
Siren: Byzantine-robust Federated Learning via
Proactive Alarming

Hanxi Guo
Shanghai Jiao Tong University

Shanghai
hanxiguo@sjtu.edu.cn

Hao Wang
Louisiana State University
Baton Rouge, Louisiana

haowang@lsu.edu

Tao Song
Shanghai Jiao Tong University

Shanghai
songt333@sjtu.edu.cn

Yang Hua
Queen’s University Belfast
Belfast, Northern Ireland

Y.Hua@qub.ac.uk

Zhangcheng Lv
Huawei Technologies Co., Ltd.

Hangzhou, Zhejiang
lvzhangcheng@huawei.com

Xiulang Jin
Huawei Technologies Co., Ltd.

Hangzhou, Zhejiang
jinxiulang@huawei.com

Zhengui Xue
Shanghai Jiao Tong University

Shanghai
zhenguixue@sjtu.edu.cn

Ruhui Ma
Shanghai Jiao Tong University

Shanghai
ruhuima@sjtu.edu.cn

Haibing Guan
Shanghai Jiao Tong University

Shanghai
hbguan@sjtu.edu.cn

ABSTRACT

With the popularity of machine learning on many applica-
tions, data privacy has become a severe issue when machine
learning is applied in the real world. Federated learning (FL),
an emerging paradigm in machine learning, aims to train
a centralized model while distributing training data among
a large number of clients in order to avoid data privacy
leaking, which has attracted great attention recently. How-
ever, the distributed training scheme in FL is susceptible to
different kinds of attacks. Existing defense systems mainly
utilize model weight analysis to identify malicious clients
with many limitations. For example, some defense systems
must know the exact number of malicious clients before-
hand, which can be easily bypassed by well-designed attack
methods and become impractical for real-world scenarios.
This paper presents Siren, a Byzantine-robust federated

learning system via a proactive alarming mechanism. Com-
paredwith current Byzantine-robust aggregation rules, Siren
can defend against attacks from a higher proportion of mali-
cious clients in the system while keeping the global model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SoCC ’21, November 1–4, 2021, Seattle, WA, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8638-8/21/11. . . $15.00
https://doi.org/10.1145/3472883.3486990

performing normally. Extensive experiments against differ-
ent attack methods are conducted under diverse settings on
both independent and identically distributed (IID) and non-
IID data. The experimental results illustrate the effectiveness
of Siren comparing with several state-of-the-art defense
methods.

KEYWORDS

Federated Learning, Byzantine-robust, Attack-agnostic De-
fense System

ACM Reference Format:

Hanxi Guo, Hao Wang, Tao Song, Yang Hua, Zhangcheng Lv, Xiu-
lang Jin, Zhengui Xue, Ruhui Ma, and Haibing Guan. 2021. Siren:
Byzantine-robust Federated Learning via Proactive Alarming. In
ACM Symposium on Cloud Computing (SoCC ’21), November 1–
4, 2021, Seattle, WA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3472883.3486990

1 INTRODUCTION

Federated learning (FL) has become a new machine learn-
ing paradigm that enables distributed training with het-
erogeneous devices such as edge servers, mobile phones,
and Internet-of-Things devices without violating data pri-
vacy [13, 22]. Unlike traditional machine learning that cen-
tralizes data to a cluster of servers for training [16, 18, 30],
FL provides a strong privacy guarantee by sending training
tasks to a swarm of loosely connected devices and exchang-
ing model weights trained on devices to update a global
model iteratively without leaking any sensitive raw data. FL
has an extensive range of applications [20, 31], including
natural language models, health tracking, and fintech with

47

https://doi.org/10.1145/3472883.3486990
https://doi.org/10.1145/3472883.3486990

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Hanxi Guo, Hao Wang, Tao Song, Yang Hua et al.

privacy-sensitive data such as user keystrokes, photos, and
geo-locations.
However, the distributed and iterative nature of FL has

introduced new vulnerabilities in defending various attacks
from malicious clients. FL performs distributed machine
learning with a network of loosely connected devices that
volunteer to participate in training, making it hardly possible
to determine a concrete number of malicious clients. Besides,
the local data on client devices are typically non-independent
and identically distributed (non-IID). Such data skews across
participating devices aggravate the divergence between local
models, further obfuscating the boundary between malicious
clients and benign ones.

As a result, federated learning is vulnerable to Byzantine
attacks [15]—an attacker corrupts the federated model by
smuggling malicious model updates through compromised
and fake clients lurking among federated learning clients.
Based on attackers’ objectives, existing attacks can be clas-
sified into two types of attacks. Untargeted attacks aim to
degrade the global model quality or slow down its conver-
gence with carefully crafted model updates and data, such
as sign-flipping and label-flipping [12, 17, 19, 28]. Targeted
attacks manipulate the global model’s accuracy over specific
data categories [3, 5, 26].
To defend against these attacks, researchers have devel-

oped various Byzantine-robust FL frameworks [2, 6, 8–11,
33]. The main idea of these studies is to detect malicious
clients by analyzing model gradients and measuring the
difference between clients’ model updates. However, these
methods leave the following critical concerns unaddressed:
First, attackers can still sabotage the global model and work
around the detection of outlier model weights by adaptively
fiddling their model updates. Second, non-IID data amplifies
the divergence in model weights trained different clients [34],
triggering false alarms that drive existing gradient-based
methods to drop model updates from benign clients. Finally,
existing methods only rely on the detection mechanism on
the FL server to detect attacks that benign clients have to
passively accept the corrupted global model without any re-
sistance once the global model has been successfully affected
by malicious clients.
This paper presents Siren, a Byzantine-robust federated

learning system that orchestrates clients with the FL server
to defend a wide spectrum of attacking methods on both IID
and non-IID data by carefully analyzing both model accu-
racies and gradients. We design a proactive and distributed
alarming system that enables clients to collaborate with the
FL server on attack detection. Siren clients reserve a small
partition of the local dataset to test the global model accu-
racy and trigger alarms, and the FL server jointly analyzes
clients’ alarms, model weight updates, and accuracies to de-
tect attacks. Based on this distributed alarming system, we

carefully craft a decision process that detects the intentions
of malicious clients and sanitizes the model aggregation ef-
fectively.
Extensive experimental results of training a CNN model

with the Fashion-MNIST dataset [25] and the CIFAR-10 dataset
[14] under a system of up to 200 clients show that Siren
can achieve the best performance in all scenarios. Com-
pared with SOTA methods, Siren can defend more mali-
cious clients while providing near-baseline performance, i.e.,
90.94% (Siren), 89.47% (Krum), and 91.46% (Baseline) under
attacks using 40% malicious clients. Besides, Siren can re-
store the FL system even though the server has already been
attacked successfully.

2 BACKGROUND

2.1 Federated Learning

Federated learning (FL) iteratively aggregates model updates
from multiple client devices to train a shared global model
without violating clients’ data privacy. As shown in Fig. 1, in
a communication round 𝑡 , a remote FL server first pushes a
global model 𝒈𝑡 to client devices and collects model updates
{Δ𝒈 (𝑖)𝑡 |𝑖 ∈ 𝐾} from a set of |𝐾 | randomly selected client
devices to update the global model from 𝒈𝑡 to 𝒈𝑡+1. The
updated global model 𝒈𝑡+1 is then pushed to client devices
for the next round [13, 22]. Clients’ local datasets may follow
different distributions and are inaccessible for the FL server
or other clients.
Specifically, we select |𝐾 | client devices to participate in

federated learning every round, and each client device 𝑖 has
a local dataset 𝐷 (𝑖) , 𝑖 ∈ 𝐾 . Each participating client trains a
localmodel𝒈 (𝑖)𝑡 using its own datawith an objective to jointly
solve the following optimization problem—minimizing the
expected empirical loss 𝐹 (𝒈) on the training data across
client devices:

min
𝒈
𝐹 (𝒈) := min

𝒈

|𝐾 |∑
𝑖=1

E𝐷 (𝑖)∼X (𝑖) [𝑓 (𝐷 (𝑖) ,𝒈)],

where 𝒈 is the global model,𝐷 (𝑖) is a set of local training data
samples following an unknown distribution X (𝑖) on client 𝑖 ,
and 𝑓 denotes the local loss function.

The FL server orchestrates participating client devices to
jointly solve this optimization problem. In the 𝑡-th communi-
cation round, each client 𝑖 initializes its local model with the
global model 𝒈𝑡 and trains the model locally with gradient
descent algorithms: 𝒈 (𝑖)

𝑡+1 := argmin𝒈 E𝐷 (𝑖)∼X (𝑖) [𝑓 (𝐷 (𝑖) ,𝒈)].
When the local training completes, the client 𝑖 calculates
and pushes the local model update Δ𝒈 (𝑖)

𝑡+1 := 𝒈 (𝑖)
𝑡+1 − 𝒈𝑡 to the

FL server. Typically, the FL server updates the global model

48

Siren: Byzantine-robust Federated Learning via Proactive Alarming SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Detecting
Process

Training
Process

Alarm
Process

…

Client 1

Client 2

Client K

FL Server

Training
Process

Alarm
Process

Training
Process

Alarm
Process

Aggregating
Process

<latexit sha1_base64="k+/8a6Q4hCSd8XK6vQppe+3M+28=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZcFNy4r2Ae0w5DJZNrQTDIkmUIZ+iduXCji1j9x59+YtrPQ1gMhh3PuJScnyjjTxvO+ncrG5tb2TnW3trd/cHjkHp90tMwVoW0iuVS9CGvKmaBtwwynvUxRnEacdqPx/dzvTqjSTIonM81okOKhYAkj2FgpdN1BJHmsp6m9iuEsNKFb9xreAmid+CWpQ4lW6H4NYknylApDONa673uZCQqsDCOczmqDXNMMkzEe0r6lAqdUB8Ui+QxdWCVGiVT2CIMW6u+NAqd6Hs5OptiM9Ko3F//z+rlJ7oKCiSw3VJDlQ0nOkZFoXgOKmaLE8KklmChmsyIywgoTY8uq2RL81S+vk85Vw79peI/X9aZX1lGFMziHS/DhFprwAC1oA4EJPMMrvDmF8+K8Ox/L0YpT7pzCHzifP0OylAM=</latexit>gt

