of essen-
tial flags, these insights are integrated with ARM’s architectural fea-
tures. Without selective equations, translations might simulate all
x86 flags on ARM, including unused ones. However, data flow anal-
ysis removes such inefficiencies. The revised instructions, guided by
Algorithm 2 and Algorithm 1, interact directly with ARM’s native
status registers, leveraging hardware support for common flags like
Zero, Sign, Carry, and Overflow.

Furthermore, these equations not only reduce the flag set but
also optimize specific calculations, such as the parity condition.
Instead of computing parity after every instruction, the equations
determine it only when necessary by treating computation results
as bit sets and reducing them to a single parity value through
relevant bit iterations. This incremental approach ensures that the
parity flag is calculated based on prior analysis rather than as a
routine operation.

This transition from broad flag-generation equations to a se-
lective, context-aware set represents a significant improvement.
By reusing results from earlier data flow equations that identify
needed flags downstream, the new equations avoid unnecessary
computations. They no longer generate every possible flag state
mechanically but instead integrate results intelligently, inserting
only the minimal and precisely selected flags. Consequently, the
final equations provide a more efficient and semantically accurate
representation of the program’s state, ensuring operations like par-
ity calculation occur only when necessary, thereby enhancing both
clarity and performance of the translation process.

4.3 Direct Mapping to ARM’s Status Registers

Focusing on essential x86 flags enables a direct mapping to ARM’s
status registers, reducing the overhead typically associated with flag
emulation. As depicted in Figure 5b, ARM’s native status registers
correspond directly to specific x86 flags. The x86 Sign, Zero, Carry,
and Overflow flags align naturally with ARM’s built-in condition in-
dicators used in comparisons and arithmetic operations. This align-
ment allows ARM’s hardware to automatically update and access
these conditions, eliminating the need for separate software-based
flag computations and storage. Instead, our approach leverages the
target environment’s hardware support to manage flag operations
efficiently.

To achieve this, we utilize a data flow analysis technique to iden-
tify and isolate only the flags genuinely required by the x86 code.
This selective approach minimizes complexity and overhead by
ignoring unnecessary flags. By directly mapping these essential
flags to ARM’s status registers, such as the APSR (Application Pro-
gram Status Register), the translator effectively uses ARM’s native
flag-handling mechanisms, which automatically update condition
flags based on instruction results.

This direct mapping significantly optimizes performance. ARM
instructions inherently maintain certain flags, allowing the transla-
tor to rely on the processor’s built-in status updates for arithmetic
or logical instructions. This approach removes the need for manual
flag calculations and adjustments after each instruction, thereby
reducing both latency and code size. For example, when determin-
ing if one value is larger or equal to another, the translator enables
an ARM instruction to set the processor’s internal flags instead
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Figure 6: Performance Metrics for Unigine Heaven 4.0 and
Unigine Valley 1.0 Benchmarks

of explicitly computing carry and borrow conditions in software.
Subsequent comparisons or branches then operate directly on these
hardware-managed conditions, minimizing the number of required
instructions and simplifying data flow.

To further enhance optimization, the translator employs instruc-
tion scheduling techniques that maximize the use of ARM’s condi-
tional execution features. By arranging instructions to take advan-
tage of ARM’s conditional branches and predicated instructions,
the translation process reduces the number of branching opera-
tions and improves instruction-level parallelism. This results in
more efficient utilization of the ARM pipeline and overall better
performance.

However, not all flags translate directly between architectures,
necessitating careful adjustments in specific scenarios. For example,
the carry flag behaves differently during subtraction: in x86, it
indicates a borrow, whereas in ARM, it signifies the absence of a
borrow. Therefore, the translator must reinterpret or invert the
carry flag’s meaning to accurately map x86 code that relies on
it to ARM’s flag semantics. This reinterpretation is essential for
maintaining functional equivalence in code paths dependent on the
exact behavior of the x86 carry flag. To address such discrepancies,
the translator incorporates a flag translation layer that dynamically
adjusts flag interpretations based on the operation context, ensuring
accurate and reliable flag behavior across different instruction types.

