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SPACEDML: Enabling Distributed Machine
Learning in Space Information Networks
Hanxi Guo, Qing Yang, Hao Wang, Yang Hua, Tao Song, Ruhui Ma, and Haibing Guan

Abstract—Space Information Networks (SINs) has become a
rapidly growing global infrastructure service. Massive volumes of
high-resolution images and videos captured by low-orbit satellites
and unmanned aerial vehicles (UAVs) have provided a rich
training data source for machine learning applications. However,
SIN devices’ limited communication and computation resources
make it challenging to perform machine learning efficiently with
a swarm of SIN devices.

In this paper, we propose SPACEDML, a distributed machine
learning system for SIN platforms that applies dynamic model
compression techniques to adapt distributed machine learning
training to SINs’ limited bandwidth and unstable connectivity.
SPACEDML has two key algorithms: 1) Adaptive loss-aware
quantization that compresses models without sacrificing their
quality. 2) Partial weight averaging that selectively averages
active clients’ partial model updates. These algorithms jointly
improve communication efficiency and enhance the scalability
of distributed machine learning with SIN devices. We evaluate
SPACEDML by training a LeNet-5 model on the MNIST dataset.
The experimental results show that SPACEDML can increase
model accuracy by 2-3% and reduce communication bandwidth
consumption by up to 60% compared with the baseline algorithm.

Index Terms—machine learning; model compression; space
information networks

I. INTRODUCTION

The last decade has witnessed a rapid development of space
information networks (SINs) and platforms such as small
satellites and unmanned aerial vehicles (UAVs) for public
services, including Internet service, geographical photography,
navigation, weather forecasting, and traffic data analysis. So
far, SpaceX has already deployed over 1,000 StarLink satellites
to provide broadband Internet connectivity. Besides, small
satellites and UAVs equipped with sensors and cameras have
been collecting tons of high-resolution imagery and video data,
which enable applications such as Google Maps to provide
real-time street views and traffic monitoring.

The increasing volumes of valuable data collected by SIN
devices have inspired a broad spectrum of interests for in-
telligent and efficient data analysis. Leveraging the data to
enable machine intelligence on satellites and UAVs has two
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significant benefits: First, improving data analysis efficiency
and further enhancing the quality of public services, such
as weather forecast, transportation navigation. Second, assist-
ing spacecraft management and autonomy to optimize space
communications and spacecraft reliability, further reducing the
burden and cost of the ground segment and mission operations.

Motivated by these benefits, both industry and academy
have attempted to enable machine learning on SIN devices. KP
Labs has developed Leopard, an onboard computer integrated
with a powerful FPGA chip that accelerates the execution of
deep learning algorithms on satellites [1]. Intel released the
Movidius Myriad VPU, a microprocessor capable of accel-
erating machine vision tasks in a low-powered environment
such as satellites and UAVs. Besides, European Space Agency
explored machine learning techniques to optimize space com-
munications that—Mexar2—is proposed to determine the best
timing of transmitted data packets to improve downlink ca-
pability [2]. NASA has designed the Space Communications
and Navigation (SCaN) Testbed to leverage machine learning
to explore cognitive radio and underused portions of the
electromagnetic spectrum for communication.

However, existing studies only attempted to perform ma-
chine learning on a single SIN device, even though machine
learning applications can be extensively accelerated by parallel
computing. For example, Manning et al. [3] deployed the ma-
chine learning framework TensorFlow Lite to a modern small
satellite computer and performed image classification tasks
using convolutional neural networks (CNNs). Nevertheless, it
is impossible to obtain accurate and general machine learning
models on a single SIN device due to its limited computation
capacity and storage space. Existing deep learning algorithms
typically take millions of data samples and thousands of paral-
lel computing threads (i.e., GPU streaming processors) to train
a model qualified for production environments. Therefore, it
becomes imperative to enable distributed machine learning
(DML) with a swarm of satellites and UAVs.