<latexit sha1_base64="k+/8a6Q4hCSd8XK6vQppe+3M+28=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZcFNy4r2Ae0w5DJZNrQTDIkmUIZ+iduXCji1j9x59+YtrPQ1gMhh3PuJScnyjjTxvO+ncrG5tb2TnW3trd/cHjkHp90tMwVoW0iuVS9CGvKmaBtwwynvUxRnEacdqPx/dzvTqjSTIonM81okOKhYAkj2FgpdN1BJHmsp6m9iuEsNKFb9xreAmid+CWpQ4lW6H4NYknylApDONa673uZCQqsDCOczmqDXNMMkzEe0r6lAqdUB8Ui+QxdWCVGiVT2CIMW6u+NAqd6Hs5OptiM9Ko3F//z+rlJ7oKCiSw3VJDlQ0nOkZFoXgOKmaLE8KklmChmsyIywgoTY8uq2RL81S+vk85Vw79peI/X9aZX1lGFMziHS/DhFprwAC1oA4EJPMMrvDmF8+K8Ox/L0YpT7pzCHzifP0OylAM=</latexit>gt

<latexit sha1_base64="k+/8a6Q4hCSd8XK6vQppe+3M+28=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZcFNy4r2Ae0w5DJZNrQTDIkmUIZ+iduXCji1j9x59+YtrPQ1gMhh3PuJScnyjjTxvO+ncrG5tb2TnW3trd/cHjkHp90tMwVoW0iuVS9CGvKmaBtwwynvUxRnEacdqPx/dzvTqjSTIonM81okOKhYAkj2FgpdN1BJHmsp6m9iuEsNKFb9xreAmid+CWpQ4lW6H4NYknylApDONa673uZCQqsDCOczmqDXNMMkzEe0r6lAqdUB8Ui+QxdWCVGiVT2CIMW6u+NAqd6Hs5OptiM9Ko3F//z+rlJ7oKCiSw3VJDlQ0nOkZFoXgOKmaLE8KklmChmsyIywgoTY8uq2RL81S+vk85Vw79peI/X9aZX1lGFMziHS/DhFprwAC1oA4EJPMMrvDmF8+K8Ox/L0YpT7pzCHzifP0OylAM=</latexit>gt

<latexit sha1_base64="GnvAqpDxpj6EDpNbzlE09otv3Tc=">AAACSnicdVBNSwMxFMzWqrV+rXr0EixCC1J2S/HjVtCD4EXB2kK3lmw2raHZzZK8FcrS3+fFkzd/hBcPingx21ZQsQMhw8w88jJ+LLgGx3m2cgv5xaXlwkpxdW19Y9Pe2r7RMlGUNakUUrV9opngEWsCB8HasWIk9AVr+cPTzG/dM6W5jK5hFLNuSAYR73NKwEg9m5S9MyaAeL4UgR6F5koH49u07FbGPTiYY9ampufRQIKel7rIUpWeXXKqJxPgKTmqz8iJi92qM0EJzXDZs5+8QNIkZBFQQbTuuE4M3ZQo4FSwcdFLNIsJHZIB6xgakZDpbjqpYoz3jRLgvlTmRIAn6s+JlIQ629EkQwJ3+q+Xif95nQT6x92UR3ECLKLTh/qJwCBx1isOuGIUxMgQQhU3u2J6RxShYNovmhK+f4rnk5ta1T2sOlf1UsOZ1VFAu2gPlZGLjlADnaNL1EQUPaAX9IberUfr1fqwPqfRnDWb2UG/kMt/ASq4tMY=</latexit>

(�g
(1)
t ,�g

(2)
t ,

· · · ,�g
(K)
t)

<latexit sha1_base64="Tg54B4gMcoym+yB9dmeiu00Bz6A=">AAACEHicdZDLSgMxFIYzXmu9VV26CRaxggyZ6c3uKm4ENxWsCm0tmTStwcyF5IxQhj6CG1/FjQtF3Lp059uYqRVU9IfAz3fO4eT8XiSFBkLeranpmdm5+cxCdnFpeWU1t7Z+psNYMd5koQzVhUc1lyLgTRAg+UWkOPU9yc+968O0fn7DlRZhcArDiHd8OghEXzAKBnVzO4WDy6Tg7I66sIdT645tm/VC0HspOE7BbjeXJ3bNLZWrLia2Wy0Xq8SYYq1YqjjYsclYeTRRo5t7a/dCFvs8ACap1i2HRNBJqALBJB9l27HmEWXXdMBbxgbU57qTjA8a4W1DergfKvMCwGP6fSKhvtZD3zOdPoUr/buWwr9qrRj6+51EBFEMPGCfi/qxxBDiNB3cE4ozkENjKFPC/BWzK6ooA5Nh1oTwdSn+35y5tlOxyUkpXyeTODJoE22hAnJQFdXREWqgJmLoFt2jR/Rk3VkP1rP18tk6ZU1mNtAPWa8fIISawA==</latexit>

(A
(1)
t , A

(2)
t , · · · , A

(K)
t)

Figure 1: The architecture of FL. The gray blocks be-

long to the default FL paradigm, and the red blocks

with dotted borders are Siren’s components.

using the federated averaging (FedAvg) algorithm [22]:

𝒈𝑡+1 ← 𝒈𝑡 + 𝜂
|𝐾 |∑
𝑖=1

|𝐷 (𝑖) |
|𝐷 | Δ𝒈

(𝑖)
𝑡+1,

where 𝜂 is the learning rate, and 𝐷 :=
∑ |𝐾 |
𝑖=1 𝐷

(𝑖) denotes the
total data samples of the |𝐾 | client devices. Then, the FL
server sends the new global model 𝒈𝑡+1 to client devices and
starts the next communication round.

2.2 Prevailing Attacks to FL

Due to its distributed nature, existing federated learning
systems are vulnerable to various types of attacks [21]. These
attacks can be divided into three categories: manipulating
gradients, poisoning local data, and the compound of the
previous two categories of attacks.
Sign-flipping Attack [17], where malicious clients train
the model as what benign clients do and obtain normal gra-
dients1 but multiplying the normal gradients by a negative
constant when uploading.
Label-flipping Attack [12] is a data poisoning attack that
lets the malicious client train with normal images but with
flipped labels (class𝑖 to total class number − class𝑖 − 1).
Targeted Model Poisoning [5]’s objective is not to con-
verge the global model to a sub-optimal point or diverge,
unlike the two former types of attack. Instead, it manipu-
lates the global model to perform as well as a normal model
but degrading the performance when the global model faces
one or several specific classes of images. To achieve this, the
targeted model poisoning attack only changes one class’s
or several specific classes’ labels and train the model. It also
uses explicit boosting to increase the impacts of malicious
updates.

1In this paper, gradients and weight updates are used interchangeably.

2.3 Byzantine-robust Aggregation Rules

This section introduces three prevailing types of defense
methods used as the baseline defense schemes in the follow-
ing experiments.

Krum [6]. In Krum, the FL server computes the score 𝑠 (𝑖)𝑡 of
each weight update in each communication round, where
𝑠
(𝑖)
𝑡 =

∑
𝑖→𝑗 | |Δ𝒈

(𝑖)
𝑡 − Δ𝒈 (𝑗)𝑡 | |2. Krum uses 𝑖 → 𝑗 (𝑖 ≠ 𝑗) to

select the indexes 𝑗 of the𝐾− 𝑓 −2 nearest neighbors of Δ𝒈 (𝑖)𝑡 ,
measured by Euclidean distances, where 𝑓 is the number of
malicious clients selected for the aggregation in the system.
After computing all the scores of all the weight updates, the
FL server uses the weight update with the smallest score to
do the aggregation. Meanwhile, other weight updates are
dropped.
Coordinate-wise Median [33]. In coordinate-wise median,
the FL server picks the medians of each coordinate from
all the weight updates to build the global weights. Given a
set of weight updates {Δ𝒈 (𝑖)𝑡 }𝐾𝑖=1 at a communication round
𝑡 , the FL server uses the coordinate-wise median to do the
aggregation, which is Δ𝒈coomed

𝑡 = coomed{{Δ𝒈 (𝑖)𝑡 }𝐾𝑖=1} with
Δ𝒈coomed

𝑡 being a vector with its 𝑗𝑡ℎ coordinate Δ𝒈coomed
𝑡 (𝑗) =

med{{Δ𝒈 (𝑖)𝑡 (𝑗)}𝐾𝑖=1}.
FLTrust [7]. In FLTrust, the server collects a root dataset
and uses this root dataset to train an auxiliary server model
in each communication round. Then, when receiving weight
update 𝒈 (𝑖)𝑡 from a client 𝑖 , the server calculates a trust score
𝑇𝑆𝑖 of the client 𝑖 , where𝑇𝑆𝑖 = 𝑅𝑒𝐿𝑈 (𝑐𝑖) and 𝑐𝑖 is the cosine
similarity between 𝒈 (𝑖)𝑡 and the update of the server model.
After calculating all the trust scores, the server updates the
global model 𝒈𝑡 =

1
𝑇𝑆1+···+𝑇𝑆𝐾 (𝑇𝑆1 · 𝒈

(1)
𝑡 + · · · +𝑇𝑆𝐾 · 𝒈

(𝐾)
𝑡),

where 𝒈 (𝑖)𝑡 is the normalized weight updates of the client 𝑖 .

3 PROBLEM SETUP

Attack model: We use a similar attack model applied in
previous works [5, 7, 12]. The attacker compromises several
clients, has complete control over these clients and has full
access to the local data. While the server is assumed not to be
attacked by the attacker and there at least exists one benign
client in the system since if all the clients are compromised,
no defense methods could save the system. The attacker
can only influence the server indirectly through uploading
malicious weight updates using compromised clients. It does
not know the data on other benign clients or the aggregation
rules on the server. However, the network between the FL
server and clients might be compromised, thus exposing data
transmitted in the network to attackers. Besides, a malicious
client may not attack the model in every communication

49

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Hanxi Guo, Hao Wang, Tao Song, Yang Hua et al.

Table 1: Notations used in the paper.

