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ABSTRACT
As ARM architecture becomes more prevalent in personal comput-

ers, users transitioning from x86-based Windows platforms face

compatibility issues, particularly with x86 applications like games.

Existing solutions, such as QEMU, Box64, and Apple’s Rosetta 2,

either incur high latency, face performance bottlenecks, or are lim-

ited to specific ecosystems. A key challenge remains the efficient

translation of x86 status flags, which impacts performance.

We propose a novel optimization method that enhances com-

patibility and performance by leveraging software-only strategies

tailored to ARM hardware features. Using data flow analysis, our

approach identifies when ARM’s hardware flags can replace x86

flags, reducing reliance on software emulation and lowering transla-

tion overhead. This results in improved speed and compatibility for

x86 applications on ARM, supporting demanding applications like

games across x86 and ARM platforms without specialized hardware.

Experimental results show significant performance gains, with com-

putational tasks improving by up to 18%, and graphics rendering

(FPS) also increasing by up to 18%. In particular, real-world testing

on popular Steam titles demonstrates FPS improvements ranging

from about 7% to over 12%.

CCS CONCEPTS
• Computer systems organization → Reduced instruction
set computing; • Software and its engineering→ Compilers;
Software performance.
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Figure 1: Trends in ARM market share and Steam ARM sup-
port (2022–2027).

1 INTRODUCTION
The Advanced RISC Machine (ARM) architecture has secured dom-

inance in the smartphone and tablet markets, holding 99% of the

smartphone segment and powering nearly all high-end devices.

This supremacy is due to ARM’s exceptional power efficiency and

thermal performance [5, 8], which are vital for battery-operated

devices, especially in high-demand applications like gaming where

low power usage extends battery life. In 2022, mobile gaming gen-

erated 50% of total game revenues, outpacing both console and

PC gaming [31], highlighting ARM’s crucial role in mobile gam-

ing [15, 17, 36].

ARM processors use a Reduced Instruction Set Computer (RISC)

design, executing simpler instructions than Complex Instruction

Set Computer (CISC) processors. This leads to lower energy use and

less heat generation [26, 33], allowing longer gameplay without

draining the battery [2, 10, 37].

ARM’s success in mobile has extended to personal computing.

ARM-based processors like Apple’s M1 and M2 chips offer strong

performance and energy efficiency in desktops and laptops [4, 23].

However, software support, particularly for gaming, has not kept

pace with ARM’s growth in personal computing. As shown in Fig-

ure 1, despite ARM’s increasing market share in PCs, native ARM

game support has stagnated, indicating a disconnect between hard-

ware potential and software development. While companies such

as Nintendo [29] and Steam [14] are working on ARM compatibil-

ity, most PC games remain optimized for x86 architectures. This

presents a challenge in integrating ARM into markets traditionally

dominated by x86 processors [1, 11, 20, 22].

Amajor barrier is the compatibility with existing software.While

new games can target ARM, the vast library of existing games is

vital to the ecosystem. Enabling x86 games to run on ARM without

https://doi.org/10.1145/3711875.3729163
https://doi.org/10.1145/3711875.3729163
https://doi.org/10.1145/3711875.3729163


MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA Yen et al.

(a) Percentage of EFLAGS Operations in Real-World Examples

(b) Instruction Bloating After Binary Translation (c) Example of EFLAGS Importance

Figure 2: Analysis of EFLAGS operations and their implications in binary translation and real-world contexts.

modifications would preserve gaming history and leverage ARM’s

mobile dominance to attract desktop and gaming users.

To solve this, a method is needed to run x86 applications, espe-

cially games, on ARM devices efficiently. Creating separate versions

for each architecture is costly and time-consuming, particularly for

legacy code. Additionally, maintaining multiple versions can lead

to inconsistencies and increased development complexity.

Binary translation is a promising solution, converting x86 in-

structions to ARM instructions at runtime. This allows legacy games

to run on ARM without changes, with dynamic binary translation

enhancing performance. Existing tools like QEMU [7] offer broad

compatibility by fully emulating x86 on ARM but add significant

computational overhead, making them unsuitable for real-time

gaming. Box64 [25] improves performance through dynamic trans-

lation but still faces translation overhead issues. Apple’s Rosetta

2 [3] optimizes translation using hardware-specific features but is

limited to Apple devices.

A key bottleneck in binary translation is managing the EFLAGS

register in x86. Minimizing the overhead of EFLAGS emulation is a

central challenge addressed in this paper.

Key Insight andMethodology.Wediscovered that not all EFLAGS

status flags need emulation, as many are overwritten before use.

This allows for optimization. To evaluate this, we analyzed real-

world gaming workloads—spanning logic, physics, and render-

ing—using representative benchmarks like Jolt Physics [19], In-

tel OSPRay [18], and SPEC CPU, allowing us to capture EFLAGS

overhead without analyzing entire games.

Our analysis of QEMU [7] revealed a high percentage of EFLAGS-

related instructions when TCG binary translation is unoptimized,

such as 25.11% in xalancbmk, 17.72% in sjeng, and up to 79.38%

in synthetic benchmarks. After translation, instruction counts sig-

nificantly increased, for example, a 174× rise in async_render,
highlighting the inefficiency of direct EFLAGS emulation. To isolate

this, we created controlled workloads comparing "flag-heavy" ver-

sions (relying on EFLAGS-based conditions) with "flag-minimized"

versions. On native x86 systems, flag-heavy code benefited from op-

timized flag handling. However, on ARM—where QEMU optimiza-

tions were disabled—the flag-heavy code slowed significantly, tak-

ing up to 460.23 seconds versus 295.33 seconds for flag-minimized

code, due to costly EFLAGS emulation. The corresponding assembly

code is presented in Listings 1 and 2,

To overcome these issues, we present a software-only optimiza-

tion strategy that reduces unnecessary EFLAGS emulation, enhanc-

ing performance without specialized hardware. Our contributions

are:

• Efficient Software-Only Mapping for x86 to ARM Flag
Mapping. We use data flow analysis to map x86 status flags

to ARM’s native flags when possible, reducing translation

overhead while maintaining compatibility with ARM de-

vices.

• Resource Sharing and Taint Analysis for Syscall Emula-
tion. Our method enhances syscall emulation by leveraging

resource sharing and taint analysis to allow ARM flags to

substitute software-emulated x86 flags, improving respon-

siveness in flag-intensive gaming.