The obstacle that hinders deploying machine learning to
a swarm of SIN devices comes from the scarce frequency
and orbit resources that limit the communication efficiency
between SIN devices and ground operators. There is a contra-
diction between the huge traffic demands of machine learning
applications and SIN platforms’ communication quality. More-
over, the unstable connectivity of SINs further increases the
difficulty to orchestrate machine learning among a swarm of
satellites and UVAs.

In this work, we propose SPACEDML, a distributed machine
learning (DML) framework for SIN platforms. SPACEDML
deploys a global server that sends out machine learning



2

tasks to each SIN device and iteratively updates a global
model by exchanging model weights with SIN devices—
following a new distributed machine learning paradigm—
federated learning [4]. With multiple SIN devices participating
in training, SPACEDML tolerates unstable SIN connectiv-
ities where disconnected devices either fail or extensively
slow down the training. Besides, SPACEDML applies the
latest model compression algorithm that reduces the size of
model weights to accommodate the limited bandwidth of SINs
and allows more SIN devices to participate in distributed
training. We propose to perform adaptive loss-aware model
quantization that compresses local models trained on SIN
devices without sacrificing model accuracy. We also develop a
quantized weight averaging algorithm to aggregate quantized
model weights from each SIN device efficiently. The main
contributions of SPACEDML are as follows:
• We design SPACEDML, an efficient distributed machine

learning framework that extensively reduces the commu-
nication overheads among SIN devices.

• We introduce an adaptive loss-aware model compression
method into distributed machine learning with SIN de-
vices that adapts to the limited bandwidth and unstable
connectivity in SIN.

• We evaluate SPACEDML using a realistic model and a
public dataset. Experimental results of training a LeNet-5
model on the MNIST dataset show that SPACEDML can
increase accuracy by 2-3% and reduce communication
overheads between SIN devices by up to 60% compared
with the baseline algorithm FEDAVG.

II. PRELIMINARIES

This section first reviews existing SIN services and then
introduces the background of federated learning and model
compression.

A. Space Information Network Services

Space Information Networks (SINs) are global network
infrastructures carried by space devices distributed at different
attitudes through integrated network interconnecting, including
satellites, airships, aerostats, and UAVs. Using such a complex
hierarchical architecture, SINs bring connectivity across the
world and enable broadband Internet access services to users
anywhere and anytime. A wide range of industrial and aca-
demic applications have benefited from SINs’ global coverage,
especially remote sensing, artificial intelligence, and public
transportation [3, 5, 2].

Integrating machine intelligence to SINs has become prac-
tical as more and more SIN devices are equipped with high-
performance computing chips and precise sensors. Instead of
collecting data from SIN devices to terrestrial stations, directly
training machine learning models on SIN devices mitigates the
long data transmission time between SIN devices and terres-
trial stations thanks to the instant access to massive volumes of
valuable data captured by SIN devices [3]. However, the huge
network traffic generated by distributed machine learning is
challenging for existing SIN infrastructures. Existing studies

on distributed machine learning have not specifically opti-
mized for the limited and unstable communication conditions
in SINs.

B. Federated Learning

Federated Learning is a new distributed machine learn-
ing paradigm that orchestrates a large scale of devices to
perform on-device training and global model update [4].
Unlike traditional machine learning algorithms that centralize
data to a server for training, each participating device : in
federated learning trains a model F: locally and exchanges
the local model F: with a server to update a global model
F. As centralizing data from SIN devices is time-consuming,
federated learning can exploit the immediate on-device data
access to avoid data transmission latency. As SIN devices
capture new data, federated learning can update models locally
without waiting for data centralization as traditional distributed
machine learning (DML) does.