Symbol Meaning

𝑡 the FL communication round index
𝐾 the set of participating clients
𝑆𝑎 the set of clients with activated alarms
𝑆𝑠 the set of clients with no alarms, 𝑆𝑎 ∪ 𝑆𝑠 = 𝐾
𝑆𝑏 the set of benign clients, 𝑆𝑏 ⊆ 𝐾

𝒈𝑡 the global model weight at round 𝑡
𝒈 (𝑖)𝑡 Client 𝑖’s local model weight at round 𝑡
Δ𝒈 (𝑖)𝑡 the local model update of client 𝑖
𝜔𝑡 the global model’s testing accuracy at round 𝑡
𝜔
(𝑖)
𝑡 the local model’s testing accuracy of client 𝑖

𝐴
(𝑖)
𝑡 the alarm on client 𝑖 at round 𝑡

𝐷 (𝑖) the local training dataset of client 𝑖
𝐷0 the root test dataset of the FL server
𝐷
(𝑖)
0 the local test dataset of client 𝑖

𝐶𝑐 a user-defined threshold for clients
𝐶𝑠 a user-defined threshold for the FL server

round and can upload correct model updates to camouflage
itself from time to time.
Defender’s setting: In Krum and Coordinate-wise Median,
the defense is considered to be performed only on the server,
while in Siren, the defense is performed on both server
and client sides. However, no matter the types of defense
methods, the server cannot access the local data of clients. It
knows neither the raw local data nor the data distribution
of clients. The server only knows the global model and the
weight updates that the clients upload. Besides, in Siren, the
server also has the capability to collect and keep a small root
test dataset that cannot be poisoned by the attacker. The root
test dataset on the server can be collected following different
distributions, while we recommend that the distribution of
this root test dataset should be similar to the overall data dis-
tribution across all the clients. On the client-side, compared
with other defense mechanisms, Siren sets up a detecting
process on the client to help the client check the integrity
of the global model. This detecting process runs locally on
each client, guaranteeing that no knowledge of clients will
be leaked to the server through this process. This detecting
process can only obtain the local test data, the global models
distributed by the server, and the local models derived by
the client in each communication round.

4 THE DESIGN OF SIREN

4.1 Overview

Since the only intermediate parameter between clients and
FL server is the weight updates, malicious clients can only
poison the global model through modifying their weight

Client

FL Server

<latexit sha1_base64="6JThYJo/QnOSMZ+whEyvW+rd9bc=">AAAB8HicdVDLSgMxFM3UV62vqks3wSLUzZDpa+yu4sZlBdsq7VgyaaYNTWaGJCOUoV/hxoUibv0cd/6N6UNQ0QMXDufcy733+DFnSiP0YWVWVtfWN7Kbua3tnd29/P5BW0WJJLRFIh7JGx8ryllIW5ppTm9iSbHwOe3444uZ37mnUrEovNaTmHoCD0MWMIK1kW7P79IiO532dT9fQHa9VKm6JYjsklstu8iQcr1cqTnQsdEcBbBEs59/7w0ikggaasKxUl0HxdpLsdSMcDrN9RJFY0zGeEi7hoZYUOWl84On8MQoAxhE0lSo4Vz9PpFiodRE+KZTYD1Sv72Z+JfXTXRw5qUsjBNNQ7JYFCQc6gjOvocDJinRfGIIJpKZWyEZYYmJNhnlTAhfn8L/SbtkOzUbXVUKDbSMIwuOwDEoAge4oAEuQRO0AAECPIAn8GxJ69F6sV4XrRlrOXMIfsB6+wSVHJA6</latexit>

A
(i)
t

Aggregation

Aggregation

Detecting

<latexit sha1_base64="XHfO8nVMExm8tktAbE30OdThjDA=">AAACBXicbVDLSsNAFJ3UV62vqEtdBItQNyURUZcFXbisYB/QxDCZTNqhkwczN0IJ2bjxV9y4UMSt/+DOv3HSZqGtB4Y5nHMv997jJZxJMM1vrbK0vLK6Vl2vbWxube/ou3tdGaeC0A6JeSz6HpaUs4h2gAGn/URQHHqc9rzxVeH3HqiQLI7uYJJQJ8TDiAWMYFCSqx/a15QDtr2Y+3ISqi8b5vdZg53kLrh63WyaUxiLxCpJHZVou/qX7cckDWkEhGMpB5aZgJNhAYxwmtfsVNIEkzEe0oGiEQ6pdLLpFblxrBTfCGKhXgTGVP3dkeFQFiuqyhDDSM57hfifN0ghuHQyFiUp0IjMBgUpNyA2ikgMnwlKgE8UwUQwtatBRlhgAiq4mgrBmj95kXRPm9Z507w9q7fMMo4qOkBHqIEsdIFa6Aa1UQcR9Iie0St60560F+1d+5iVVrSyZx/9gfb5A/jumNE=</latexit>

�g
(i)
t

<latexit sha1_base64="k+/8a6Q4hCSd8XK6vQppe+3M+28=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZcFNy4r2Ae0w5DJZNrQTDIkmUIZ+iduXCji1j9x59+YtrPQ1gMhh3PuJScnyjjTxvO+ncrG5tb2TnW3trd/cHjkHp90tMwVoW0iuVS9CGvKmaBtwwynvUxRnEacdqPx/dzvTqjSTIonM81okOKhYAkj2FgpdN1BJHmsp6m9iuEsNKFb9xreAmid+CWpQ4lW6H4NYknylApDONa673uZCQqsDCOczmqDXNMMkzEe0r6lAqdUB8Ui+QxdWCVGiVT2CIMW6u+NAqd6Hs5OptiM9Ko3F//z+rlJ7oKCiSw3VJDlQ0nOkZFoXgOKmaLE8KklmChmsyIywgoTY8uq2RL81S+vk85Vw79peI/X9aZX1lGFMziHS/DhFprwAC1oA4EJPMMrvDmF8+K8Ox/L0YpT7pzCHzifP0OylAM=</latexit>gt

<latexit sha1_base64="HYbu3HAyYcCTRIqkhJcJzF23re8=">AAACCXicbVDLSsNAFJ3UV62vqks3g0WoCCURUZcFXbisYB/QxDCZTNqhkwczN0IJ2brxV9y4UMStf+DOv3HaZqGtB4Y5nHMv997jJYIrMM1vo7S0vLK6Vl6vbGxube9Ud/c6Kk4lZW0ai1j2PKKY4BFrAwfBeolkJPQE63qjq4nffWBS8Ti6g3HCnJAMIh5wSkBLbhXb10wAsb1Y+Goc6i8b5PdZnR/nbgYnVu5Wa2bDnAIvEqsgNVSg5Va/bD+macgioIIo1bfMBJyMSOBUsLxip4olhI7IgPU1jUjIlJNNL8nxkVZ8HMRSvwjwVP3dkZFQTdbUlSGBoZr3JuJ/Xj+F4NLJeJSkwCI6GxSkAkOMJ7Fgn0tGQYw1IVRyvSumQyIJBR1eRYdgzZ+8SDqnDeu8Yd6e1ZpmEUcZHaBDVEcWukBNdINaqI0oekTP6BW9GU/Gi/FufMxKS0bRs4/+wPj8Ab/Gmk0=</latexit>

�g
(i)
t+1

<latexit sha1_base64="3W1SFXVyQCGuxpGjra6N9WqxEhM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6pereo2ryt1N4+jCGdwDpfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/LuYzg</latexit>

i

Round t
<latexit sha1_base64="NVGLSrmGHK55L0e/+6xD5ymGAPU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgxWML9gPaUDbbSbt2swm7E6GU/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvTKUw5HnfTmFjc2t7p7hb2ts/ODwqH5+0TJJpjk2eyER3QmZQCoVNEiSxk2pkcSixHY7v5n77CbURiXqgSYpBzIZKRIIzslKD+uWKV/UWcNeJn5MK5Kj3y1+9QcKzGBVxyYzp+l5KwZRpElzirNTLDKaMj9kQu5YqFqMJpotDZ+6FVQZulGhbityF+ntiymJjJnFoO2NGI7PqzcX/vG5G0W0wFSrNCBVfLooy6VLizr92B0IjJzmxhHEt7K0uHzHNONlsSjYEf/XlddK6qvpe1W9cV2peHkcRzuAcLsGHG6jBPdShCRwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDav4zm</latexit><latexit sha1_base64="NVGLSrmGHK55L0e/+6xD5ymGAPU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgxWML9gPaUDbbSbt2swm7E6GU/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvTKUw5HnfTmFjc2t7p7hb2ts/ODwqH5+0TJJpjk2eyER3QmZQCoVNEiSxk2pkcSixHY7v5n77CbURiXqgSYpBzIZKRIIzslKD+uWKV/UWcNeJn5MK5Kj3y1+9QcKzGBVxyYzp+l5KwZRpElzirNTLDKaMj9kQu5YqFqMJpotDZ+6FVQZulGhbityF+ntiymJjJnFoO2NGI7PqzcX/vG5G0W0wFSrNCBVfLooy6VLizr92B0IjJzmxhHEt7K0uHzHNONlsSjYEf/XlddK6qvpe1W9cV2peHkcRzuAcLsGHG6jBPdShCRwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDav4zm</latexit><latexit sha1_base64="NVGLSrmGHK55L0e/+6xD5ymGAPU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgxWML9gPaUDbbSbt2swm7E6GU/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvTKUw5HnfTmFjc2t7p7hb2ts/ODwqH5+0TJJpjk2eyER3QmZQCoVNEiSxk2pkcSixHY7v5n77CbURiXqgSYpBzIZKRIIzslKD+uWKV/UWcNeJn5MK5Kj3y1+9QcKzGBVxyYzp+l5KwZRpElzirNTLDKaMj9kQu5YqFqMJpotDZ+6FVQZulGhbityF+ntiymJjJnFoO2NGI7PqzcX/vG5G0W0wFSrNCBVfLooy6VLizr92B0IjJzmxhHEt7K0uHzHNONlsSjYEf/XlddK6qvpe1W9cV2peHkcRzuAcLsGHG6jBPdShCRwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDav4zm</latexit><latexit sha1_base64="NVGLSrmGHK55L0e/+6xD5ymGAPU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgxWML9gPaUDbbSbt2swm7E6GU/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvTKUw5HnfTmFjc2t7p7hb2ts/ODwqH5+0TJJpjk2eyER3QmZQCoVNEiSxk2pkcSixHY7v5n77CbURiXqgSYpBzIZKRIIzslKD+uWKV/UWcNeJn5MK5Kj3y1+9QcKzGBVxyYzp+l5KwZRpElzirNTLDKaMj9kQu5YqFqMJpotDZ+6FVQZulGhbityF+ntiymJjJnFoO2NGI7PqzcX/vG5G0W0wFSrNCBVfLooy6VLizr92B0IjJzmxhHEt7K0uHzHNONlsSjYEf/XlddK6qvpe1W9cV2peHkcRzuAcLsGHG6jBPdShCRwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDav4zm</latexit>

Alarm
Round t + 1

<latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit><latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit><latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit><latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit>

t + 1
<latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit><latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit><latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit><latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit>

Training

Figure 2: Illustration of interactions between Siren

clients and the FL server.

updates, no matter data poisoning [24] or model poison-
ing [4]. In this case, most current Byzantine-robust aggre-
gation rules [10, 27, 32] only do the weight analysis and
only deploy defense on the server, which makes the system
vulnerable.