Adopting this direct mapping strategy ensures that the transla-
tion process remains faithful to the original x86 code’s semantics
while tightly integrating with ARM’s native hardware features.
Consequently, the final environment not only preserves the re-
quired x86 flag behavior but also achieves enhanced performance
and efficiency by leveraging ARM’s internal status management
capabilities. This integration ensures that translated applications
maintain their intended behavior and performance characteristics,
providing a robust and efficient execution environment on ARM
architectures.

5 EVALUATION

We have integrated our binary translation system into Box64 by re-
structuring its condition code handling mechanism to directly map
x86 EFLAGS onto ARM conditional flags during dynamic recompi-
lation. Our approach adheres closely to established methodologies,
carefully optimizing the translation to minimize overhead for the
evaluated applications. Specifically, we enhanced code generation
macros to unify and streamline the translation of x86 conditional



MobiSys ’25, June 23-27, 2025, Anaheim, CA, USA

Single-Core Performance Comparison

Yen et al.

Multi-Core Performance Comparison

1000 6000
0.6% [ Unoptimized I Optimized [ Unoptimized I Optimized
5000 18.9%
800
9 0.3%
2.9/“1'7% 4000
o 600 0.7% ] 0.9%
o o |, 7-8%0.1%
3] g 3000 %
0 400 53% »
2000
200 1000
G 5 O . S 3. & . A O L S S S S
S BT s P B s Pl e s P
@ | N & : S X & @ @
«’?}\ @Q‘ ‘5\%3’& 33 \0\/ & @Q'\ OQ’\ o"e OQ'\ Sl \\6\ S L «’Z}\ Q@ 049@ Q_®°@V & @Q@O@\ o"(\ Qé’\ a ‘\0\ ) é‘@
TS T NVFE . S S EE S e S SVF® RSO S €
g SN SRR o N NSNS <@ & e, N
< & e QC’ 3 d N 00
¥ N 2

Geekbench Tests

(a) Geekbench 6 Single-Core Performance

Geekbench Tests
(b) Geekbench 6 Multi-Core Performance

Figure 7: Geekbench 6 Computational Performance Improvements

jumps, directly leveraging ARM64’s inherent condition codes. Ad-
ditionally, we implemented flag taint tracking to enhance specu-
lative execution safety and maintain consistent state information
across conditional execution paths. Further refinements involved
precise management of barriers, register allocation strategies, and
scratch register usage, effectively controlling the conditions under
which flags are accessed and modified. Instruction bloat was min-
imized by selectively mapping only essential x86 flags to native
ARM condition codes, explicitly excluding unused flags to reduce
computational overhead. Consequently, our integrated solution
substantially decreases dependency on software-based condition
code emulation, resulting in improved overall system performance.

5.1 Experimental Set-Up

Testbed. All experiments were conducted on an NVIDIA Jetson
Xavier AGX platform, equipped with an NVIDIA GeForce GTX
1060 GPU (6 GB HBM, 6144 MiB), an ARMv8 processor compris-
ing four sockets, each with two cores, totaling eight cores, and 30
GiB of host memory. The system operates Ubuntu 20.04.6 LTS (Fo-
cal Fossa), representing an ARMv8.2 architecture typical of mobile
system-on-chip (SoC) configurations commonly employed in smart-
phones, tablets, and IoT devices. This ensures that performance
improvements observed in our study are broadly applicable within
ARM-based ecosystems [32].