However, due to its distributed nature, federated learning
still needs to consume network bandwidth to exchange model
weights between clients and a centralized server. A few studies
have been proposed to further minimize the communication
overhead in federated learning by compressing the model
weights exchanged between devices. Konečný et al. [6] de-
signed structured updates and sketched updates to reduce
data transmission. LotteryFL [7] applies the Lottery Ticket
hypothesis with FEDAVG, applying model pruning algorithms
to remove less important model weights without sacrificing
model accuracy. FedSketchedSGD [8] compresses gradients
using the Count Sketch algorithm to decrease communication
bandwidth usage.

C. Model Quantization

Deep neural networks typically have a large number of lay-
ers and channels that result in a significant redundancy. There
are three popular model compression techniques: model prun-
ing, knowledge distillation, and model quantization. Model
pruning may spoil the integrity of the whole model structure
and lose some contributing neurons in layers. Knowledge
distillation requires the teacher networks and student networks
to be rigorously harmonious. Otherwise, the learning process
may be unstable. Model quantization makes it possible to
deploy deep neural networks to devices with limited computa-
tion resources and storage by keeping every model parameter
but approximates floating-point numbers by lower bit-width
numbers. BinaryConnect [9] mapped floating-point parameters
to +1 or −1 using either deterministic or stochastic operation.
Binary-encoded floating-point numbers can exploit efficient
bit-wise operation in microprocessors to accelerate computa-
tion. Courbariaux et al. [10] proposed quantizing model pa-
rameters and activations by mapping the intermediate product
of input to a lower bit. ALQ [11] designed a method to train
a multi-bit network based on the loss function instead of the
reconstruction error, allowing that the parameters in the same
layer may have different precision after model quantization.

A few model quantization techniques have been proposed to
improve the communication efficiency in federated learning,
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reducing the volume of updates transmitted between the global
server and participating devices. Quantized SGD [12] that
quantizes gradient and trades off between communication
bandwidth and converging times in distributed setting was
proposed to boost efficiency. FedPAQ [13] combined pe-
riod averaging, partial participation, and quantization with
federated learning to address communication bottleneck. Nir
Shlezinger et al. [14] proved coupling universal quantiza-
tion vector with Federated Learning works well. LFL algo-
rithm [15] quantized client models and global server models
so that the transmission can be further reduced. However, all
these existing works follow a static model quantization policy
that can hardly adjust model compression rate dynamically.

III. SPACEDML’S DESIGN

This section first describes SPACEDML’s architecture and
deployment in SINs. We then introduce the two key parts
of SPACEDML: 1) Adaptive loss-aware quantization (ALQ)
for multi-bit neural networks; 2) Partial averaging and ALQ
for global model weights. At last, we present a detailed
complexity analysis of the algorithm applied in SPACEDML.

A. Architecture and Deployment in SINs

Fig. 1 presents the architecture of SPACEDML, where there
are  SIN devices participating in training and one SIN
device working as the global server. The global server device
orchestrates participating devices to train local models and
exchange model weights iteratively. The participating SIN
devices communicate with the global server device using SIN
communication channels.

In each communication round, the server device picks a
subset of  devices in SINs and distributes its global model
weights to them as in Algorithm 1. When the selected devices
receive the quantized global weights, they reconstruct the
original global weights with small precision loss. Then, these
devices use the reconstructed weights to train the model
using their local data. After the training, each selected device
uses ALQ to quantize the local weights and uploads the
quantized local weights H8 and "8 to the server device. For any
participating device 8, H8 is the concatenated binary bases of
all layer weight groups, and "8 is the corresponding vectorized
coordinates. The server device reconstructs and aggregates all
the local weights to update the global model. And the server
uses ALQ to quantize the global model. After all participating
devices receive the updated quantized global model, a new
communication round begins.