• Graphics Optimization via ARM’s Conditional Execu-
tion. Utilizing ARM’s efficient conditional execution, we re-

duce redundant computations, enhancing gameplay smooth-

ness through optimized instruction handling without relying

on hardware-specific features.
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int foo (int a, int b) {
       while (a > b) {
               b += a;
        }
        return b * a;
}

C code of Function foo x86 Assembly code of Function foo

foo: 
       mov a, %eax
       cmp a, b     # sets CF, ZF, SF, OF, PF, AF
       jge end      # uses SF, OF

loop:
       add a, b     # sets CF, ZF, SF, OF, PF, AF
       cmp a, b     # sets CF, ZF, SF, OF, PF, AF
       jg loop      # uses SF, OF, ZF

end: 
       imul b, a    # sets OF, CF
       ret

❶

foo:
    LDR     r0, =a
    LDR     r1, [r0]
    LDR     r2, =b
    LDR     r3, [r2] 
    CMP     r1, r3          
    BGE     end             

# Parity calculation function（if needed)

calculate_parity:
    AND     r0, r4, #0xFF   
    EOR     r0, r0, r0, LSR 
    EOR     r0, r0, r0, LSR 
    EOR     r0, r0, r0, LSR 
    AND     r0, r0, #1
    BX      lr

ARM Assembly code of Function foo

❷

❸

Unnecessary Flag Setting❶

❷ Instruction Bloating

Emulating Uncommon Flags❸
Compiled with GCC –O2 Optimization

Challenges ...

Figure 3: Foo Program Diagram. (Function foo compiled with gcc at the -O2 optimization level.)

2 OBSERVATION AND MOTIVATION
At the core of binary translation lies a fundamental challenge: bridg-

ing the gap between source and target architectures. As shown in

Figure 3, the x86 assembly for function foo uses instructions like

cmp to update EFLAGS, and subsequent conditional branches—like

jge—use those updated flags to determine control flow. Such fine-

grained flag handling in x86 adds complexity to translation, par-

ticularly when targeting ARM. While binary translation provides

cross-platform compatibility, several issues arise when translating

x86’s extensive and implicitly updated flags into ARM’s more lim-

ited and explicitly controlled flag set. These observations highlight

key performance challenges.

2.1 Observation
Observation ❶: Unnecessary flag updates introduce overhead in

binary translation. Many x86 instructions update multiple flags

even if not all are needed by subsequent instructions. For example,

the cmp instruction sets CF, ZF, SF, OF, PF, and AF, even though

a following instruction may only rely on SF and PF. Simulating

all these flags wastes computation. In loops, flags set by an add
instruction might be immediately overwritten by a cmp, making

some flag computations pointless. Minimizing these extraneous

computations is crucial for performance.

Challenge 1: How to avoid unnecessary flag setting in x86 in-

structions during binary translation?

Observation ❷: Divergent flag storage mechanisms cause instruc-

tion bloat. ARM and x86 handle flags differently. x86 instructions

often update flags implicitly, whereas ARM requires explicit instruc-

tions to manipulate individual flags. Directly translating x86’s flag

logic to ARM often results in longer code sequences and instruction

inflation. This expanded code footprint can degrade performance

by increasing instruction cache misses and pipeline inefficiencies.

Challenge 2: How to prevent instruction bloating when trans-

lating x86 instructions to ARM?

Observation ❸: Certain x86 flags have no direct ARM equivalents.

Flags like the Parity Flag (PF) and the Auxiliary Carry Flag (AF)

are unique to x86. ARM offers no direct counterparts, requiring

explicit emulation and additional instructions. This increases com-

plexity and introduces performance penalties by augmenting the

computational burden needed to replicate these flag behaviors.

Challenge 3: How to efficiently handle flags that have no ARM

equivalents, such as the Parity Flag?

2.2 Implications in Cross-Platform Gaming
The overhead introduced by EFLAGS handling in binary transla-

tion significantly impacts cross-platform gaming where latency and

performance are paramount. Modern games require high computa-

tional efficiency to deliver smooth, responsive experiences. When

running x86-based games on ARM platforms through binary trans-

lation, the additional instructions required to simulate EFLAGS can

lead to increased execution times and reduced frame rates.

Gaming workloads are latency-sensitive. Frame rates below cer-

tain thresholds cause noticeable lag and player dissatisfaction. As

shown in Figure 2, EFLAGS-related instructions can constitute a

substantial portion of the total instruction count in gaming work-

loads. The overhead from unnecessary flag simulation both inflates

the translated code and consumes more processing time.

Figure 2 conceptually illustrates how excessive EFLAGS-related

instructions burden the execution pipeline, increasing CPU load

and latency. Resource-constrained environments—such as mobile

devices or consoles reliant on ARM architectures—face even greater

performance challenges due to limited processing power and strin-

gent energy constraints.

These observations—minimizing unnecessary flag setting, avoid-

ing instruction bloat, and efficiently handling non-native flags—are

especially critical in gaming contexts. Traditional binary translation

approaches that ignore EFLAGS optimizations risk rendering cross-

platform gaming impractical, owing to unacceptable performance

degradation [13, 35].

This underscores the need for advanced binary translation tech-

niques that intelligently optimize EFLAGS handling. By selectively

simulating only essential flags, it is possible to substantially re-

duce overhead and improve performance. Such innovations can

narrow the performance gap, enabling gamers to enjoy high-quality

experiences across diverse ARM platforms.
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Algorithm 1 Flag Generation with Parity Calculation

1: Register_flags← 0

2: Register_temp← 0

3: for each flag in flags do
4: GenerateFlag(Register_temp, flag)
5: BitFieldInsert(Register_flags, Register_temp, flag)
6: end for
7: parity← 0

8: for each bit in result do
9: parity← parity ⊕ bit
10: end for
11: BitFieldInsert(Register_flags, parity, parity_flag)
12: return Register_flags

3 BACKGROUND
Binary Translation for x86. Binary translation is a critical tech-

nique that enables the execution of binaries compiled for one In-

struction Set Architecture (ISA) on a different ISA.When translating

from x86 to ARM, one of the most significant challenges involves

accurately replicating the semantics of the x86 EFLAGS register. On

x86 processors, the EFLAGS register holds status flags that reflect

the outcome of arithmetic and logical operations. These flags in-

clude the Sign Flag (SF), Zero Flag (ZF), Carry Flag (CF), Overflow

Flag (OF), Parity Flag (PF), and Auxiliary Flag (AF), among others.

Correct emulation of these flags is essential since their values in-

fluence branching and condition evaluation in x86 code. A single

operation in an x86 binary can set multiple flags simultaneously,

thus translators must carefully model and propagate these flags to

maintain functional equivalence.