Workloads and Methodology. To ensure rigorous quantitative
analysis, standardized aggregated metrics from multiple bench-
marks were utilized. We evaluated our system performance using
three distinct workload categories, each targeting specific platform
attributes. First, we employed Geekbench, a synthetic benchmark-
ing suite encompassing a variety of CPU and GPU tasks. Second,
the Heaven Benchmark was utilized to evaluate graphics-intensive
capabilities comprehensively. Lastly, we incorporated benchmarks
derived from real-world Steam games to assess comprehensive
end-to-end performance under practical usage conditions. Multiple
experimental iterations were conducted to verify result consistency
and thoroughly examine the performance implications of binary
translation.

Table 3: Overhead Analysis (CPU and GPU Benchmarks)

Metric Geekbench | Heaven | Valley
CPU overhead (%) 0.12% 0.08% 0.24
Memory overhead (%) 0.84% 4.01% 3.17%

5.2 System Computational Performance

Experiment Set-up. We evaluate the system’s computational per-
formance using Geekbench 6, focusing on single-core and multi-
core scenarios across a range of workloads such as text process-
ing, compression, complex navigation, and computational photog-
raphy. Experiments are conducted under both unoptimized and
optimized configurations, allowing us to isolate the impact of im-
proved memory handling, GPU acceleration, and our integrated
binary translation optimizations. The latter includes re-architecting
condition code handling within Box64’s dynamic recompilation
framework. By carefully mapping x86 EFLAGS onto ARM condi-
tion flags, we reduce software-based condition emulation overhead,
streamline branching, and increase the efficiency of just-in-time
(JIT) code generation. These modifications, combined with taint
tracking of flags and enhanced register allocation strategies, ensure
that condition-dependent execution paths are more directly and
efficiently expressed on the ARM architecture.

The results of our benchmarking are presented in Figure 7, show-

ing single-core and multi-core performance improvements across a
variety of tasks. Enhanced flag translation, improved speculation
safety, and more precise management of barriers all play roles in
strengthening overall throughput.
Overall Performance. As illustrated in Figure 7(a), our optimized
configuration raises single-core scores from 339 to 357, reflecting
meaningful gains. This uplift can be traced to lower translation
overhead for conditional instructions and more efficient memory
pipelines, enabling smoother execution of tasks like PDF rendering,
text processing, and photo filtering. The streamlined condition code
handling effectively eliminates unnecessary software guardrails,
reducing latency on critical loops and conditional jumps.
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Figure 8: FPS Performance Comparison Across Selected Games

Likewise, multi-core performance, shown in Figure 7(b), rises
from 1765 to 1938. Here, the combination of improved concurrency
management, enhanced memory allocation strategies, and refined
binary translation heuristics synergizes to boost parallel workloads
such as object detection and asset compression. Fine-grained scratch
register usage and better scheduling further diminish contention
among threads, thus capitalizing on ARM’s parallel execution capa-
bilities.

Breakdown. A detailed view in Figure 7(a) reveals that refine-
ments in memory handling predominantly benefit data-intensive
tasks, ensuring faster data retrieval and smoother memory flows.
Similarly, GPU acceleration amplifies performance gains in highly
parallelizable workloads, such as ray tracing or image processing, ac-
celerating their execution in the multi-core scenarios of Figure 7(b).
The careful integration of binary translation optimizations reduces
overhead in handling condition flags and complex control-flow pat-
terns, directly improving code generation quality and execution
speed. These insights inform targeted future enhancements, such
as more intelligent memory allocators, adaptive scheduling algo-
rithms, and sophisticated JIT compilers that can further leverage
platform-specific architectural features.

Overhead and Scalability. Table 3 highlights the efficiency of
our framework for Geekbench, a CPU-intensive workload, where
CPU overhead remains negligible at 0.12% and memory overhead is
tightly constrained to 0.84%. This demonstrates that our JIT trans-
lation layer maintains near-native resource utilization even under

dynamic code generation demands. By optimizing register alloca-
tion, reducing redundant condition flag updates, and isolating taint
tracking to critical code regions, the system avoids scalability bottle-
necks for purely computational tasks. These design choices ensure
that performance gains from speculative execution and paralleliza-
tion are preserved, making the approach viable for latency-sensitive
and high-throughput CPU workloads.