B. Problem Formulation

In this paper, we aim to formulate a distributed machine
learning paradigm for SINs, with an objective to reduce
the volume of data transmitted between SIN devices. In
SPACEDML, we formulate the distributed machine learning
procedure into the following optimization problem:

min
H,"
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 ∑
8=1

58 (H8 ,"8; -8), (1)

Global 
Server
Device

Device 1

Device 2

Device k

ŏ ŏ

+

+

ŏ

<latexit sha1_base64="2/TaubCQTPWbXd/KRsZHrvmidfE=">AAACDnicbVBNS8MwGE7n15xfVY9egmMwQUY7FD0OvXic4D5gLSNN0y0sbUqSCqP0F3jxr3jxoIhXz978N6ZbD3PzgZAnz/O+5H0fL2ZUKsv6MUpr6xubW+Xtys7u3v6BeXjUlTwRmHQwZ1z0PSQJoxHpKKoY6ceCoNBjpOdNbnO/90iEpDx6UNOYuCEaRTSgGCktDc1a3fE48+U01Fd6k53DxbeDWDxG2dnQrFoNawa4SuyCVEGB9tD8dnyOk5BECjMk5cC2YuWmSCiKGckqTiJJjPAEjchA0wiFRLrpbJ0M1rTiw4ALfSIFZ+piR4pCmQ+oK0OkxnLZy8X/vEGigms3pVGcKBLh+UdBwqDiMM8G+lQQrNhUE4QF1bNCPEYCYaUTrOgQ7OWVV0m32bAvG9b9RbXVLOIogxNwCurABlegBe5AG3QABk/gBbyBd+PZeDU+jM95ackoeo7BHxhfv5j3nGg=</latexit>

(B,↵)

<latexit sha1_base64="hI7FC1852DtAHu5kBmdgP1Fz9C8=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0VoQUpSFF0W3bisYB/QhDCZTNqhk0yYmQgl9Bvc+CtuXCji1pU7/8ZJm0VtPTDM4Zx7ufceP2FUKsv6MUpr6xubW+Xtys7u3v6BeXjUlTwVmHQwZ1z0fSQJozHpKKoY6SeCoMhnpOePb3O/90iEpDx+UJOEuBEaxjSkGCkteWa95vicBXIS6S+7mXr2OVxUHMSSEdJy3TOrVsOaAa4SuyBVUKDtmd9OwHEakVhhhqQc2Fai3AwJRTEj04qTSpIgPEZDMtA0RhGRbjY7aQrPtBLAkAv9YgVn6mJHhiKZr6grI6RGctnLxf+8QarCazejcZIqEuP5oDBlUHGY5wMDKghWbKIJwoLqXSEeIYGw0ilWdAj28smrpNts2JcN6/6i2moWcZTBCTgFNWCDK9ACd6ANOgCDJ/AC3sC78Wy8Gh/G57y0ZBQ9x+APjK9fGfCdsA==</latexit>

(B1,↵1)

<latexit sha1_base64="2/TaubCQTPWbXd/KRsZHrvmidfE=">AAACDnicbVBNS8MwGE7n15xfVY9egmMwQUY7FD0OvXic4D5gLSNN0y0sbUqSCqP0F3jxr3jxoIhXz978N6ZbD3PzgZAnz/O+5H0fL2ZUKsv6MUpr6xubW+Xtys7u3v6BeXjUlTwRmHQwZ1z0PSQJoxHpKKoY6ceCoNBjpOdNbnO/90iEpDx6UNOYuCEaRTSgGCktDc1a3fE48+U01Fd6k53DxbeDWDxG2dnQrFoNawa4SuyCVEGB9tD8dnyOk5BECjMk5cC2YuWmSCiKGckqTiJJjPAEjchA0wiFRLrpbJ0M1rTiw4ALfSIFZ+piR4pCmQ+oK0OkxnLZy8X/vEGigms3pVGcKBLh+UdBwqDiMM8G+lQQrNhUE4QF1bNCPEYCYaUTrOgQ7OWVV0m32bAvG9b9RbXVLOIogxNwCurABlegBe5AG3QABk/gBbyBd+PZeDU+jM95ackoeo7BHxhfv5j3nGg=</latexit>

(B,↵)