In binary translation frameworks, a dedicated and systematic

approach is required to handle flag computation. One strategy in-

volves generating the required flags after each arithmetic operation

based on the result, and then storing these flags in a structure that

mimics x86’s EFLAGS. For instance, as illustrated in Algorithm 1,

all relevant flags are computed and integrated into a single regis-

ter, ensuring that conditions reliant on these flags are preserved.

Special attention must be paid to the parity flag, as it has no direct

counterpart in ARM, necessitating an explicit parity computation

in the translator’s code.

FlagMapping in ARM:Unlike x86, the ARM architecture does not

maintain a dedicated flags register analogous to EFLAGS (details of

this can be seen in Section B). Instead, ARM condition codes are

distributed in the program status register (PSR), which contains

four primary condition flags: Negative (N), Zero (Z), Carry (C), and

Overflow (V). These flags are updated conditionally, depending

on the instruction and whether the instruction is suffixed with

an update directive (e.g., ‘S‘ in ARM’s assembly language). This

architectural difference introduces complications when translating

x86 binaries that rely on implicit flag updates after nearly every

arithmetic operation.

To address the lack of a direct parity or auxiliary flag in ARM,

the translator must either recompute these flags as needed or adjust

the code logic to avoid reliance on them. For instance, as shown in

Table 1, some x86 flags can be directly mapped to ARM flags (such as

Table 1: Correspondence between x86 and ARM Flag

x86 Flag Bit Corresponding ARM Flag Bit
Sign Flag (SF) Negative Flag (N)

Carry Flag (CF) Carry Flag (C)

Zero Flag (ZF) Zero Flag (Z)

Overflow Flag (OF) Overflow Flag (V)

Parity Flag (PF) No Direct Correspondence

Auxiliary Flag (AF) No Direct Correspondence

Table 2: Carry Flag Behavior in x86 versus ARM

Operation x86 CF ARM C
Subtraction

No borrow (𝐴 ≥ 𝐵) 0 1

Borrow occurs (𝐴 < 𝐵) 1 0

Comparison (CMP)
𝐴 ≥ 𝐵 0 1

𝐴 < 𝐵 1 0

Relationship x86 CF = ¬(ARM C)

SF to N, CF to C, ZF to Z, and OF to V). However, others, like PF and

AF, have no direct equivalence. In these cases, binary translators

often resort to explicit computations or additional bookkeeping

to ensure correct semantics. Likewise, the difference in how ARM

and x86 treat carry and borrow operations, summarized in Table 2,

must be taken into account when implementing subtraction and

comparison operations to maintain correct program behavior.

In summary, modeling and translating x86 EFLAGS behavior in

ARM environment is a non-trivial task. It involves careful condi-

tion code computation, explicit parity calculations, and additional

logic to handle the ARM condition flags properly. Such meticulous

handling of status flags is crucial for robust and reliable binary

translation.

4 DESIGN & IMPLEMENTATION
To address the identified challenges, we propose an innovative bi-

nary translation system that combines dynamic recompilation with

advanced analysis techniques. This system efficiently translates

x86 binaries to ARM64 architecture without relying on platform-

specific hardware optimizations.

A key innovation of our system is its accurate flag emulation.

Rather than emulating all flags, the system uses data flow and taint

analysis to identify which CPU flags are truly needed at each execu-

tion point. This targeted approach ensures that only the necessary

flags are emulated, preventing the performance penalties associated

with full flag emulation. By mapping compatible flags to ARM’s

condition flags, we ensure correctness while minimizing overhead.

In addition to flag emulation, the system optimizes performance

by focusing on translating only the instructions required for the

game’s execution, avoiding full-system emulation. This approach

reduces unnecessary overhead, improving frame rates and reducing

latency. To ensure hardware-independent optimization, the system

employs software-based techniques such as speculative execution

and dynamic recompilation, which are not tied to specific hardware
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Figure 4: System Design Diagram

features. This enables high-performance, cross-platform gaming

on a wide range of ARM64 devices, expanding the potential user

base beyond proprietary ecosystems like Apple’s.

4.1 System Overview
As illustrated in Figure 4, the architecture of the system consists of

several key components, each working in concert to translate, ana-

lyze, and optimize x86 binaries for execution on ARM64 platforms.

4.1.1 Library Preparation and Dependency Resolution. The
Librarian module prepares the execution environment before any

code is run. It loads all necessary external libraries, resolves symbols,

and ensures that references in the x86 binary have valid ARM64

counterparts. By creating a stable and compatible foundation, it

supports subsequent stages—whether executed via interpretation

or dynamic recompilation—and ensures that the final translated

code can find and use all resources as intended.

4.1.2 High-Performance Execution with Dynamic Recom-
pilation. Once the environment is established, the system begins

executing the x86 binary. Here, two complementary methods co-

exist: Dynamic Recompilation and Interpretation. Dynamic trans-

lates entire blocks of x86 instructions into optimized ARM64 code

on-the-fly, reducing runtime overhead and improving overall per-

formance. For complex or infrequently encountered instructions

that resist efficient translation, the system gracefully falls back to

Interpretation, which executes them instruction-by-instruction.

4.1.3 Seamless Cross-Architecture Functionality via Wrap-
pers. While execution proceeds, theWrapper module continuously

manages interactions with the host environment. It adapts func-

tion calls, arguments, and return values from x86 conventions to

ARM64. Likewise, it translates system calls and resource accesses,

ensuring seamless interplay between the translated code and the

underlying platform. By doing so in real-time, Wrappers maintain

stability and correctness, allowing the translated program to behave

as if it were running natively.

4.1.4 EFLAGS Optimization for Efficient Conditional Han-
dling. Once dynamic recompilation has begun to accelerate code

execution, the focus shifts to optimizing critical architectural de-

tails. Chief among these is the handling of x86 EFLAGS, which

encode conditions for branches and other operations. At this stage,

EFLAGS are efficiently managed to minimize overhead. This in-

volves mapping “clean” flags that directly correspond to ARM’s

native N, Z, C, and V flags, so no extra instructions are needed

for their evaluation. Flags that lack direct ARM equivalents are

identified as “dirty” and emulated using a minimal set of instruc-

tions to preserve performance. By refining EFLAGS handling here,

the system reduces unnecessary computations and creates a more

efficient execution pipeline.

4.1.5 AdvancedData andControl FlowAnalysis. With EFLAGS

management streamlined, the system proceeds to a deeper level

of analysis. Data Flow Analysis (DFA) examines how data moves

through instructions and constructs a Control Flow Graph (CFG).