5.3 Graphics Rendering Performance

Experiment Set-up. To assess graphics performance, we employ
the Unigine Heaven 4.0 and Unigine Valley 1.0 benchmarks, which
subject the system to demanding 3D rendering tasks involving
complex geometry, dynamic lighting, and high-resolution textures.
We compare baseline and optimized configurations to quantify
the improvements due to advanced GPU instruction translation,
streamlined texture loading, and more efficient shading pipelines.
As with the CPU-bound tests, our binary translation layer benefits
GPU-driven workloads by efficiently mapping high-level render-
ing calls to ARM-friendly instruction sequences and ensuring that
conditional logic within shaders and GPU kernels executes more
fluidly.

Overall Performance. The optimized configuration leads to con-
sistently better FPS across both benchmarks, as shown in Figure 6.
For Unigine Heaven 4.0, the average FPS jumps from 57.6 to 63.4
(+10% increase), and the minimum FPS improves from 17.0 to 20.0,
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reducing stutters and improving responsiveness during scene tran-
sitions. Maximum FPS also rises, indicating more efficient handling
of peak workloads and memory transfers. In Unigine Valley 1.0,
average FPS grows from 21.7 to 22.5, enhancing fluidity in partic-
ularly complex environments. Corresponding benchmark scores
climb from 1452 to 1596 in Heaven and from 907 to 950 in Valley,
reflecting these systemic enhancements.

Breakdown. Closer inspection reveals that improved GPU-based
memory optimizations ensure more stable frame times, leading to
higher minimum FPS and smoother rendering during the most
challenging frames. Our binary translation improvements also
help by selectively inlining or simplifying control-flow constructs
within GPU code, better aligning shader logic with ARM execution
patterns. This synergy decreases translation latency and reduces
branching overhead in the GPU pipeline, enabling both higher maxi-
mum FPS and steadier average frame rates. Together, these findings
guide future optimizations focused on further refining memory
access patterns, adjusting register allocation, and integrating more
adaptive shading algorithms to sustain high performance across a
broad range of graphical workloads.

Overhead and Scalability. For GPU-centric benchmarks like Heaven

and Valley, Table 3 reveals CPU overheads of 0.08% and 0.24%, re-
spectively, with memory overheads of 4.01% and 3.17%—consistent
with the expanded state management required for rendering pipelines.
The framework adapts to GPU workloads by prioritizing translation
of frequently executed shader blocks and streamlining synchroniza-
tion between CPU-side translation threads and GPU command
queues. This ensures that memory bandwidth remains available
for texture/geometry data, while runtime translation latency stays
decoupled from frame rendering deadlines. The results validate
that our system scales to accommodate GPU workloads without
disrupting real-time rendering performance.

5.4 Real-World Gaming Performance

Experiment Set-up. We next measure real-world responsiveness
and visual smoothness by running a curated selection of Steam
games that represent diverse genres and rendering engines. We
track FPS and frame-time consistency to determine whether our
integrated optimizations, including improved binary translation
and memory handling, translate into tangible benefits for end-users.
Overall Performance. Across various titles, our optimizations
consistently elevate average FPS, delivering a more fluid experience
during high-intensity action sequences. Minimum FPS also rises,
alleviating micro-stutters and reducing frame-time spikes when
scenes become visually dense or involve rapid camera movement.
The maximum FPS improvements indicate that the system can
handle short bursts of demanding effects more gracefully. As a
result, gameplay feels both more responsive and visually coherent,
contributing to a noticeably smoother player experience.