<latexit sha1_base64="iPgIMma1gCzKMepB5oBdTWpPLSw=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0VoQUpSFF0W3bisYB/QhDCZTNqhk0yYmQgl9Bvc+CtuXCji1pU7/8ZJm0VtPTDM4Zx7ufceP2FUKsv6MUpr6xubW+Xtys7u3v6BeXjUlTwVmHQwZ1z0fSQJozHpKKoY6SeCoMhnpOePb3O/90iEpDx+UJOEuBEaxjSkGCkteWa95vicBXIS6S+7mXrNc7ioOIglI6TlumdWrYY1A1wldkGqoEDbM7+dgOM0IrHCDEk5sK1EuRkSimJGphUnlSRBeIyGZKBpjCIi3Wx20hSeaSWAIRf6xQrO1MWODEUyX1FXRkiN5LKXi/95g1SF125G4yRVJMbzQWHKoOIwzwcGVBCs2EQThAXVu0I8QgJhpVOs6BDs5ZNXSbfZsC8b1v1FtdUs4iiDE3AKasAGV6AF7kAbdAAGT+AFvIF349l4NT6Mz3lpySh6jsEfGF+/HRGdsg==</latexit>

(B2,↵2)

<latexit sha1_base64="ElhLeHW9S+kcoJ9bFNrdMFS4Znc="></latexit>

w1 =

nX

i=1

↵i1�i1 = B1↵1

<latexit sha1_base64="9MFzCnYLWeh2dGidd2KAIN0OZ78="></latexit>

w2 =

nX

i=1

↵i2�i2 = B2↵2 <latexit sha1_base64="9vxfV+uuOFHAEB7qOhz9AQjQgrU=">AAACIHicbVDLSsNAFJ3UV62vqEs3g0VwVZKi1E2h6EZwU8E+oIlhMpm0QycPZiZKCfkUN/6KGxeK6E6/xkmbRW09MMyZc+5l7j1uzKiQhvGtlVZW19Y3ypuVre2d3T19/6ArooRj0sERi3jfRYIwGpKOpJKRfswJClxGeu74Kvd7D4QLGoV3chITO0DDkPoUI6kkR288wia0RBI46bhpZvfpTWa5EfPEJFBXepk54/m3hVg8Qkp09KpRM6aAy8QsSBUUaDv6l+VFOAlIKDFDQgxMI5Z2irikmJGsYiWCxAiP0ZAMFA1RQISdThfM4IlSPOhHXJ1Qwqk635GiQOQTqsoAyZFY9HLxP2+QSP/CTmkYJ5KEePaRnzAoI5inBT3KCZZsogjCnKpZIR4hjrBUmVZUCObiysukW6+Z5zXj9qzaqhdxlMEROAanwAQN0ALXoA06AIMn8ALewLv2rL1qH9rnrLSkFT2H4A+0n1+xQaSJ</latexit>

w =

KX

k=1

Bk↵k

Fig. 1: An overview of SPACEDML’s architecture.

where 58 is the loss function on a device 8,  is the number
of participating SIN devices, and -8 is the input training data
on the device 8. H is the concatenated binary bases and " is
the corresponding vectorized coordinates. Combining H and "
can reconstruct the model weights, which will be introduced
in Section III-C.

The objective of SPACEDML is to reduce the communica-
tion overhead introduced by model weight exchange between
SIN devices and allow more devices to participate in training.
Quantizing model weights into lower-precision data formats
can extensively reduce communication bandwidth usage. With
the same level of infrastructures and bandwidth provisioning,
reducing the communication overhead of each device will
allow more devices to participate in training, eventually in-
creasing the training efficiency.

C. Adaptive Loss-aware Model Compression
Quantization reduces communication overhead by convert-

ing higher-precision model parameters to lower-precision ones.
Preliminary quantization maps each model parameter to a
lower-precision model parameter, while multi-bit networks
quantize their weights to coordinates and binary bases, fur-
ther reducing the data volume required to keep the model.
However, ALQ can generate multi-bit networks with several
bit-widths in the same layer, compared with global bit-width in
one layer for common multi-bit networks. The ALQ algorithm
keeps the composition of the model and reduces the model size
extensively.