It then applies iterative methods to understand how each instruc-

tion influences EFLAGS. Taint Analysis marks each EFLAGS bit

as Clean, Dirty, or Unknown, guiding further optimization. Clean

flags are already fully optimized, Dirty flags are known to require

limited emulation, and Unknown flags undergo additional analysis

until their status is clarified. This refined understanding of how

conditions flow through the codebase allows for more aggressive

optimization strategies.

4.1.6 Hardware-Assisted Optimization for Conditional Exe-
cution. Armed with insights from Data Flow and Taint Analysis,

the system taps into hardware capabilities to further accelerate exe-

cution. This involves establishing a direct correspondence between

x86 condition checks and ARM’s native conditional instructions.

By aligning x86 semantics with ARM’s hardware-level features

through careful Flag Mapping and Compatibility Checks, the trans-

lated code can take full advantage of ARM64’s efficient conditional

execution. This synergy ensures that the final generated code runs

with minimal overhead, leveraging the native instruction set to

handle branching and decision-making swiftly.

4.2 EFLAGS-Aware Data Flow Analysis
Our approach advances beyond the methodologies presented by Sal-

gado et al. [27] and Ottoni et al. (Harmonia) [24]. Unlike Salgado’s

reliance on hardware triggers and Harmonia’s optimization limited

to predefined code regions, our technique employs an interprocedu-

ral, per-flag liveness analysis integrated into the control-flow graph,

enabling the elimination of dead flags even mid-block. Additionally,

we utilize dynamic taint tracking to identify and skip updates of

untainted flags, surpassing Harmonia’s static data-flow analysis

and significantly reducing unnecessary flag emulation.

Our method leverages runtime taint information to selectively

emulate only essential flags dynamically, improving efficiency be-

yond static approaches. Unlike Harmonia, which statically applies

optimizations, we dynamically adjust based on actual runtime con-

ditions. Moreover, we leverage native ARM hardware capabilities

for just-in-time emulation of critical flags, resulting in reduced

overhead and increased performance, especially beneficial in sce-

narios where precompiled static optimizations are insufficient or

unavailable. Though data flow and conditional execution are stan-

dard compiler techniques, our contribution is applying them at
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mov a, %eax

cmp a, b

jge end 

add a, b

cmp a, b

jge loop 

imul b, a

ret

def = {}

def = {SF, OF, ZF, CF, PF, AF}

uses = {SF, OF}

def = {SF, OF, ZF, CF, PF, AF}

def = {SF, OF, ZF, CF, PF, AF}

uses = {SF, OF, ZF}

def = {SF, OF, ZF, CF, PF, AF}

def = {}

(a) Initial Data Flow Graph State

def = {}

def = {SF, OF, ZF, CF, PF, AF}

uses = {SF, OF}

def = {SF, OF, ZF, CF, PF, AF}

def = {SF, OF, ZF, CF, PF, AF}

uses = {SF, OF, ZF}

def = {SF, OF, ZF, CF, PF, AF}

def = {}

def = {}

def = {SF, OF}

uses = {SF, OF}

def = {}

def = {SF, OF, ZF}

uses = {SF, ZF, OF}

def = {}

def = {}

X86 ARM

def = {}

def = {N, V}

uses = {N, V}

def = {}

def = {N, V, Z}

uses = {N, V, Z}

def = {}

def = {}

Direct Mapping

(b) Final Data Flow Graph State

Figure 5: Comparison of Initial and Final Data Flow Graph States

Algorithm 2 Efficient Flag Setting Based on Analysis

1: for flag in flags_active do
2: GenerateFlag(Registertemp, flag)

3: BitFieldInsert(Register
flags

, Registertemp, flag)

4: end for

Algorithm 3 Data Flow Analysis Iteration Method

Require: Data flow graph 𝐺 , initial state 𝐼𝑛𝑖𝑡 , termination nodes

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝐺

1: function Analyze(𝐺 , 𝐼𝑛𝑖𝑡 )

2: for 𝑡 in𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝐺 do
3: Iterate(𝑡 , 𝐼𝑛𝑖𝑡 )

4: end for
5: end function

Require: Node 𝑣, current state 𝑖𝑛, flag sets 𝑑𝑒𝑓𝑏 , 𝑢𝑠𝑒𝑏 , result 𝑜𝑢𝑡𝑏 ,

predecessors 𝑝𝑟𝑒𝑑𝑏
6: function Iterate(𝑣, 𝑖𝑛)

7: 𝑜𝑢𝑡 ← (𝑖𝑛 − 𝑑𝑒𝑓𝑏 ) ∪𝑢𝑠𝑒𝑏 ∪ 𝑜𝑢𝑡𝑏
8: if 𝑜𝑢𝑡 ≠ 𝑜𝑢𝑡𝑏 then
9: 𝑜𝑢𝑡𝑏 ← 𝑜𝑢𝑡

10: for 𝑝𝑟𝑒𝑑 in 𝑝𝑟𝑒𝑑𝑏 do
11: Iterate(𝑝𝑟𝑒𝑑 , 𝑜𝑢𝑡 )

12: end for
13: end if
14: end function

runtime in an x86-to-ARM translator for scenarios like gaming,

where offline compilers do not dynamically compile EFLAGS to

ARM condition flags. We selectively emulate only essential flags,

leveraging ARM hardware in a just-in-time setting.

Specifically, our EFLAGS-aware data flow analysis identifies the

minimal set of required flags by performing backward, interproce-

dural analysis across the entire control flow graph, whereas Salgado

and Harmonia rely on conservative or limited-region analyses. Fur-

thermore, our direct mapping strategy to ARM’s status registers

exploits native hardware support extensively, improving perfor-

mance by directly aligning x86 condition flags to ARM’s hardware-

managed indicators, unlike previous methods that depend heavily

on software-based emulation.

This optimization employs a data flow analysis framework to

accurately determine when and where each EFLAG is needed. By

performing a backward analysis of the control flow, the method

identifies the specific status flags that each instruction truly depends

on, eliminating redundant computations. As illustrated in Figure 5a,

an initially broad network of flag dependencies is progressively

refined to a minimal set of essential flags that impact subsequent

operations. Shifting from a comprehensive to a selective approach

significantly improves EFLAGS management efficiency.

At the core of this method is the propagation of flag usage from

their points of use back to their setting points. Conditional opera-

tions and other flag-dependent instructions guide this propagation,

ensuring that only flags influencing future decisions remain active.

During the analysis of each control flow node, its role in defining

or using specific flags is combined with information from related

nodes. Through iterative refinement, unnecessary flag tracking is

eliminated, resulting in a stable and concise set of critical flags at

each relevant program point.