Breakdown. Memory-specific enhancements underpin these im-
provements, ensuring swift asset streaming and seamless mem-
ory access that maintain stable frame delivery. The binary transla-
tion refinements—especially the direct mapping of x86 condition
flags to ARM condition codes and the careful tuning of JIT heuris-
tics—improve peak performance by allowing the runtime system
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to adapt quickly to complex in-game scenarios. By reducing over-
head from condition code emulation, the engine maintains higher
sustained throughput, capitalizing on parallel hardware resources
more effectively. In sum, these insights point toward future direc-
tions such as further refining CPU-GPU synchronization, exploring
more advanced speculation mechanisms, and integrating adaptive
shading strategies to continue advancing gameplay performance
and fluidity.

Overhead and Scalability. While the GPU often represents the
primary bottleneck in most AAA games due to heavy rendering
demands, CPU-side optimizations remain essential for managing
large or complex codebases effectively. By minimizing CPU over-
head—illustrated in Table 3—our approach helps streamline the
execution of critical game logic, scripting, and physics calculations.
This balanced design ensures that, even under graphics-intensive
workloads, the CPU can efficiently handle task scheduling, resource
management, and code translation without impeding overall game-
play performance. Consequently, the system can better accommo-
date large-scale projects where efficient CPU usage and scalability
across multiple cores are vital for stable frame rates and smooth
user experiences.

6 DISCUSSION

Our evaluation demonstrates the effectiveness of the proposed
software-only method in enhancing binary translation performance
between x86 and ARM architectures, especially in gaming applica-
tions. While our study emphasizes gaming scenarios due to their
frequent control-flow changes and rapid EFLAGS updates, our tech-
niques have broader applicability in other domains characterized
by similarly dynamic control-flow behavior, such as real-time sys-
tems or interactive applications requiring rapid state updates. We
observed substantial performance improvements in computational
benchmarks, graphical rendering, and real-world gaming scenarios.
These gains result from efficient EFLAGS management, targeted
flag emulation, and the direct mapping of compatible x86 flags to
ARM’s native flags. In interactive workloads, even modest perfor-
mance gains can significantly reduce frame-time variability in the
critical 30-60 FPS range, mitigating stutters and enhancing user
satisfaction. Although comprehensive user studies are beyond this
paper’s scope, maintaining a stable frame rate is a key factor in
ensuring smooth real-time experiences. Notably, frame rates ex-
ceeding 60 FPS often yield diminishing perceptible returns, yet
preserving consistent frame delivery remains beneficial for overall
responsiveness and user comfort.

A key advantage of this approach is its ability to bridge architec-
tural differences without relying on proprietary hardware, ensur-
ing broad applicability across various ARM-based platforms and
promoting widespread adoption. In contrast to Apple’s Rosetta 2,
which leverages Apple-specific hardware instructions for signifi-
cant speedups on Apple Silicon, our translator is entirely software-
based. Rosetta 2’s heavy reliance on proprietary hardware fea-
tures limits its portability to other ARM system-on-chips (SoCs).
By employing data flow—-driven optimizations and ARM’s built-in
conditional execution rather than Apple-specific instructions, our
approach offers broader compatibility across ARMv8-compliant
processors, including Snapdragon and Exynos. This vendor-neutral
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design ensures that optimizations remain accessible to a wide range
of devices without sacrificing performance benefits derived from
selective flag mapping. Additionally, by focusing on data flow analy-
sis and taint tracking, the method reduces redundant computations,
optimizing both translation latency and execution efficiency. This
not only boosts performance but also lowers energy consumption,
aligning with ARM’s focus on power efficiency.

However, some limitations need further investigation. While
FPS and computational scores showed significant improvements,
certain benchmarks only saw modest gains, indicating areas for
potential optimization. Addressing complex control-flow patterns
and refining GPU-specific translations could yield additional perfor-
mance benefits. Additionally, despite some gaming workloads being
predominantly GPU-bound, our optimizations on the CPU side re-
main important, particularly in managing extensive or intricate
codebases that influence overall system performance. Furthermore,
the inversion of carry flags and explicit parity calculations intro-
duce minor overheads that might be reduced through advanced
speculative execution techniques.