To overcome these shortcomings, we propose a new proac-
tive attack-agnostic defense system for FL, named Siren.
Fig. 1 presents the structure of Siren that there are two pro-
cesses on the client end, the training process and the alarm
process. Siren preserves a small partition of the local dataset
as local test data on each client. In contrast, in the standard
FL system and the systems using other aggregation rules, the
client only has a training process. The training process in
Siren is the same as that in the standard FL, responsible for
the local training using local data shard. The alarm process
is responsible for testing the global weights. In each com-
munication round, the alarm process on each client checks
the global weights by using local weights and the local test
dataset. If a client regards the global weight as poisoned
weight, it will alarm the FL server, and the FL server will
start the detecting process to exclude the malicious weight
updates according to the alarm status of each client.

4.2 Client End

Fig. 2 presents Siren’s client-end workflow that a client exe-
cutes an alarming process to verify whether the global model
𝒈𝑡 is poisoned, and uploads an alarm status𝐴 (𝑖)𝑡 and a model
weight update Δ𝒈 (𝑖)𝑡 to the FL server in each communica-
tion round. Siren requires each client to keep a local test
dataset and a copy of the local model weights generated in
the previous round.

The alarming process compares the accuracy between the
local model and the global model over the local test dataset
to justify whether the global model is trusty so that the client
can use it for the next round of local training. For simplic-
ity, we use the client 𝑖 to represent a general participating
client, which could be either malicious or benign. A detailed
description of the client-end algorithm is as follows:

Step 1: When the (𝑡+1)-th communication round begins, the
client 𝑖 receives the global model weight 𝒈𝑡 aggregated by
the FL server in the previous (i.e., the 𝑡-th) communication
round.

50

Siren: Byzantine-robust Federated Learning via Proactive Alarming SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Algorithm 1 Training and Alarming on clients.

1: function ClientUpdate(𝑖 , 𝒈𝑡): ⊲ training process
2: 𝐴

(𝑖)
𝑡 ← Alarm(𝒈𝑡 , 𝒈

(𝑖)
𝑡)

3: if 𝐴
(𝑖)
𝑡 is 0 then

4: 𝒈 (𝑖) ← 𝒈𝑡
5: else

6: 𝒈 (𝑖) ← 𝒈 (𝑖)𝑡
7: end if

8: for each epoch 𝑒 = 1, · · · , 𝐸 do

9: train the model 𝒈 (𝑖) on the local dataset 𝐷 (𝑖) ,
10: and obtain 𝒈 (𝑖)

𝑡+1
11: Δ𝒈 (𝑖)

𝑡+1 ← 𝒈 (𝑖)
𝑡+1 − 𝒈𝑡 ⊲ calculate model updates

12: end for

13: return Δ𝒈 (𝑖)
𝑡+1

14: end function

15: function Alarm(𝒈𝑡 , 𝒈
(𝑖)
𝑡): ⊲ alarming process

16: 𝜔𝑡 ← testing 𝒈𝑡 on the local test dataset 𝐷 (𝑖)0
17: 𝜔

(𝑖)
𝑡 ← testing 𝒈 (𝑖)𝑡 on the local test dataset 𝐷 (𝑖)0

18: if 𝜔𝑡 − 𝜔 (𝑖)𝑡 ≥ 𝐶𝑐 then
19: 𝐴

(𝑖)
𝑡 ← 0 ⊲ the global model is normal

20: else

21: 𝐴
(𝑖)
𝑡 ← 1 ⊲ the global model is abnormal

22: end if

23: send 𝐴 (𝑖)𝑡 in a secure tunnel to the FL server
24: return 𝐴

(𝑖)
𝑡

25: end function

Step 2: Unlike the default FedAvg algorithm that directly
starts local training with the global model 𝒈𝑡 , each Siren
client first launches the alarm process to evaluate both the
global model 𝒈𝑡 and the local model 𝒈 (𝑖)𝑡 trained in the previ-
ous communication round. The global model 𝒈𝑡 ’s accuracy
is 𝜔𝑡 , and the local model 𝒈 (𝑖)𝑡 ’s accuracy is 𝜔 (𝑖)𝑡 .
Step 3: To justify whether the global model 𝒈𝑡 is poisoned,
the alarm process further compares the accuracy𝜔𝑡 and𝜔 (𝑖)𝑡 .
If the global model 𝒈𝑡 is more accurate than the local model
𝒈 (𝑖)𝑡 , i.e., 𝜔𝑡 − 𝜔 (𝑖)𝑡 ≥ 𝐶𝑐 , where 𝐶𝑐 is a pre-defined positive
threshold, the client 𝑖 initializes the local model 𝒈 (𝑖) with
𝒈𝑡 in the (𝑡 + 1)-th communication round training. Besides,
the client 𝑖 sets the alarm status 𝐴 (𝑖)𝑡 as 0. In contrast, if
𝜔𝑡 − 𝜔 (𝑖)𝑡 < 𝐶𝑐 , then client 𝑖 initializes the local model 𝒈 (𝑖)

with 𝒈 (𝑖)𝑡 instead of 𝒈𝑡 , due to the global model’s abnormal
performance. Correspondingly, the client 𝑖 sets the alarm
status 𝐴 (𝑖)𝑡 to 1.
Step 4: The client 𝑖 sends the alarm status 𝐴 (𝑖)𝑡 to the FL
server in a secure tunnel (e.g., an IPsec tunnel based on the
Diffie-Hellman algorithm), which prevents the alarm status

from being tampered in network transmission, even when
the client 𝑖 is malicious and generates a false alarm.

The client 𝑖 obtains a new model 𝒈 (𝑖)
𝑡+1 by training the model

𝒈 (𝑖) on its local data, where the alarm status 𝐴 (𝑖)𝑡 determines
𝒈 (𝑖) to be either 𝒈 (𝑖)𝑡 or 𝒈𝑡 in Step 3. Then, the client 𝑖 calcu-
lates and sends the local weight update Δ𝒈 (𝑖)

𝑡+1 = 𝒈 (𝑖)
𝑡+1 − 𝒈𝑡

to the FL server and stores the local model 𝒈 (𝑖)
𝑡+1 for the next

round.
Algorithm 1 presents the pseudo code of the above client-

end alarming and training processes. This client-end alarm-
ing mechanism guarantees that a poisoned global model al-
ways triggers benign clients to alarm. It should also be noted
that malicious clients can deliberately fake alarms to delude
the FL server even when the model is not poisoned. Siren
recognizes such delusive alarms from malicious clients at
the FL server end.

4.3 FL Server End

The FL server trusts neither local model updates nor alarms
from any participating clients due to the inherent vulnerabil-
ity of federated learning. Before aggregating local model up-
dates and updating the global model as FedAvg does, Siren’s
FL server first launches a detecting process that analyzes the
alarm statuses and evaluates local model weights to identify
potential attacks.
In a communication round 𝑡 , the FL server performs a

two-phase detection: 1) Examining whether the global model
generated in the previous round aggregation (i.e., 𝒈𝑡) is poi-
soned. 2) Testing whether the client model updates collected
in the current round (i.e., {Δ𝒈 (𝑖)

𝑡+1 |𝑖 ∈ 𝐾}) are poisoned. The
following steps illustrate the two-phase detection process of
the FL server in each communication round:

Step 1: In the 𝑡-th communication round, the FL server re-
trieves alarm status𝐴 (𝑖)𝑡 from all participating clients through
secure tunnels and collects client model weight updates
Δ𝒈 (𝑖)

𝑡+1, where 𝑖 ∈ 𝐾 .
Step 2: The FL server analyzes all client alarms following
the decision process illustrated in Fig. 3. If no client alarms,
the FL server directly aggregates model weight updates from
clients and updates the global model. However, if there are
any alarms, the FL server further evaluates themodel updates
{Δ𝒈 (𝑖)

𝑡+1 |𝑖 ∈ 𝑆𝑎} from the clients with activated alarms 𝐴 (𝑖)𝑡 =

1, where 𝑆𝑎 ⊆ 𝐾 and 𝑆𝑎 is the set of alarming clients.
Step 3: The FL server recovers client model weights using
𝒈 (𝑖)
𝑡+1 = Δ𝒈 (𝑖)

𝑡+1 + 𝒈𝑡 and evaluates the client model with the
root test dataset to justify whether the client model 𝒈 (𝑖)

𝑡+1 is
poisonous and whether client 𝑖 is malicious, where 𝑖 ∈ 𝑆𝑎 .
If no malicious clients are identified in 𝑆𝑎 , the FL server

51

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Hanxi Guo, Hao Wang, Tao Song, Yang Hua et al.

Alarms

FL server at
the t-th round

Test updates from
alarming clients

<latexit sha1_base64="cteyqTOOBS2dKWrs25Rr2xhlaVk=">AAACBnicbVBNS8NAEN3Ur1q/oh5FWCxCBSmJiHoRKl4ELxXsBzS1bLbbdulmE3YnYgk9efGvePGgiFd/gzf/jds2B219MPB4b4aZeX4kuAbH+bYyc/MLi0vZ5dzK6tr6hr25VdVhrCir0FCEqu4TzQSXrAIcBKtHipHAF6zm9y9Hfu2eKc1DeQuDiDUD0pW8wykBI7XsXY89mC0ac49LfH2IL+6SAj8YtgCfY7dl552iMwaeJW5K8ihFuWV/ee2QxgGTQAXRuuE6ETQTooBTwYY5L9YsIrRPuqxhqCQB081k/MYQ7xuljTuhMiUBj9XfEwkJtB4EvukMCPT0tDcS//MaMXTOmgmXUQxM0smiTiwwhHiUCW5zxSiIgSGEKm5uxbRHFKFgksuZENzpl2dJ9ajonhSdm+N8yUnjyKIdtIcKyEWnqISuUBlVEEWP6Bm9ojfryXqx3q2PSWvGSme20R9Ynz9HypcB</latexit>