This streamlined flag dependency enhances the translation pro-

cess by allowing the generation to focus solely on required status

indicators instead of updating all flags after every arithmetic instruc-

tion. For instance, if only the Zero and Sign flags affect subsequent

decisions, maintaining the Carry or Overflow flags becomes un-

necessary. Consequently, the translated output is more efficient,

particularly in performance-critical sections, reducing overhead

and improving responsiveness.

An additional improvement involves tracking the necessity of

flags, distinguishing between redundant and required flags at spe-

cific execution points. By aligning these states with comprehensive

data flow results, instructions are introduced only whenmeaningful.

As macro-level constructs incorporate these insights, unnecessary

flag operations are avoided, ensuring the final outcome maintains

architectural fidelity while optimizing operational efficiency.
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Once the data flow equations converge on a minimal set of essen-

tial flags, these insights are integrated with ARM’s architectural fea-

tures. Without selective equations, translations might simulate all

x86 flags on ARM, including unused ones. However, data flow anal-

ysis removes such inefficiencies. The revised instructions, guided by

Algorithm 2 and Algorithm 1, interact directly with ARM’s native

status registers, leveraging hardware support for common flags like

Zero, Sign, Carry, and Overflow.

Furthermore, these equations not only reduce the flag set but

also optimize specific calculations, such as the parity condition.

Instead of computing parity after every instruction, the equations

determine it only when necessary by treating computation results

as bit sets and reducing them to a single parity value through

relevant bit iterations. This incremental approach ensures that the

parity flag is calculated based on prior analysis rather than as a

routine operation.

This transition from broad flag-generation equations to a se-

lective, context-aware set represents a significant improvement.

By reusing results from earlier data flow equations that identify

needed flags downstream, the new equations avoid unnecessary

computations. They no longer generate every possible flag state

mechanically but instead integrate results intelligently, inserting

only the minimal and precisely selected flags. Consequently, the

final equations provide a more efficient and semantically accurate

representation of the program’s state, ensuring operations like par-

ity calculation occur only when necessary, thereby enhancing both

clarity and performance of the translation process.

4.3 Direct Mapping to ARM’s Status Registers
Focusing on essential x86 flags enables a direct mapping to ARM’s

status registers, reducing the overhead typically associated with flag

emulation. As depicted in Figure 5b, ARM’s native status registers

correspond directly to specific x86 flags. The x86 Sign, Zero, Carry,

and Overflow flags align naturally with ARM’s built-in condition in-

dicators used in comparisons and arithmetic operations. This align-

ment allows ARM’s hardware to automatically update and access

these conditions, eliminating the need for separate software-based

flag computations and storage. Instead, our approach leverages the

target environment’s hardware support to manage flag operations

efficiently.

To achieve this, we utilize a data flow analysis technique to iden-

tify and isolate only the flags genuinely required by the x86 code.

This selective approach minimizes complexity and overhead by

ignoring unnecessary flags. By directly mapping these essential

flags to ARM’s status registers, such as the APSR (Application Pro-

gram Status Register), the translator effectively uses ARM’s native

flag-handling mechanisms, which automatically update condition

flags based on instruction results.

This direct mapping significantly optimizes performance. ARM

instructions inherently maintain certain flags, allowing the transla-

tor to rely on the processor’s built-in status updates for arithmetic

or logical instructions. This approach removes the need for manual

flag calculations and adjustments after each instruction, thereby

reducing both latency and code size. For example, when determin-

ing if one value is larger or equal to another, the translator enables

an ARM instruction to set the processor’s internal flags instead
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of explicitly computing carry and borrow conditions in software.

Subsequent comparisons or branches then operate directly on these

hardware-managed conditions, minimizing the number of required

instructions and simplifying data flow.

To further enhance optimization, the translator employs instruc-

tion scheduling techniques that maximize the use of ARM’s condi-

tional execution features. By arranging instructions to take advan-

tage of ARM’s conditional branches and predicated instructions,

the translation process reduces the number of branching opera-

tions and improves instruction-level parallelism. This results in

more efficient utilization of the ARM pipeline and overall better

performance.

However, not all flags translate directly between architectures,

necessitating careful adjustments in specific scenarios. For example,

the carry flag behaves differently during subtraction: in x86, it

indicates a borrow, whereas in ARM, it signifies the absence of a

borrow. Therefore, the translator must reinterpret or invert the

carry flag’s meaning to accurately map x86 code that relies on

it to ARM’s flag semantics. This reinterpretation is essential for

maintaining functional equivalence in code paths dependent on the

exact behavior of the x86 carry flag. To address such discrepancies,

the translator incorporates a flag translation layer that dynamically

adjusts flag interpretations based on the operation context, ensuring

accurate and reliable flag behavior across different instruction types.

Adopting this direct mapping strategy ensures that the transla-

tion process remains faithful to the original x86 code’s semantics

while tightly integrating with ARM’s native hardware features.

Consequently, the final environment not only preserves the re-

quired x86 flag behavior but also achieves enhanced performance

and efficiency by leveraging ARM’s internal status management

capabilities. This integration ensures that translated applications

maintain their intended behavior and performance characteristics,

providing a robust and efficient execution environment on ARM

architectures.

5 EVALUATION
We have integrated our binary translation system into Box64 by re-

structuring its condition code handling mechanism to directly map

x86 EFLAGS onto ARM conditional flags during dynamic recompi-

lation. Our approach adheres closely to established methodologies,

carefully optimizing the translation to minimize overhead for the

evaluated applications. Specifically, we enhanced code generation

macros to unify and streamline the translation of x86 conditional
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Figure 7: Geekbench 6 Computational Performance Improvements

jumps, directly leveraging ARM64’s inherent condition codes. Ad-

ditionally, we implemented flag taint tracking to enhance specu-

lative execution safety and maintain consistent state information

across conditional execution paths. Further refinements involved

precise management of barriers, register allocation strategies, and

scratch register usage, effectively controlling the conditions under

which flags are accessed and modified. Instruction bloat was min-

imized by selectively mapping only essential x86 flags to native

ARM condition codes, explicitly excluding unused flags to reduce

computational overhead. Consequently, our integrated solution

substantially decreases dependency on software-based condition

code emulation, resulting in improved overall system performance.

5.1 Experimental Set-Up
Testbed. All experiments were conducted on an NVIDIA Jetson

Xavier AGX platform, equipped with an NVIDIA GeForce GTX

1060 GPU (6 GB HBM, 6144 MiB), an ARMv8 processor compris-

ing four sockets, each with two cores, totaling eight cores, and 30

GiB of host memory. The system operates Ubuntu 20.04.6 LTS (Fo-

cal Fossa), representing an ARMv8.2 architecture typical of mobile

system-on-chip (SoC) configurations commonly employed in smart-

phones, tablets, and IoT devices. This ensures that performance

improvements observed in our study are broadly applicable within

ARM-based ecosystems [32].