Future research could explore hybrid approaches that integrate
machine learning to dynamically predict and optimize flag depen-
dencies. Additionally, deeper integration with ARM hardware fea-
tures, such as pointer authentication or dedicated registers, could
complement our translator to achieve greater optimization. How-
ever, our design ethos emphasizes the value of maintaining a vendor-
neutral, purely software-based approach to ensure compatibility
across diverse ARM implementations without proprietary depen-
dencies. Leveraging hardware-specific features where available,
without sacrificing generalizability, could extend the system’s bene-
fits to other areas like Al and machine learning applications, which
are increasingly relevant on ARM platforms.

7 RELATED WORKS

Optimizing the EFLAGS register is crucial for effective binary
translation across architectures. Research in this domain falls into
software-only, hardware-only, and hybrid approaches. The central
challenge lies in bridging the semantic gap between the source ar-
chitecture’s condition code mechanism and the target architecture’s
potentially simpler or differently structured condition handling.

7.1 Software-Only Approaches

Software-only methods employ compiler techniques and runtime
analysis without modifying hardware. Bansal and Aiken [6] intro-
duced a peephole superoptimization technique to optimize small
instruction sequences, managing EFLAGS efficiently and eliminat-
ing redundant instructions to boost performance. Salgado et al. [27]
used dataflow analysis to reduce the overhead of condition code
emulation in dynamic binary translation. Chen et al. [9] focused
on dynamic analysis within a whole-system emulator to lessen
EFLAGS management overhead. Wang et al. [30] developed a pat-
tern translation method for necessary flag computations, selecting
appropriate instruction groups based on flag pattern semantics to
minimize native code generation and enhance performance. Xie
et al. [34] proposed a peephole optimization approach using live
variable analysis and instruction fusion through pattern matching,
significantly improving performance.
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7.2 Hardware-Only Approaches

Hardware-only solutions improve EFLAGS handling by incorpo-
rating architectural enhancements, reducing the need for software
emulation. Li et al. [21] presented a hardware-assisted method that
offloads specific tasks to dedicated components, enhancing EFLAGS
efficiency. Hu et al. [16] proposed a cost-effective hardware-assisted
translation system for efficient EFLAGS management. The IA-32
Execution Layer [12] explored architectural features to translate
IA-32 instructions, including EFLAGS, to Itanium-based systems.

7.3 Combined Software and Hardware
Approaches

Hybrid approaches combine software and hardware strategies to
optimize EFLAGS in binary translation. The Loongson binary trans-
lation system [28] integrates software and hardware innovations
for efficient condition code handling across architectures. Hu et
al. [16] extended their hardware-assisted system with co-designed
software components to improve EFLAGS optimization. Li et al.
[21] combined hardware support with software strategies for effec-
tive condition bit mapping. Salgado et al. [27] advocated a hybrid
approach by evaluating both software and hardware techniques
for condition code emulation. Similarly, Chen et al. [9] merged
software optimizations with hardware features to comprehensively
manage EFLAGS in binary translation.

Ottoni et al. [24] introduced Harmonia, an ARM-to-IA dynamic
binary translator integrating software and hardware optimizations.
Harmonia identifies two key challenges for effective binary trans-
lation: register mapping and condition-code handling. They pro-
pose optimizations including region-based register mapping and
redundant-compare elimination to minimize memory accesses and
condition-code emulation overheads, complemented by targeted
hardware ISA extensions for IA architecture to further reduce trans-
lation overhead.