9i 2 K, A
(i)
t = 1

Similar
accuracies

Divergent
accuracies

No alarms
<latexit sha1_base64="zJxcTxJBkfddlIxEvQQ+CLGN9kA=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQQcpERN0IFTeCmwr2AU0Mk+mkHTqZhJmJUEJXbvwVNy4Uces3uPNvnLZZaPXAhcM593LvPUHCmdIIfVmFufmFxaXicmlldW19w97caqo4lYQ2SMxj2Q6wopwJ2tBMc9pOJMVRwGkrGFyO/dY9lYrF4lYPE+pFuCdYyAjWRvLtXTeMJeYcMpcJeH0IL+6yCjsY+RqeQ+TbZVRFE8C/xMlJGeSo+/an241JGlGhCcdKdRyUaC/DUjPC6ajkpoommAxwj3YMFTiiyssmb4zgvlG60NxjSmg4UX9OZDhSahgFpjPCuq9mvbH4n9dJdXjmZUwkqaaCTBeFKYc6huNMYJdJSjQfGoKJZOZWSPpYYqJNciUTgjP78l/SPKo6J1V0c1yuoTyOItgBe6ACHHAKauAK1EEDEPAAnsALeLUerWfrzXqfthasfGYb/IL18Q0S1pbg</latexit>

8i 2 K, A
(i)
t = 0

No attacks

Attacks
Go to aggregation

Identify malicious clients,

Test updates from silent clients

1

2

3

4

No attacks

Attacks

Detect it in next round

<latexit sha1_base64="Yvz4ZZcnat9GuK5nzzhMIGY+ubQ=">AAACHHicdVDLSgMxFM34rPVVdekmWAQ3Dpk+7a7gxqWC1UJbSiZN29DMZEjuKGWYD3Hjr7hxoYgbF4J/Y1or+LwQcjjnXO69x4+kMEDImzM3v7C4tJxZya6urW9s5ra2L4yKNeMNpqTSTZ8aLkXIGyBA8makOQ18yS/90fFEv7zi2ggVnsM44p2ADkLRF4yCpbq5YttXsmfGgf2SQdpN4NBLcVuLwRCo1uoa/zKk3VyeuLVCqVwtYOIWquVilVhQrBVLFQ97LplWHs3qtJt7afcUiwMeApPUmJZHIugkVINgkqfZdmx4RNmIDnjLwpAG3HSS6XEp3rdMD/eVti8EPGW/diQ0MJP1rDOgMDQ/tQn5l9aKoX/USUQYxcBD9jGoH0sMCk+Swj2hOQM5toAyLeyumA2ppgxsnlkbwuel+H9wUXC9ikvOSvk6mcWRQbtoDx0gD1VRHZ2gU9RADN2gO/SAHp1b5955cp4/rHPOrGcHfSvn9R3I56Oo</latexit>

gt�1 ! gt

Case

Case

Case

Case

Figure 3: The FL server’s decision process. The decisions made by the FL server are highlighted in red and italic.

will extend the model weight evaluation to all participating
clients.
Step 4: The FL server filters out the client model updates
identified as poisonous when aggregating model weight
updates to update the global model 𝒈𝑡−1 from the (𝑡-1)-th
communication round, rather than 𝒈𝑡 , since which is identi-
fied as poisoned. Therefore, the global model is updated as
𝒈𝑡+1 = 𝒈𝑡−1 +

∑
𝑖∈𝑆𝑏 𝛼

(𝑖)Δ𝒈 (𝑖)
𝑡+1, where 𝑆𝑏 is the set of clients

identified as benign.
Step 5: The FL server drops 𝒈𝑡 and copies the model weights
𝒈𝑡−1 to 𝒈𝑡 . The (𝑡+1)-th communication round begins after
the global model 𝒈𝑡 is pushed to all clients—we also craft a
black list (Sec. 4.6) on the FL server—to exclude the clients
identified as malicious for certain times from participating
in training.

Algorithm 2 presents the pseudo-code of the detecting and
aggregating processes at the FL server. The weight analysis
used in Algorithm 2 is introduced in Sec. 4.5.

4.4 Decision Process and Security Analysis

We further analyze the detailed decisions made by the FL
server and present the corresponding reasoning. If the FL
server receives zero activated alarms at 𝑡-th round, there
are two possible cases as shown in Fig. 3: Case 1○ 𝒈𝑡 is not
poisoned, and {Δ𝒈 (𝑖)

𝑡+1 |𝑖 ∈ 𝐾} are all benign updates. Case 2○
𝒈𝑡−1 is not poisoned, but there are poisoned model updates
in {Δ𝒈 (𝑖)

𝑡+1 |𝑖 ∈ 𝐾}. If 𝒈𝑡 is poisoned, the client-end alarm-
ing mechanism will guarantee to activate alarms as long
as one benign client exists. Besides, Case 2○ only happens
when malicious clients poison the global model 𝒈1 at the first
attacked communication round. Benign clients will detect
such poisoned updates by comparing accuracy of the global
model and the local model in the upcoming communication
round (Sec. 4.2 Step 3). Thus, the FL server chooses to directly
aggregate model updates when there is no alarm.
However, when there are activated alarms, the FL server

first tests the accuracy of the models from the clients with
activated alarms (i.e., 𝑖 ∈ 𝑆𝑎) and looks for the maximum
accuracy max{𝜔 (𝑖)𝑡 |𝑖 ∈ 𝑆𝑎} among these clients. We use a
user-defined threshold𝐶𝑠 to measure the difference between
the maximum accuracy and each alarming client’s accuracy.
The alarming clients either share a similar accuracy as the

Algorithm 2 Detection and aggregation on the FL

server.

1: for each communication round 𝑡 = 1, 2, · · · ,𝑇 do

2: for each client 𝑖 ∈ 𝐾 in parallel do

3: 𝐴
(𝑖)
𝑡 ← sent back by Alarm(𝒈𝑡 , 𝒈

(𝑖)
𝑡)

4: Δ𝒈 (𝑖)
𝑡+1 ← ClientUpdate(𝑖 , 𝒈𝑡)

5: end for

6: if ∀𝑖 ∈ 𝐾 , 𝐴 (𝑖)𝑡 = 0 then ⊲ no alarms: Case 1○ 2○
7: 𝒈𝑡+1 ← 𝒈𝑡 +

∑
𝑖∈𝐾 𝛼

(𝑖)Δ𝒈 (𝑖)
𝑡+1

8: else ⊲ there are alarms
9: if ∀𝑖 ∈ 𝑆𝑎 ,max{𝜔 (𝑖)𝑡 |𝑖 ∈ 𝑆𝑎}−𝜔

(𝑖)
𝑡 < 𝐶𝑠 and𝜔 (𝑖)𝑡

passes the weight analysis then
10: ⊲ similar accuracies: Case 3○
11: if max{𝜔 (𝑖)𝑡 |𝑖 ∈ 𝑆𝑎} −max{𝜔 (𝑖)𝑡 |𝑖 ∈ 𝑆𝑠 } ≤ 𝐶𝑠

then ⊲ false alarms
12: 𝑆𝑏 ← detect and add benign silent clients
13: 𝒈𝑡+1 ← 𝒈𝑡 +

∑
𝑖∈𝑆𝑏 𝛼

(𝑖)Δ𝒈 (𝑖)
𝑡+1

14: else

15: 𝑆𝑏 ← all the alarming clients
16: 𝒈𝑡+1 ← 𝒈𝑡−1 +

∑
𝑖∈𝑆𝑏 𝛼

(𝑖)Δ𝒈 (𝑖)
𝑡+1

17: end if

18: else ⊲ divergent accuracies: Case 4○
19: 𝑆𝑏 ← detect and add benign alarming clients
20: 𝒈𝑡+1 ← 𝒈𝑡−1 +

∑
𝑖∈𝑆𝑏 𝛼

(𝑖)Δ𝒈 (𝑖)
𝑡+1

21: end if

22: end if

23: end for

Case 3○ that ∀𝑖 ∈ 𝑆𝑎 , max{𝜔 (𝑖)𝑡 |𝑖 ∈ 𝑆𝑎} − 𝜔
(𝑖)
𝑡 < 𝐶𝑠 , or have

divergent accuracies that ∃𝑖 ∈ 𝑆𝑎 ,max{𝜔 (𝑖)𝑡 |𝑖 ∈ 𝑆𝑎} −𝜔
(𝑖)
𝑡 ≥

𝐶𝑠 as the Case 4○.
For Case 3○, if there is no attack—neither the global model

𝒈𝑡−1 nor client updates {Δ𝒈
(𝑖)
𝑡 |𝑖 ∈ 𝐾} are not poisoned, the

activated alarms must be false alarms deliberately gener-
ated by malicious clients. If there are attacks and the alarm-
ing clients’ model updates have similar accuracies, then we
should test the silent clients’ model updates to further verify
whether the alarming clients’ model updates are all poisoned
or all benign. Thus, for Case 3○ we should always test all
the silent clients’ model updates {Δ𝒈 (𝑖)𝑡 |𝑖 ∈ 𝑆𝑠 }, where 𝑆𝑠 is
the set of silent clients. If the silent clients’ highest accuracy
is close to or even better than the alarming clients’ highest

52

Siren: Byzantine-robust Federated Learning via Proactive Alarming SoCC ’21, November 1–4, 2021, Seattle, WA, USA

accuracy:

max{𝜔 (𝑖)𝑡 |𝑖 ∈ 𝑆𝑎} −max{𝜔 (𝑖)𝑡 |𝑖 ∈ 𝑆𝑠 } ≤ 𝐶𝑠 ,

the FL server can assure that the benign clients are silent
and thus, all alarming clients’ updates are poisoned. If the
accuracy of a silent client’s updates is close to the maximum
accuracy of all silent clients, we believe this client is benign.
So we add a silent client to the benign client set 𝑆𝑏 , when its
accuracy matchesmax{𝜔 (𝑖)𝑡 |𝑖 ∈ 𝑆𝑠 }−𝜔

(𝑖)
𝑡 < 𝐶𝑠 , where 𝑖 ∈ 𝑆𝑠 .

Since all benign clients are silent, the alarms are generated
by malicious clients as false alarms, and the global model
from last round 𝒈𝑡 is not poisoned.

Contrarily, for Case 3○, if the maximum accuracy of silent
clients is lower than the maximum accuracy of the alarming
clients: max{𝜔 (𝑖)𝑡 |𝑖 ∈ 𝑆𝑎} − max{𝜔 (𝑖)𝑡 |𝑖 ∈ 𝑆𝑠 } > 𝐶𝑠 , then all
silent client’s model updates are poisoned, and all alarming
clients are benign due to their similar accuracies.
For Case 4○, the divergent accuracies of the alarming

clients indicate that both benign and malicious clients are
alarming. Again, we use the maximum accuracy of all alarm-
ing clients to filter out the alarming malicious clients. If an
alarming client’s accuracy satisfiesmax{𝜔 (𝑖)𝑡 |𝑖 ∈ 𝑆𝑎}−𝜔

(𝑖)
𝑡 <

𝐶𝑠 , then we add it to the benign client set 𝑆𝑏 . Since benign
clients always alarm when detecting a poisonous 𝒈𝑡 , there
are no benign clients among the silent clients. Thus, we will
ignore all silent clients in this case.
Besides, we jointly apply accuracy checking and weight

analysis to recognize malicious clients and achieve better
detection (Sec. 4.5).