Adaptive loss-aware quantization (ALQ) for multi-bit net-
works divides the same layers into disjoint groups and quan-
tizes them into diverse bit-widths [11]. For weight F; ∈ R#×1

in layer ; of the model on device 8, # = =×" . ALQ separates
the weights of layer ; into " groups. Each group F̂8

;,<
, < ∈ "

has its own H8
;,<

and "8
;,<

.

F̂8;,< =

� 8
;,<∑
9=1
U 9 V 9 = H8;,<"

8
;,<, (2)
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where V 9 ∈ {−1, +1}=×1, H8
;,<
∈ {−1, +1}=×�

8
;,< , U ∈ R�

8
;,<
×1

+ ,
and � 8

;,<
is the bit-width.

We apply the ALQ workflow to quantize local models on
each device. A local model is trained through pre-training,
ALQ, and post-training with the local data. The pre-training
period consists of full-precision training offering the prereq-
uisite for ALQ quantization. It should be noted that the pre-
training should only be operated in the first round for the
devices participating in global communication.

The ALQ algorithm has three phases. The first phase is
pruning the model in the U domain, which is the coordinates
for binary bases. The binary bases H will have to accord
change. Here, pruning is an approximation for quantization. A
smaller number of coordinates means less storage for model
weights and less transmission overhead. The second phase is
optimizing binary bases, and the third phase is optimizing the
coordinates.

Post-training is the quantization with straight-through esti-
mators (STE), promoting the overall performance compared
with the result without post-training. STE propagates approx-
imated gradient, which may introduce undesirable loss.

D. Partial Weight Averaging

SPACEDML selects partial devices randomly in a large
pool and extracts their local weights—the coordinates and the
binary base—to the global server. The server device multiplies
the coordinates and binary bases of each device, and the sum of
these multiplications becomes the weights of the global model.
The details of this process are shown in Algorithm 1. Sketch
initialization is implemented to generate global coordinates
and binary bases before downloaded to devices. This initializa-
tion attempts to generate the same format weights in the server
device as the weights in client devices. Otherwise, without this
initialization, communication volume will increase, and the on-
device workload, such as the local initialization for coordinates
and binary bases, will increase. This random partial averaging
can pick those active devices to participate in training. Any
inactive and dropped devices will not suspend the process of
whole federated learning.

After the server device has updated the global model, H
and U on the server will be sent to the participating devices,
which previously uploaded their weight to the server device.
The process will be terminated when the global model reaches
a target accuracy or after a predetermined number of rounds
complete. If the process has not been terminated, the training
will go into the next round—executing the ALQ algorithm in
devices.

E. Algorithm Analysis

In common deep neural networks, we can assume �0,; is
one for each device and layer. For = groups in layers ;, after
sketch initialization in each device, �1,; , �2,; ...�=,; stand for the
bit-width of each group. We assume �; is the average of these
bit-widths. That is to say, �; = 1

=

∑=
8=1 �8,; . As said in [11], after

T epochs of pruning in U domain, the average bit-width �)
;

can
be less than one, which is the bit-width before applying ALQ
into each local model. Each device has its own global average

Algorithm 1 Quantized Weight Averaging

1: for each round C = 1, 2 . . . do
2: server randomly selects  devices
3: server distributes HC and "C to  devices
4: for each device : ∈  do
5: reconstruct FC

6: pretraining, ALQ quantization, post-training
7: sending updated "8 and H8 to server
8: end for
9: server calculates: FC

8
← H8"8

10: server aggregates all FC
8

and obtains new global weights
FC+1

11: server quantizes FC+1 as HC+1 and "C+1

12: end for

bit-width �) (:), computing all bit-width for all layers. �) (:)
is always less than 1. For VGG on CIFAR10, it can be closed
to 0.4, which can largely reduce the communication amount
between devices and the server. However, due to the aim of
federated learning, the server can use no data. Thus, ALQ can
not be used in the global center to reduce the communication
overhead from server to device. All in all, communication
efficiency is improved compared with the federated learning
framework without any compression technique.