Workloads and Methodology. To ensure rigorous quantitative
analysis, standardized aggregated metrics from multiple bench-

marks were utilized. We evaluated our system performance using

three distinct workload categories, each targeting specific platform

attributes. First, we employed Geekbench, a synthetic benchmark-

ing suite encompassing a variety of CPU and GPU tasks. Second,

the Heaven Benchmark was utilized to evaluate graphics-intensive

capabilities comprehensively. Lastly, we incorporated benchmarks

derived from real-world Steam games to assess comprehensive

end-to-end performance under practical usage conditions. Multiple

experimental iterations were conducted to verify result consistency

and thoroughly examine the performance implications of binary

translation.

Table 3: Overhead Analysis (CPU and GPU Benchmarks)

Metric Geekbench Heaven Valley
CPU overhead (%) 0.12% 0.08% 0.24

Memory overhead (%) 0.84% 4.01% 3.17%

5.2 System Computational Performance
Experiment Set-up. We evaluate the system’s computational per-

formance using Geekbench 6, focusing on single-core and multi-

core scenarios across a range of workloads such as text process-

ing, compression, complex navigation, and computational photog-

raphy. Experiments are conducted under both unoptimized and

optimized configurations, allowing us to isolate the impact of im-

proved memory handling, GPU acceleration, and our integrated

binary translation optimizations. The latter includes re-architecting

condition code handling within Box64’s dynamic recompilation

framework. By carefully mapping x86 EFLAGS onto ARM condi-

tion flags, we reduce software-based condition emulation overhead,

streamline branching, and increase the efficiency of just-in-time

(JIT) code generation. These modifications, combined with taint

tracking of flags and enhanced register allocation strategies, ensure

that condition-dependent execution paths are more directly and

efficiently expressed on the ARM architecture.

The results of our benchmarking are presented in Figure 7, show-

ing single-core and multi-core performance improvements across a

variety of tasks. Enhanced flag translation, improved speculation

safety, and more precise management of barriers all play roles in

strengthening overall throughput.

Overall Performance. As illustrated in Figure 7(a), our optimized

configuration raises single-core scores from 339 to 357, reflecting

meaningful gains. This uplift can be traced to lower translation

overhead for conditional instructions and more efficient memory

pipelines, enabling smoother execution of tasks like PDF rendering,

text processing, and photo filtering. The streamlined condition code

handling effectively eliminates unnecessary software guardrails,

reducing latency on critical loops and conditional jumps.
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Figure 8: FPS Performance Comparison Across Selected Games

Likewise, multi-core performance, shown in Figure 7(b), rises

from 1765 to 1938. Here, the combination of improved concurrency

management, enhanced memory allocation strategies, and refined

binary translation heuristics synergizes to boost parallel workloads

such as object detection and asset compression. Fine-grained scratch

register usage and better scheduling further diminish contention

among threads, thus capitalizing on ARM’s parallel execution capa-

bilities.

Breakdown. A detailed view in Figure 7(a) reveals that refine-

ments in memory handling predominantly benefit data-intensive

tasks, ensuring faster data retrieval and smoother memory flows.

Similarly, GPU acceleration amplifies performance gains in highly

parallelizableworkloads, such as ray tracing or image processing, ac-

celerating their execution in the multi-core scenarios of Figure 7(b).

The careful integration of binary translation optimizations reduces

overhead in handling condition flags and complex control-flow pat-

terns, directly improving code generation quality and execution

speed. These insights inform targeted future enhancements, such

as more intelligent memory allocators, adaptive scheduling algo-

rithms, and sophisticated JIT compilers that can further leverage

platform-specific architectural features.

Overhead and Scalability. Table 3 highlights the efficiency of

our framework for Geekbench, a CPU-intensive workload, where
CPU overhead remains negligible at 0.12% and memory overhead is

tightly constrained to 0.84%. This demonstrates that our JIT trans-

lation layer maintains near-native resource utilization even under

dynamic code generation demands. By optimizing register alloca-

tion, reducing redundant condition flag updates, and isolating taint

tracking to critical code regions, the system avoids scalability bottle-

necks for purely computational tasks. These design choices ensure

that performance gains from speculative execution and paralleliza-

tion are preserved, making the approach viable for latency-sensitive

and high-throughput CPU workloads.

5.3 Graphics Rendering Performance
Experiment Set-up. To assess graphics performance, we employ

the Unigine Heaven 4.0 and Unigine Valley 1.0 benchmarks, which

subject the system to demanding 3D rendering tasks involving

complex geometry, dynamic lighting, and high-resolution textures.

We compare baseline and optimized configurations to quantify

the improvements due to advanced GPU instruction translation,

streamlined texture loading, and more efficient shading pipelines.

As with the CPU-bound tests, our binary translation layer benefits

GPU-driven workloads by efficiently mapping high-level render-

ing calls to ARM-friendly instruction sequences and ensuring that

conditional logic within shaders and GPU kernels executes more

fluidly.

Overall Performance. The optimized configuration leads to con-

sistently better FPS across both benchmarks, as shown in Figure 6.

For Unigine Heaven 4.0, the average FPS jumps from 57.6 to 63.4

(+10% increase), and the minimum FPS improves from 17.0 to 20.0,
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reducing stutters and improving responsiveness during scene tran-

sitions. Maximum FPS also rises, indicating more efficient handling

of peak workloads and memory transfers. In Unigine Valley 1.0,

average FPS grows from 21.7 to 22.5, enhancing fluidity in partic-

ularly complex environments. Corresponding benchmark scores

climb from 1452 to 1596 in Heaven and from 907 to 950 in Valley,

reflecting these systemic enhancements.

Breakdown. Closer inspection reveals that improved GPU-based

memory optimizations ensure more stable frame times, leading to

higher minimum FPS and smoother rendering during the most

challenging frames. Our binary translation improvements also

help by selectively inlining or simplifying control-flow constructs

within GPU code, better aligning shader logic with ARM execution

patterns. This synergy decreases translation latency and reduces

branching overhead in the GPU pipeline, enabling both higher maxi-

mum FPS and steadier average frame rates. Together, these findings

guide future optimizations focused on further refining memory

access patterns, adjusting register allocation, and integrating more

adaptive shading algorithms to sustain high performance across a

broad range of graphical workloads.