4.5 Weight Analysis

Since most of the attacks aim to generate malicious weight
updates which can have reverse impacts on the global model
comparedwith benignweight updates, thesemaliciousweight
updates usually represent reverse changing directions of the
model compared with benign updates. With this intuition
similar to FLTrust [7], weight analysis is added into Siren.
However, unlike FLTrust using an auxiliary model trained by
the data of the server, which means that the system has a pre-
defined expectation of the global model, Siren only uses the
information from clients. With weight analysis in Siren, the
server not only compares the accuracy between the update
with max accuracy and other updates but also compares the
angles between these updates. If the angle between an update
𝜔𝑖 and the update with max accuracy max{𝜔 (𝑖)𝑡 |𝑖 ∈ 𝑆𝑎} is
greater than 𝜋

2 , then𝜔𝑖 will be regarded as amalicious update
by the server. Otherwise, 𝜔𝑖 is regarded as a benign update
and can be calculated into the global model. Via weight anal-
ysis, the server can check the updates from clients through
another perspective while keeping its objectivity.

4.6 Auxiliary Mechanisms

To further improve the capability of Siren, some auxiliary
mechanisms are also applied to Siren’s architecture which is
introduced in Sec. 4.2 and Sec. 4.3. All these auxiliary mecha-
nisms are used only by the server so that clients do not have
any extra computational burdens. And the server can flexi-
bly determine whether to use these auxiliary mechanisms
according to the computational resources on the server as
well as the demand for better security and performance.
Penalty Mechanism: We design a penalty mechanism to
improve the stability of Siren. Since malicious clients can
attack the server consistently and the corresponding con-
sistently checks waste a huge amount of computational re-
sources. With the penalty mechanism, the server records the
times of each client being regarded as a malicious client. If
this count of a client is greater than a threshold 𝐶𝑝 , then the
server will not accept the update from this client without
checking anymore since at this time, this client is regarded
as a malicious client by default. With this method, the server
can effectively save the computational overheads and im-
prove the stability of the system.
AwardMechanism: The penalty mechanism may misjudge
benign clients to be malicious clients because of the variance
of the data on each client. Thus, the server exploits an award
mechanism to rejoin a banned client into the training with a
probability. In a communication round, if a banned client is
regarded as a benign client by the server, the penalty count
of this client will reduce 𝐶𝑎 by the award mechanism. If the
penalty count of this banned client is less than 𝐶𝑝 , then this
client could participate in the training process again. With
this mechanism, the server can alleviate the side effect of the
penalty mechanism.

5 EVALUATION

We have implemented a prototype of Siren based on Tensor-
Flow [1] with more than 2,000 lines of Python code. We use
the multiprocessing library to launch multiple processes
to simulate multiple clients. Sirenwill be open-sourced after
the review.
We verify the effectiveness of Siren by running prac-

tical FL tasks on two public benchmark datasets: Fashion-
MNIST [25] and CIFAR-10 [14].We evaluate Sirenwith three
attacking methods, sign-flipping attack, label-flipping attack,
and targeted model poisoning, and compare the two prevail-
ing Byzantine-robust methods, Krum and coordinate-wise
median. We also explore the capability of Siren to defend
different proportions of malicious clients with and without
weight analysis in our experiments. All of our evaluation
experiments run on an NVIDIA DGX-2 virtual instance with
six vCores and one NVIDIA Tesla V100 GPU.

53

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Hanxi Guo, Hao Wang, Tao Song, Yang Hua et al.
Average accuracy
Sign-flipping
Lable-flipping
Targeted model poisoning

Ac
cu

ra
cy

 (%
)

75

80

85

90

95

Cs

0.
02

0.
04

0.
06

0.
08 0.
1

0.
12

0.
14

0.
16

0.
18 0.
2

(a) 𝐶𝑠 on the server.

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Cs
0

0.
02

0.
04

0.
06

0.
08 0.
1

0.
12

0.
14

0.
16

0.
18 0.
2

(b) 𝐶𝑐 on clients.

Ac
cu

ra
cy

 (%
)

70

75

80

85

90

95

Cp

0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

(c) 𝐶𝑝 on the FL server with
only the penalty mechanism.

Ac
cu

ra
cy

 (%
)

60

70

80

90

100

Cp

0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

(d) 𝐶𝑝 on the FL server with
both the penalty and award
mechanisms.

Ac
cu

ra
cy

 (%
)

60

70

80

90

100

Root test dataset size
10 20 5010

0
20

0
30

0
40

0
50

0

(e) Root dataset size
on the FL server.

Figure 4: Searching the configuration of important hyper-parameters.

Our experimental results show that Siren can outperform
Krum and coordinate-wise median even without knowing
the types of attacks in advance. When the training data is
IID, the global model trained by Siren can reach 90.94% and
90.64% respectively under sign-flipping and label-flipping
attacks when the proportion of malicious clients is 40% and
|𝐾 | = 10, while the FL baseline is 91.46%. In contrast, the
model trained by Krum gets 88.18% and 87.81%, while the
model trained coordinate-wise median obtains 68.8% and
79.09%. When the training data is non-IID, these accuracy dif-
ferences become more obvious. The model trained by Siren
can reach 88.88% and 89.89% when the FL baseline is 90.53%,
while the model trained by Krum can only reach 84.66% and
85.14% and the model trained by coordinate-wise median
has accuracy less than 80%. Besides, experiments with about
50 clients also show such differences. When the proportion
of malicious clients reaches 80%, the model trained by Siren
can always achieve 84% or higher in accuracy, while the other
two kinds of Byzantine-robust defense methods cannot work
in most cases.

5.1 Experiment Settings

Table 2 summarizes the experiment settings for FL on Fashion-
MNIST. For experiments on CIFAR-10, we reuse the settings
of Fashion-MNIST but change the local batch size to 32.
Model and Datasets: We train a CNNmodel with two CNN
layers and two dense layers on the Fashion-MNIST dataset.
For the CIFAR-10 dataset, we reuse this CNN model.
IID and Non-IID Data: For IID training data, we randomly
split the whole training data into |𝐾 | shards and allocate

Table 2: Default settings of main parameters.

Description IID Non-IID

𝐵 Local batch-size 64 64
𝑇 Communication rounds 40 40
𝐸 Local training epochs 5 5
𝑝 Non-IID degree 0 0.5
𝐶𝑐 Client identification threshold 4% 4%
𝐶𝑠 Server identification threshold 10% 10%
𝐶𝑝 Penalty mechanism threshold 0.45 · |𝐾 | 0.45 · |𝐾 |
𝐶𝑎 Award mechanism parameter 0.5 0.5

these data shards to |𝐾 | clients directly. For non-IID training
data, we introduce the non-IID degree 𝑝 . By using 𝑝 , a train-
ing data with label 𝑙 is distributed into 𝑙th group of clients
with possibility 𝑝 . In this case, a higher 𝑝 indicates a higher
degree of non-IID. We set 𝑝 = 0.5 in all the experiments over
non-IID training data.
Metrics: We mainly compare the accuracy of the models and
the robustness of the system (by using different proportions
of malicious clients) under the attacks from different propor-
tions of malicious clients using various types of attacks.
The root test dataset on the server: Siren uses a root
test dataset on the server to recognize potentially malicious
clients. We randomly pick 100 instances (Sec. 5.2) from the
training dataset and exclude them from the training dataset,
then distribute the remaining data to each client, as the
server’s root test dataset should be collected by the server
instead of being derived from clients. This small root test
dataset shares the same data distribution with the overall
training data.

5.2 Parameter Selection

Figure 4 presents our exploration of Siren’s optimal hyper-
parameters for the FL server and clients. We use |𝐾 | = 10
over IID data to test Siren and calculate the average accuracy
of the global models under these three attacks. Figure 4(b)
and Figure 4(a) illustrate the result of𝐶𝑐 and𝐶𝑠 , respectively.
According to the result, a larger threshold on clients can sig-
nificantly reduce the performance, while a larger threshold
on the server cannot influence the performance of the global
model obviously. Figure 4(c) and Figure 4(d) show the result
of𝐶𝑝 using the system with only the penalty mechanism and
with both the penalty and the award mechanisms. With only
the penalty mechanism, Siren needs a large 𝐶𝑝 , which is
around 0.8 ·𝐾 to reach the best performance. However, with
the help of the award mechanism, Siren can easily reach a
similar performance even using a quite smaller 𝐶𝑝 . Besides,
we also test the influence of different sizes of the root dataset,
as shown in Figure 4(e). We pick a root dataset size that can
promise the stable performance of Siren. All the detailed
numbers of these hyper-parameters are shown in Table 2.

54

Siren: Byzantine-robust Federated Learning via Proactive Alarming SoCC ’21, November 1–4, 2021, Seattle, WA, USA

FL Baseline
Label-flipping

Coomed
Krum

Siren without weight analysis
Siren with penalty and award

Siren

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, 40% malicious clients

(b) IID, 80% malicious clients

(c) Non-IID, 40% malicious clients

(d) Non-IID, 80% malicious clients

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Figure 5: Training efficiency under

label-flipping attack when |𝐾 | = 10.

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, 40% malicious clients

(b) IID, 80% malicious clients

(c) Non-IID, 40% malicious clients

(d) Non-IID, 80% malicious clients

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Figure 6: Training efficiency under

sign-flipping attack when |𝐾 | = 10.

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, training efficiency

(b) IID, misclassification confidence

(c) Non-IID, training efficiency

(d) Non-IID, misclassification confidence

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Figure 7: Training efficiency and

misclassification confidence under

targeted model poisoning, |𝐾 | = 10.

5.3 Defending Sign-flipping Attack

Figure 6 shows the training efficiency when the FL system
is protected by Siren, Krum, and coordinate-wise median
under sign-flipping attacks when |𝐾 | = 10. We use boosting
factor −4 to boost the malicious weight updates when im-
plementing the sign-flipping attack. Figure 6(a), Figure 6(c),
Figure 6(b), and 6(d) describe the accuracy of FL with 40% and
80% of the clients as malicious, respectively. Krum cannot be
initiated with 80% of clients as malicious so that Figure 6(b)
and 6(d) omit it.