As for the time complexity, compared with FEDAVG, each
device spends more time executing the ALQ algorithm. To
analyze the increment time used for quantization, since on
each device of SPACEDML, an independent ALQ quantization
process is conducted and all ALQ quantization processes run
in parallel, the increased time used for quantization of the
system can be expressed by the increased time on a single
device. Thus, if the increased time complexity on a single
device is obtained, the total increased time complexity of
SPACEDML can also be calculated. For the time complexity
of ALQ on a single device, the main two steps of ALQ need to
be considered. The first step is pruning in the U domain, and
the second step is optimizing binary bases H6 and coordinates
U6. For the first step, the main time complexity is because of
the sorting of the loss increment 5U;,8 caused by each U;,8 .
And the increased time complexity of the sorting process in
the first step can be expressed as

$ () · ! · card(U;) · log card(U;)),

where T is the total number of iterations for pruning U, and
! is the number of layers of the model. Actually, card(U8) is
always much larger than ! and ) . For the second step, the
time complexity for each group of each layer to optimize H6
is $ (= · ((� 8

;,<
)2 + 3� 8

;,<
+ 2)). The time complexity used for

optimizing U6 is the same as the conventional optimization
step, which usually costs half of the time used for optimizing
H6.

IV. EVALUATION

We implement both SPACEDML and FEDAVG [4] using
PyTorch and compare their performances with the MNIST
dataset using LeNet-5. According to the experimental results,
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SPACEDML significantly reduces communication overheads
of SIN using adaptive loss-aware quantization-based federated
learning while keeps the same or even higher accuracies of the
global models compared with FEDAVG.

Dataset and model. We use LeNet-5, a CNN that is
composed of two fully connected layers and two convolution
layers with max pooling, in the following experiments over
the MNIST dataset. The MNIST dataset is a handwritten digits
dataset ubiquitous in the AI field, consisting of 60,000 training
samples and 10,000 test samples over 10 classes. Each sample
in the MNIST dataset is a 28 × 28 grayscale image.

System settings. Both SPACEDML’s system and FEDAVG’s
system consists of a central server and 100 devices. In our
experiments, we choose 3, 5, and 10 as the number of partial
devices involving in each round separately. In the implemen-
tation of SPACEDML system, we use different pruning ratios
of U, which are 0.7, 0.8, and 0.9. To make the training
time and computational costs of SPACEDML’s devices as
similar to FEDAVG’s devices’ as possible, in each round of
SPACEDML, epoch amounts for pre-training (only in the first
round), optimizing with coordinates, optimizing with basis,
and post-training with STE are all one. However, to guarantee
quantization performance in our system, we iteratively prune
the model for four epochs. Actually, these four epochs do
not lead to an unacceptable increase in training time and
computational costs.

The process will be terminated as long as the round number
reaches ten or the global accuracy is larger than ninety-
six percent, and training samples of the MNIST dataset are
uniformly distributed among all the devices, which means that
each device has IID data. The batch size used by each device is
10, and in each round, both FEDAVG and SPACEDML execute

(a) Number of chosen devices = 3.

Config Bit-width Acc.

FEDAVG 1 95.43
SPACEDML-0.7 0.8145 97.62
SPACEDML-0.8 0.4131 98.21
SPACEDML-0.9 0.3986 97.12

(b) Number of chosen devices = 5.

Config Bit-width Acc.

FEDAVG 1 95.88
SPACEDML-0.7 0.5402 98.67
SPACEDML-0.8 0.4054 98.26
SPACEDML-0.9 0.4247 96.38

(c) Number of chosen devices = 10.

Config Bit-width Acc.