Overhead and Scalability. For GPU-centric benchmarks likeHeaven
and Valley, Table 3 reveals CPU overheads of 0.08% and 0.24%, re-
spectively, with memory overheads of 4.01% and 3.17%—consistent
with the expanded statemanagement required for rendering pipelines.

The framework adapts to GPUworkloads by prioritizing translation

of frequently executed shader blocks and streamlining synchroniza-

tion between CPU-side translation threads and GPU command

queues. This ensures that memory bandwidth remains available

for texture/geometry data, while runtime translation latency stays

decoupled from frame rendering deadlines. The results validate

that our system scales to accommodate GPU workloads without

disrupting real-time rendering performance.

5.4 Real-World Gaming Performance
Experiment Set-up. We next measure real-world responsiveness

and visual smoothness by running a curated selection of Steam

games that represent diverse genres and rendering engines. We

track FPS and frame-time consistency to determine whether our

integrated optimizations, including improved binary translation

and memory handling, translate into tangible benefits for end-users.

Overall Performance. Across various titles, our optimizations

consistently elevate average FPS, delivering a more fluid experience

during high-intensity action sequences. Minimum FPS also rises,

alleviating micro-stutters and reducing frame-time spikes when

scenes become visually dense or involve rapid camera movement.

The maximum FPS improvements indicate that the system can

handle short bursts of demanding effects more gracefully. As a

result, gameplay feels both more responsive and visually coherent,

contributing to a noticeably smoother player experience.

Breakdown.Memory-specific enhancements underpin these im-

provements, ensuring swift asset streaming and seamless mem-

ory access that maintain stable frame delivery. The binary transla-

tion refinements—especially the direct mapping of x86 condition

flags to ARM condition codes and the careful tuning of JIT heuris-

tics—improve peak performance by allowing the runtime system

to adapt quickly to complex in-game scenarios. By reducing over-

head from condition code emulation, the engine maintains higher

sustained throughput, capitalizing on parallel hardware resources

more effectively. In sum, these insights point toward future direc-

tions such as further refining CPU-GPU synchronization, exploring

more advanced speculation mechanisms, and integrating adaptive

shading strategies to continue advancing gameplay performance

and fluidity.

Overhead and Scalability.While the GPU often represents the

primary bottleneck in most AAA games due to heavy rendering

demands, CPU-side optimizations remain essential for managing

large or complex codebases effectively. By minimizing CPU over-

head—illustrated in Table 3—our approach helps streamline the

execution of critical game logic, scripting, and physics calculations.

This balanced design ensures that, even under graphics-intensive

workloads, the CPU can efficiently handle task scheduling, resource

management, and code translation without impeding overall game-

play performance. Consequently, the system can better accommo-

date large-scale projects where efficient CPU usage and scalability

across multiple cores are vital for stable frame rates and smooth

user experiences.

6 DISCUSSION
Our evaluation demonstrates the effectiveness of the proposed

software-only method in enhancing binary translation performance

between x86 and ARM architectures, especially in gaming applica-

tions. While our study emphasizes gaming scenarios due to their

frequent control-flow changes and rapid EFLAGS updates, our tech-

niques have broader applicability in other domains characterized

by similarly dynamic control-flow behavior, such as real-time sys-

tems or interactive applications requiring rapid state updates. We

observed substantial performance improvements in computational

benchmarks, graphical rendering, and real-world gaming scenarios.

These gains result from efficient EFLAGS management, targeted

flag emulation, and the direct mapping of compatible x86 flags to

ARM’s native flags. In interactive workloads, even modest perfor-

mance gains can significantly reduce frame-time variability in the

critical 30–60 FPS range, mitigating stutters and enhancing user

satisfaction. Although comprehensive user studies are beyond this

paper’s scope, maintaining a stable frame rate is a key factor in

ensuring smooth real-time experiences. Notably, frame rates ex-

ceeding 60 FPS often yield diminishing perceptible returns, yet

preserving consistent frame delivery remains beneficial for overall

responsiveness and user comfort.

A key advantage of this approach is its ability to bridge architec-

tural differences without relying on proprietary hardware, ensur-

ing broad applicability across various ARM-based platforms and

promoting widespread adoption. In contrast to Apple’s Rosetta 2,

which leverages Apple-specific hardware instructions for signifi-

cant speedups on Apple Silicon, our translator is entirely software-

based. Rosetta 2’s heavy reliance on proprietary hardware fea-

tures limits its portability to other ARM system-on-chips (SoCs).

By employing data flow–driven optimizations and ARM’s built-in

conditional execution rather than Apple-specific instructions, our

approach offers broader compatibility across ARMv8-compliant

processors, including Snapdragon and Exynos. This vendor-neutral
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design ensures that optimizations remain accessible to a wide range

of devices without sacrificing performance benefits derived from

selective flag mapping. Additionally, by focusing on data flow analy-

sis and taint tracking, the method reduces redundant computations,

optimizing both translation latency and execution efficiency. This

not only boosts performance but also lowers energy consumption,

aligning with ARM’s focus on power efficiency.

However, some limitations need further investigation. While

FPS and computational scores showed significant improvements,

certain benchmarks only saw modest gains, indicating areas for

potential optimization. Addressing complex control-flow patterns

and refining GPU-specific translations could yield additional perfor-

mance benefits. Additionally, despite some gaming workloads being

predominantly GPU-bound, our optimizations on the CPU side re-

main important, particularly in managing extensive or intricate

codebases that influence overall system performance. Furthermore,

the inversion of carry flags and explicit parity calculations intro-

duce minor overheads that might be reduced through advanced

speculative execution techniques.

Future research could explore hybrid approaches that integrate

machine learning to dynamically predict and optimize flag depen-

dencies. Additionally, deeper integration with ARM hardware fea-

tures, such as pointer authentication or dedicated registers, could

complement our translator to achieve greater optimization. How-

ever, our design ethos emphasizes the value ofmaintaining a vendor-

neutral, purely software-based approach to ensure compatibility

across diverse ARM implementations without proprietary depen-

dencies. Leveraging hardware-specific features where available,

without sacrificing generalizability, could extend the system’s bene-

fits to other areas like AI and machine learning applications, which

are increasingly relevant on ARM platforms.

7 RELATEDWORKS
Optimizing the EFLAGS register is crucial for effective binary

translation across architectures. Research in this domain falls into

software-only, hardware-only, and hybrid approaches. The central

challenge lies in bridging the semantic gap between the source ar-

chitecture’s condition code mechanism and the target architecture’s

potentially simpler or differently structured condition handling.