With 40% malicious clients in the system, both Siren and
Krum successfully defend the system on IID and non-IID
training data. However, the coordinate-wise median is influ-
enced by the attack, especially on non-IID data. With 80%ma-
licious clients in the system, both Krum and coordinate-wise
median fail to protect the FL system. However, Figure 6(b)
and Figure 6(d) show that Siren successfully protects the
global model against 80% malicious clients. When the global
model is aggregated from model weights of the only two be-
nign clients, its accuracy evaluated on the test dataset drops
as in Figure 6(b) and 6(d) because of the limited training data
on the two benign clients. However, such reductions in the
accuracy of Siren are quite small and acceptable.

Figure 6(b) and Figure 6(d) compare Siren with and with-
out weight analysis. The global model’s accuracy curves
of Siren without weight analysis drop suddenly, while the
global model’s accuracy curves of Siren with weight anal-
ysis do not have such problems. Besides, Figure 6 shows
that the accuracy of all the defense methods drops with the
increasing of the malicious proportion since fewer training
data samples are available when the malicious proportion
increases.
Figure 11 visualizes each client’s malicious index, which

is maintained by the server of Siren with the penalty mech-
anism to determine whether Siren can detect malicious
clients. A higher malicious index means that this client is
more likely to be malicious since it has been regarded as a
malicious client by the server more times. Figure 11 shows
that malicious clients have higher malicious indexes. The dif-
ference between benign and malicious updates is negligible—
some benign clients are regarded as malicious clients by
the server—lead to global model performance degradation.
Figure 13 shows that the award mechanism enhances the
difference between benign updates and malicious updates
and reduces the server’s misjudgments.

55

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Hanxi Guo, Hao Wang, Tao Song, Yang Hua et al.
FL Baseline
Label-flipping

Coomed
Krum

Siren
Siren with penalty and award

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, 40% malicious clients

(b) IID, 80% malicious clients

(c) Non-IID, 40% malicious clients

(d) Non-IID, 80% malicious clients

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Figure 8: Training efficiency under

label-flipping attack when |𝐾 | = 50.

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, 40% malicious clients

(b) IID, 80% malicious clients

(c) Non-IID, 40% malicious clients

(d) Non-IID, 80% malicious clients

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Figure 9: Training efficiency under

sign-flipping attack when |𝐾 | = 50.

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, training efficiency

(b) IID, misclassification confidence

(c) Non-IID, training efficiency

(d) Non-IID, misclassification confidence

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Figure 10: Training efficiency and

misclassification confidence under

targeted model poisoning, |𝐾 | = 50.

0

2

4

Client ID
1 2 3 4 5 6 7 8 9 10

0

5

10

Client ID
1 2 3 4 5 6 7 8 9 10

0

2

4

Client ID
1 2 3 4 5 6 7 8 9 10

0

5

10

15

Client ID
1 2 3 4 5 6 7 8 9 10

IID, 40% malicious clients
Benign users Malicious users

Non-IID, 40% malicious clients

IID, 80% malicious clients Non-IID, 80% malicious clients

(d)(c)

(b)(a)

M
al

ic
io

us
 in

de
x

M
al

ic
io

us
 in

de
x

Figure 11: Malicious index of each client on the server

under sign-flipping attack when |𝐾 | = 10 using Siren.

5.4 Defending Label-flipping Attack

Figure 5 shows the accuracy of FL under the label-flipping
attack with 40% and 80% of clients in the system as malicious
clients when |𝐾 | = 10, respectively. Since we do not use a
boosting factor (which is -4 in the experiments about the
sign-flipping attack) to boost the malicious weight updates, it

0

1

2

3

Client ID
1 2 3 4 5 6 7 8 9 10

0

5

10

Client ID
1 2 3 4 5 6 7 8 9 10

0

2

4

Client ID
1 2 3 4 5 6 7 8 9 10

0

5

10

Client ID
1 2 3 4 5 6 7 8 9 10

IID, 40% malicious clients Non-IID, 40% malicious clients

IID, 80% malicious clients Non-IID, 80% malicious clients

(d)(c)

(b)(a)

Benign users Malicious users

M
al

ic
io

us
 in

de
x

M
al

ic
io

us
 in

de
x

Figure 12: Malicious index of each client on the server

under label-flipping attackwhen |𝐾 | = 10 using Siren.
is harder for the defense methods to detect malicious clients,
especially for those methods only based on weight analysis.
Similar to Section 5.3, the accuracy drops with an increasing
proportion of malicious clients in the system, and Krum does
not work when the proportion of malicious clients reaches
80%. As shown in Figure 5, unlike the results in Section 5.3,

56

Siren: Byzantine-robust Federated Learning via Proactive Alarming SoCC ’21, November 1–4, 2021, Seattle, WA, USA

0

10

20

Client ID
1 2 3 4 5 6 7 8 9 10

0

20

40

Client ID
1 2 3 4 5 6 7 8 9 10

0

10

20

Client ID
1 2 3 4 5 6 7 8 9 10

0

10

20

Client ID
1 2 3 4 5 6 7 8 9 10

Benign users Malicious users
(a) IID, 40% malicious clients (b) Non-IID, 40% malicious clients

(c) IID, 80% malicious clients (d) Non-IID, 80% malicious clients

M
al

ic
io

us
 in

de
x

M
al

ic
io

us
 in

de
x

Figure 13: Malicious index of each client on the server

under sign-flipping attack when |𝐾 | = 10 using Siren

with the penalty and the awardmechanism (The green

dash line represents 𝐶𝑝).

0

10

20

Client ID
1 2 3 4 5 6 7 8 9 10

0

10

20

30

Client ID
1 2 3 4 5 6 7 8 9 10

0

10

20

Client ID
1 2 3 4 5 6 7 8 9 10

0

10

20

Client ID
1 2 3 4 5 6 7 8 9 10

IID, 40% malicious clients Non-IID, 40% malicious clients

IID, 80% malicious clients Non-IID, 80% malicious clients

(d)(c)

(b)(a)

Benign users Malicious users

M
al

ic
io

us
 in

de
x

M
al

ic
io

us
 in

de
x

Figure 14: Malicious index of each client on server un-

der label-flipping attack when |𝐾 | = 10 using Siren

with the penalty and the awardmechanism (The green

dash line represents 𝐶𝑝).

both Krum and coordinate-wise median fail to effectively
defend the label-flipping attack when the proportion of ma-
licious clients is 40% on both IID and non-IID data. However,
Siren protects the global model and keeps the training go-
ing free of attacks. With the proportion of malicious clients
approaching 80%, the accuracy of the global model trained
by coordinate-wise median is reaching 0 while the global
model trained by Siren steadily keeps an accuracy of more
than 85%. Compared with Siren without weight analysis, a
complete Siren is more stable like the results in Section 5.3.
We also visualize the malicious indexes of each client

in Figure 12. Similar to the results in Figure 11, Siren can
successfully distinguish malicious clients from all the clients
when the system is under label-flipping attack since the

Federated Learning (Normal)
Siren 40% sign-flipping
Siren 80% sign-flipping

Siren 40% label-flipping
Siren 80% label-flipping
Siren target model poisoning

Ac
cu

ra
cy

 (%
)

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40 45 50 55

Ac
cu

ra
cy

 (%
)

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40 45 50 55

(a) IID data

(b) Non-IID data

Figure 15: Training efficiency of Sirenwhen |𝐾 | = 200.

malicious clients’ indexes are much higher than the indexes
of benign clients. Figure 14 shows that the award mechanism
also improves Siren’s performance.

5.5 Defending Targeted Model Poisoning

Targeted model poisoning is a targeted attacking method. A
poisoned model only twists specific predictions, making it
much harder to detect than the sign-flipping attack and label-
flipping attack. In this case, malicious clients can perform as
similar as benign clients do. Figure 7(a) and Figure 7(b) show
the accuracy curves of our method, Krum and coordinate-
wise median when the training data is IID and non-IID when
|𝐾 | = 10. Both coordinate-wise median and Siren perform
well, and Krum fails, aligned to the original paper of targeted
model poisoning [5]. Since targeted model poisoning can
attack the global model while letting it perform normally,
we continue to analyze the misclassification confidence of
the global model, illustrated in Figure 7(c) and Figure 7(d).

5.6 Scalability: Experiments with 50 and

200 Clients

After testing Siren over IID and non-IID training data with
10 clients in total, we increase the total number of clients
to 50 and explore the scalability of Siren on both IID and
non-IID training data.
We first compare the accuracy of FL using Siren, Krum,

and coordinate-wise median under sign-flipping attack with
40% and 80% malicious clients, as illustrated in Figure 9.
With 40% malicious clients, all the three defense methods
successfully protect the training process, and Siren achieves
the best performance, close to the FL baseline. However,
when the proportion of malicious clients is 80%, only Siren
can defend the global model. Neither of Krum and coordinate-
wise median works effectively.

Then, we compare the accuracy of FL using these three
methods under label-flipping, which is shown in Figure 8.

57

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Hanxi Guo, Hao Wang, Tao Song, Yang Hua et al.

With 40% malicious clients, Krum and coordinate-wise me-
dian fail to defend the attack, while Siren still works. When
the proportion of malicious clients is 80%, only our method
can protect the system successfully.
Figure 10 presents the result of the comparison under

targeted model poisoning. As the results of the experiments
shown in Section 5.5, Siren can also defend the targeted
model poisoning with a larger number of clients.
Figure 15 presents the experiments with 200 clients. The

number of clients in the system reaches 200, and the amount
of each client’s data is already quite small, though Siren can
still defend the system from various attacks and maintain an
ideal performance close to the baseline.

5.7 Generality: Experiments on CIFAR-10

Dataset

We further explore the performance of Siren when FL is
performed over CIFAR-10 [14] dataset. We compare Siren
with Krum and coordinate-wise median under sign-flipping
attack and label-flipping attack while using ten clients over
IID distributed training data. Table 3 shows that no matter
the attack type and the proportion of malicious clients, Siren
can always get the best performance compared with Krum
and coordinate-wise median. The overall low accuracy of all
cases is because the model we used is quite simple.

We also evaluate targetedmodel poisoning using the CIFAR-
10 dataset with a more powerful three-CNN-layer model
with more kernels. According to the result, both Krum and
coordinate-wise median fail to protect the system since the
performance of the model degrades severely with Krum
and the misclassification confidence converges to 1. Though
the model trained by coordinate-wise median can reach the

Table 3: Training efficiency over CIFAR-10 using IID

data distribution when |𝐾 | = 10.