FEDAVG 1 96.10
SPACEDML-0.7 0.5011 98.46
SPACEDML-0.8 0.5109 97.29
SPACEDML-0.9 0.4209 97.84

TABLE I: Experimental results of SPACEDML with dif-
ferent "’s pruning ratios.

the training process for one epoch.
Communication overhead analysis. The experimental re-

sults of SPACEDML and FEDAVG are shown in TableI.
According to the results, SPACEDML can significantly reduce
the communication costs of the SIN while achieving even
higher performance (2-3% in accuracy) of the global model
than FEDAVG no matter the number of chosen devices in
each round and the pruning ratio of U used in the system.
With the increasing number of chosen devices in each round,
the global model trained by FEDAVG can achieve higher
accuracy. However, the increasing number of devices chosen in
each round in SPACEDML sometimes doesn’t impose positive
impacts on the global model’s accuracy, such as the results of
SPACEDML-0.8 in Table (b) and Table (c). This is because
of the usage of ALQ in our system. Quantization can easily
introduce uncertainties to the system, which can be even
more obvious when the accuracies under different scenarios
are already quite high. When the number of chosen devices
in each round is fixed, the increase of pruning ratio of U
in SPACEDML can let the system obtain a smaller weight
bit-width while also lowering the global model’s accuracy.
However, there are also some unexpected results in the table
because of the existence of ALQ. This is because a larger
pruning ratio represents that more coordinates are dropped in
the optimization epoch, which makes the quantization more
complete and can in turn lead to the greater loss of the
precision of the reconstructed weights on the server. When
the pruning ratio of U is 0.7, the lowest average weight bit-
width is 0.5011 when the number of chosen devices in each
round is 10, and the highest average weight bit-width is 0.8145
when the number of chosen devices in each round is 3. The
difference is because the pruning epochs on each device are
quite small, which means that the pruning process may be
incomplete in every round when U is also small. And when
the pruning ratio is 0.8 and 0.9, SPACEDML can achieve
0.39 weight bit-width, which is the best performance, and
average 0.41 weight bit-width. This result is almost the optimal
compression result using ALQ on a single machine, which
means that SPACEDML can save at most 60% communication
cost between devices and server.

Scalability analysis. Apart from saving the communication
costs between devices and the server, SPACEDML can also
help SINs have better scalability. This is because with the same
maximum bandwidth, SPACEDML can include more devices
into the system, and the results in Table also reveal thisI. Since
all the devices train models with the same structure in both
FEDAVG and SPACEDML, and the quantization process on
each device also runs with the same setting in SPACEDML,
the communication costs between each device and the server
are almost the same. In this case, the overall communication
overheads between devices and the server increase linearly
with the increase of the devices in the system. Thus, for
example, according to the result of SPACEDML-0.7 in Table
(c) and the result of FEDAVG in Table (b), the overall
communication costs of these two methods are almost the
same since the bit-width of SPACEDML-0.7 is half of the
bit-width of FEDAVG. However, the number of devices in the
system of SPACEDML-0.7 is twice the number of devices in
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the system of FEDAVG. Therefore, SPACEDML can improve
the scalability of the SINs, helping them contain more devices.

V. CONCLUSION

This paper proposes SPACEDML, a distributed machine
learning framework designed for Space Information Net-
works. Compared with existing federated learning frameworks,
SPACEDML can significantly reduce communication band-
width usages between client devices and the SIN global server,
adaptively accommodating distributed machine learning train-
ing to SIN platforms. SPACEDML integrates the adaptive loss-
aware quantization (ALQ) algorithm with distributed machine
learning. This method helps the system reduce the sizes of the
models’ weights, which improves the efficiency and scalability
of SPACEDML. We train a LeNet-5 model on the MNIST
dataset with SPACEDML. Experimental results show that
SPACEDML increases model accuracy by 2-3% and reduces
communication bandwidth overhead by up to 60% compared
with the baseline algorithm FEDAVG.
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