8 CONCLUSION

This paper introduced a software-only strategy to bridge the x86-
to-ARM gap for gaming applications, focusing on efficient EFLAGS
emulation within binary translation. Our method leverages data
flow analysis and taint tracking to isolate necessary flag computa-
tions and directly maps compatible flags to ARM’s native hardware,
thereby avoiding substantial emulation overhead without requiring
proprietary hardware. The effectiveness of this technique was con-
firmed through rigorous evaluation: computational benchmarks
showed performance gains reaching up to 18%, while graphics
benchmarks saw similar FPS improvements of up to 18%. Most
importantly, this translated to a smoother end-user experience,
with real-world Steam games exhibiting FPS increases between 7%
and 12%. These results demonstrate a clear path towards enhanced
cross-platform gameplay and broader ARM adoption in the PC
gaming space.
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A EXAMPLE PROGRAMS COMPARING
EFLAGS USAGE

The following are two assembly programs that perform the same

task of counting set bits in an array of 64-bit integers. The only

difference is that one program utilizes the EFLAGS register, while

the other avoids using it.

Listing 1: Bit Counting Using EFLAGS

Yen et al.

Listing 2: Bit Counting Without Using EFLAGS

SECTION .data
array_size equ 100000000
array times array_size dq OxFFFFFFFFFFFFFFFF
total_bits dq @
newline db 10
SECTION .bss
SECTION .text
global _start

_start:

mov rcx, array_size

lea rsi, [array]

xor rax, rax

xor rbx, rbx
count_bits_loop:

mov rdx, [rsi]

mov rg, 64
bit_loop:

shr rdx, 1

jc bit_is_set

jmp check_next_bit
bit_is_set:

inc rbx
check_next_bit:

dec r8

jnz bit_loop
add rsi, 8

dec rcx

jnz count_bits_loop

mov rax, rbx

call uint_to_ascii

mov rdx, rsi

mov rsi, rbx

mov rax, 1

mov rdi, 1

syscall

mov rax, 60

xor rdi, rdi

syscall
uint_to_ascii:

ret

SECTION .data
array_size equ 100000000
array times array_size dq OxFFFFFFFFFFFFFFFF
newline db 10
SECTION .text
global _start

_start:
mov rcx, array_size
lea rsi, [array]
xor rbx, rbx

count_bits_loop:
push rcx

mov rcx, 64

mov rdx, [rsi]
bit_loop:

mov rax, rdx

and rax, 1

add rbx, rax

shr rdx, 1

loop  bit_loop

pop rex
add rsi, 8
loop  count_bits_loop

mov rax, 60
xor rdi, rdi
syscall

The primary distinction between Listing 1 and Listing 2 lies
in how they detect and count set bits. Listing 1 explicitly relies
on EFLAGS operations: after shifting a bit out of rdx via shr, it
checks the Carry Flag (CF) using jc bit_is_set to increment the
counter, introducing a branch dependency on EFLAGS. In contrast,
Listing 2 avoids EFLAGS entirely by isolating the least significant bit

with and rax, 1, directly adding its value to rbx without branching.

Loop control is handled by the 1oop instruction, which decrements
rcx and jumps without referencing EFLAGS, thereby reducing
branch mispredictions and pipeline stalls to improve performance
on modern CPUs.

B COMPARISON OF X86 AND ARM
PROCESSOR STATUS FLAGS

Table 4: Detailed Description of Flag Bits in the x86

Flag Bit Description

CF (Carry Flag) Indicates unsigned overflow in arithmetic opera-
tions.

ZF (Zero Flag) Set if the arithmetic result is zero.

SF (Sign Flag) Reflects the sign of the result’s most significant
bit.

OF  (Overflow Set if signed overflow occurs in arithmetic.

Flag)

PF (Parity Flag)  Set if the least significant byte has even parity.

AF  (Auxiliary Setif a carry/borrow occurs between nibble bits.
Carry Flag)

Table 5: Detailed Description of Condition Flags in ARM

Flag Bit Description

N (Negative Flag) Set if the arithmetic result is negative (most sig-
nificant bit set).

Set if the arithmetic result is zero.

Indicates unsigned overflow or borrow in arith-
metic operations.

A\ (Overflow Indicates signed overflow occurred during arith-
Flag) metic operations.

Z (Zero Flag)
C (Carry Flag)
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