7.1 Software-Only Approaches
Software-only methods employ compiler techniques and runtime

analysis without modifying hardware. Bansal and Aiken [6] intro-

duced a peephole superoptimization technique to optimize small

instruction sequences, managing EFLAGS efficiently and eliminat-

ing redundant instructions to boost performance. Salgado et al. [27]

used dataflow analysis to reduce the overhead of condition code

emulation in dynamic binary translation. Chen et al. [9] focused

on dynamic analysis within a whole-system emulator to lessen

EFLAGS management overhead. Wang et al. [30] developed a pat-

tern translation method for necessary flag computations, selecting

appropriate instruction groups based on flag pattern semantics to

minimize native code generation and enhance performance. Xie

et al. [34] proposed a peephole optimization approach using live

variable analysis and instruction fusion through pattern matching,

significantly improving performance.

7.2 Hardware-Only Approaches
Hardware-only solutions improve EFLAGS handling by incorpo-

rating architectural enhancements, reducing the need for software

emulation. Li et al. [21] presented a hardware-assisted method that

offloads specific tasks to dedicated components, enhancing EFLAGS

efficiency. Hu et al. [16] proposed a cost-effective hardware-assisted

translation system for efficient EFLAGS management. The IA-32

Execution Layer [12] explored architectural features to translate

IA-32 instructions, including EFLAGS, to Itanium-based systems.

7.3 Combined Software and Hardware
Approaches

Hybrid approaches combine software and hardware strategies to

optimize EFLAGS in binary translation. The Loongson binary trans-

lation system [28] integrates software and hardware innovations

for efficient condition code handling across architectures. Hu et

al. [16] extended their hardware-assisted system with co-designed

software components to improve EFLAGS optimization. Li et al.

[21] combined hardware support with software strategies for effec-

tive condition bit mapping. Salgado et al. [27] advocated a hybrid

approach by evaluating both software and hardware techniques

for condition code emulation. Similarly, Chen et al. [9] merged

software optimizations with hardware features to comprehensively

manage EFLAGS in binary translation.

Ottoni et al. [24] introduced Harmonia, an ARM-to-IA dynamic

binary translator integrating software and hardware optimizations.

Harmonia identifies two key challenges for effective binary trans-

lation: register mapping and condition-code handling. They pro-

pose optimizations including region-based register mapping and

redundant-compare elimination to minimize memory accesses and

condition-code emulation overheads, complemented by targeted

hardware ISA extensions for IA architecture to further reduce trans-

lation overhead.

8 CONCLUSION
This paper introduced a software-only strategy to bridge the x86-

to-ARM gap for gaming applications, focusing on efficient EFLAGS

emulation within binary translation. Our method leverages data

flow analysis and taint tracking to isolate necessary flag computa-

tions and directly maps compatible flags to ARM’s native hardware,

thereby avoiding substantial emulation overhead without requiring

proprietary hardware. The effectiveness of this technique was con-

firmed through rigorous evaluation: computational benchmarks

showed performance gains reaching up to 18%, while graphics

benchmarks saw similar FPS improvements of up to 18%. Most

importantly, this translated to a smoother end-user experience,

with real-world Steam games exhibiting FPS increases between 7%

and 12%. These results demonstrate a clear path towards enhanced

cross-platform gameplay and broader ARM adoption in the PC

gaming space.
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A EXAMPLE PROGRAMS COMPARING
EFLAGS USAGE

The following are two assembly programs that perform the same

task of counting set bits in an array of 64-bit integers. The only

difference is that one program utilizes the EFLAGS register, while

the other avoids using it.

Listing 1: Bit Counting Using EFLAGS
SECTION .data

array_size equ 100000000
array times array_size dq 0xFFFFFFFFFFFFFFFF
total_bits dq 0
newline db 10

SECTION .bss
SECTION .text

global _start
_start:

mov rcx, array_size
lea rsi, [array]
xor rax, rax
xor rbx, rbx

count_bits_loop:
mov rdx, [rsi]
mov r8, 64

bit_loop:
shr rdx, 1
jc bit_is_set
jmp check_next_bit

bit_is_set:
inc rbx

check_next_bit:
dec r8
jnz bit_loop
add rsi, 8
dec rcx
jnz count_bits_loop
mov rax, rbx
call uint_to_ascii
mov rdx, rsi
mov rsi, rbx
mov rax, 1
mov rdi, 1
syscall
mov rax, 60
xor rdi, rdi
syscall

uint_to_ascii:
ret

The primary distinction between Listing 1 and Listing 2 lies

in how they detect and count set bits. Listing 1 explicitly relies

on EFLAGS operations: after shifting a bit out of rdx via shr, it
checks theCarry Flag (CF) using jc bit_is_set to increment the

counter, introducing a branch dependency on EFLAGS. In contrast,

Listing 2 avoids EFLAGS entirely by isolating the least significant bit

with and rax, 1, directly adding its value to rbxwithout branching.
Loop control is handled by the loop instruction, which decrements

rcx and jumps without referencing EFLAGS, thereby reducing

branch mispredictions and pipeline stalls to improve performance

on modern CPUs.

Listing 2: Bit Counting Without Using EFLAGS
SECTION .data

array_size equ 100000000
array times array_size dq 0xFFFFFFFFFFFFFFFF
newline db 10

SECTION .text
global _start

_start:
mov rcx, array_size
lea rsi, [array]
xor rbx, rbx

count_bits_loop:
push rcx
mov rcx, 64
mov rdx, [rsi]

bit_loop:
mov rax, rdx
and rax, 1
add rbx, rax
shr rdx, 1
loop bit_loop

pop rcx
add rsi, 8
loop count_bits_loop

mov rax, 60
xor rdi, rdi
syscall

B COMPARISON OF X86 AND ARM
PROCESSOR STATUS FLAGS

Table 4: Detailed Description of Flag Bits in the x86

Flag Bit Description

CF (Carry Flag) Indicates unsigned overflow in arithmetic opera-

tions.

ZF (Zero Flag) Set if the arithmetic result is zero.

SF (Sign Flag) Reflects the sign of the result’s most significant

bit.

OF (Overflow
Flag)

Set if signed overflow occurs in arithmetic.

PF (Parity Flag) Set if the least significant byte has even parity.

AF (Auxiliary
Carry Flag)

Set if a carry/borrow occurs between nibble bits.

Table 5: Detailed Description of Condition Flags in ARM

Flag Bit Description

N (Negative Flag) Set if the arithmetic result is negative (most sig-

nificant bit set).

Z (Zero Flag) Set if the arithmetic result is zero.

C (Carry Flag) Indicates unsigned overflow or borrow in arith-

metic operations.

V (Overflow
Flag)

Indicates signed overflow occurred during arith-

metic operations.
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