Attack Type

Methods

Defense

Proportion

Malicious

Accuracy

None None 0% 55.33%

Sign-flipping

None 40% 10.01%
80% 10.01%

Krum1 40% 41.53%

Coomed 40% 34.25%
80% 9.99%

Siren 40% 51.58%

80% 45.50%

Label-flipping

None 40% 34.70%
80% 11.68%

Krum1 40% 44.72%

Coomed 40% 37.21%
80% 9.60%

Siren 40% 49.82%

80% 43.52%

1 Krum cannot work properly when malicious clients’
proportion reaches 80%.

accuracy of 67.69%, the misclassification confidence keeps
equalling to 1. However, Siren defends the attacks and trains
the global model to achieve an accuracy of 65.47%.

5.8 Efficiency Analysis

Compared with FedAvg, in each round, Siren causes extra
local testing on clients, while since the local test dataset is
quite small, clients do not need to spend too much time on
it. Besides, Siren also requires clients to send alarm states to
the server in each round. Since the alarm state is only one
digit (or several digits when encrypted), the communication
overheads between clients and the FL server won’t increase
much. On the server, Siren needs extra storage on the FL
server for tracking global models and alarms. In each round,
if the FL server receives an alarm, it will spend more time
and resources to filter malicious clients by using accuracy
checking and weight analysis. Besides, Figure 16 shows the
rounds needed by each method to let the global model be
convergent over the Fashion-MNIST dataset. The results
show that compared with Krum and coordinate-wise median,
Siren can let the global model be convergent using fewer
communication rounds. And the rounds required by Siren
are similar to FedAvg, which also means that Siren do not
incur much more communication overheads between clients
and the FL server.

5.9 Recovering the Training from Attacks

Unlike other prevailing defensivemethods, Siren has a unique
new feature that Siren can restore the training process and
the global model, even though the server has been com-
promised successfully. To illustrate this, we design several
experiments under a scenario that in the first 10 rounds, the
server does not use any defensive methods. After the 10𝑡ℎ
round, the server starts to use defensive methods. According
to the results shown in Figure 17, only Siren can success-
fully restore the global model and finally gets a normal global
model.

5.10 Adaptability to More Attacks

According to the experimental results, Siren can defend
the FL system against various attacks, no matter how these
attacks camouflage themselves. However, due to the space
limitation, there are still several attacks not included in the
experiments, such as adaptive attacks [12], and Siren also
has the ability to defend the FL system against them. To
poison the global model, current attacks design various mali-
cious local updates. Specifically, these modifications on local
updates can be reflected by either the property of the updates
or the performance of the updated models. Current attacks
can hardly camouflage themselves from both aspects at the

58

Siren: Byzantine-robust Federated Learning via Proactive Alarming SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Siren Coomed Krum None

None
(Baseline)

Sign-flipping

Label-flipping

Targeted
model

poisoning

Rounds to Convergent
0 100 200

(a) |𝐾 | = 10, IID data.

None
(Baseline)

Sign-flipping

Label-flipping

Targeted
model

poisoning

Rounds to Convergent
0 100 200

(b) |𝐾 | = 10, Non-IID data.

None
(Baseline)

Sign-flipping

Label-flipping

Targeted
model

poisoning

Rounds to Convergent
0 100 200

(c) |𝐾 | = 50, IID data.

None
(Baseline)

Sign-flipping

Label-flipping

Targeted
model

poisoning

Rounds to Convergent
0 100 200

(d) |𝐾 | = 50, Non-IID data.
Figure 16: Communication rounds needed for being convergent under different scenarios. If the rounds reach 200,

it means that the global model is attacked successfully or cannot achieve accuracy of 85%.

FL Baseline
Coomed

Krum
Siren

Ac
cu

ra
cy

 (%
)

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40 45 50 55

Figure 17: Training efficiency under sign-flipping at-

tack when |𝐾 | = 10, 40% malicious clients and the de-

fense delay is 10 rounds.

same time. Based on this observation, Siren is designed to
monitor both potential modifications. Therefore, Siren can
defend potential new attacks as long as the attacks attempt
to degrade the global model’s performance.

6 RELATEDWORK

FL is motivated by data privacy concerns. However, due to
its distributed nature, FL is rather vulnerable and can be
attacked by different kinds of methods. Many studies on
attacks and defenses of FL have been emerging in recent
years.
Attacks: Compromised clients aim to mislead the global
model by sending malicious model updates to the FL server.
Most existing attacks focus on degrading the whole perfor-
mance of the global model for testing dataset [12, 17, 27],
referred as untargeted attack. Another type of Byzantine
attack is known as targeted attack [3, 5, 21, 23], seeking to
poison the global model on some specific data examples in
a targeted manner while maintaining good performance on
the global model for the rest of the data. Recently, adaptive
attacks [12] are proposed to update the malicious weight to
the inverse direction of correct global model updates and ap-
ply optimization to seduce the FL server to pick the malicious
weight updates, making it challenging for existing Byzantine-
robust frameworks to defend. However, since adaptive at-
tacks extensively reduce the global model accuracy, and the
malicious weight updates’ directions are very different from
correct one’s, Siren clients can firstly detect such attacks by
using the accuracy comparison, and the server can also easily
recognize malicious updates by using accuracy checking and
weight analysis.
Defenses: FL Byzantine-robust methods mainly focus on
proposing new aggregation mechanisms that alleviate the

negative effects of Byzantine attacks. Since the median is
a robust estimator to be well applied to defend the Byzan-
tine attacks, many studies have adopted and improved this
strategy [6, 8, 10, 27, 32, 33]. However, existing Byzantine-
robust methods suffer from a few practical issues, such as
false alarms triggered by non-IID data and vulnerabilities to
a large proportion of malicious clients. Zeno [29] effectively
addresses weaknesses of previous majority-based methods
using a stochastic first-order oracle to grade each client’s up-
date and aggregate updates with high scores. However, it also
only uses weight analysis to defend the system. FLTrust [7]
calculates a trust score for each client model updates based
on the cosine similarity between the server’s model updates
and clients’ updates. Then, the FL server uses the trust scores
and clients’ weight updates to update the global model. Com-
pared with FLTrust that only uses weight updates to recog-
nize malicious clients, Siren jointly applies accuracy check-
ing and weight analysis on the server. Besides, Siren crafts
a proactive alarming mechanism that orchestrates all partic-
ipating clients and the FL server to defend themselves from
attacks.

7 CONCLUSION

This paper proposes Siren, a proactive attack-agnostic de-
fense system for federated learning. Unlike existing defense
systems based on the analysis of weight updates, Siren is
based on accuracy checking and can defend against crafted
attacks that are hard to detect for current Byzantine-robust
aggregation rules. Siren creatively distributes detecting pro-
cesses to client ends, making it possible to defend FL from all
types of attacks in real-world scenarios, e.g., a large portion
of clients is malicious. Extensive experiments with different
attack methods on IID and non-IID data prove the effective-
ness of Siren, compared with other state-of-the-art defense
methods, such as Krum and coordinate-wise median.

8 ACKNOWLEDGEMENTS

This work is partially funded by the National Natural Science
Foundation of China (NO. 61872234, 61732010), Shanghai Key
Laboratory of Scalable Computing and Systems. Ruhui Ma
is the corresponding author.

59

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Hanxi Guo, Hao Wang, Tao Song, Yang Hua et al.

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
et al. 2016. TensorFlow: A System for Large-Scale Machine Learning. In
USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

[2] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. 2018. Byzantine Sto-
chastic gradient descent. In Advances in Neural Information Processing
Systems (NeurIPS).

[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and
Vitaly Shmatikov. 2020. How to Backdoor Federated Learning. In
International Conference on Artificial Intelligence and Statistics (ICAIS).

[4] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and
Seraphin Calo. 2018. Model Poisoning Attacks in Federated Learning.
In NeurIPS Workshop on Security in Machine Learning (SecML).

[5] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and
Seraphin B. Calo. 2019. Analyzing Federated Learning through an
Adversarial Lens. In International Conference on Machine Learning
(ICML).

[6] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien
Stainer. 2017. Machine Learning with Adversaries: Byzantine Tolerant
Gradient Descent. InAdvances in Neural Information Processing Systems
(NeurIPS).

[7] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. 2020.
FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping.
arXiv preprint arXiv:2012.13995 (2020).

[8] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2021. Provably Se-
cure Federated Learning against Malicious Clients. In AAAI Conference
on Artificial Intelligence (AAAI).

[9] Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papail-
iopoulos. 2018. DRACO: Byzantine-resilient Distributed Training via
Redundant Gradients. In International Conference on Machine Learning
(ICML).

[10] Yudong Chen, Lili Su, and Jiaming Xu. 2017. Distributed Statistical
Machine Learning in Adversarial Settings: Byzantine Gradient Descent.
In Proceedings of the ACM on Measurement and Analysis of Computing
Systems (POMACS).

[11] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. 2018.
The Hidden Vulnerability of Distributed Learning in Byzantium. In
International Conference on Machine Learning (ICML).

[12] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong.
2020. Local Model Poisoning Attacks to Byzantine-Robust Federated
Learning. In USENIX Security Symposium (USENIX Security).

[13] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,
Ananda Theertha Suresh, et al. 2016. Federated Learning: Strategies
for Improving Communication Efficiency. In NeurIPS Workshop on
Private Multi-Party Machine Learning (NeurIPS Workshop).

[14] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning Multiple Layers
of Features from Tiny Images. Tech Report (2009).

[15] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzan-
tine Generals Problem. ACM Transactions on Programming Languages
and Systems (TPLS) 4, 3 (1982), 382–401.

[16] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papail-
iopoulos, and Kannan Ramchandran. 2017. Speeding Up Distributed
Machine Learning Using Codes. IEEE Transactions on Information
Theory (TIT) 64, 3 (2017), 1514–1529.

[17] Liping Li, Wei Xu, Tianyi Chen, Georgios B Giannakis, and Qing Ling.
2019. Rsa: Byzantine-robust Stochastic Aggregation Methods for Dis-
tributed Learning from Heterogeneous Datasets. In AAAI Conference
on Artificial Intelligence (AAAI).

[18] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, et al. 2014. Scaling Distributed Machine Learning with the

Parameter Server. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

[19] Suyi Li, Yong Cheng, Wei Wang, Yang Liu, and Tianjian Chen. 2020.
Learning to Detect Malicious Clients for Robust Federated Learning.
arXiv preprint arXiv:2002.00211 (2020).

[20] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020.
Federated Learning: Challenges, Methods, and Future Directions. IEEE
Signal Processing Magazine (SPM) 37, 3 (2020), 50–60.

[21] Lingjuan Lyu, Han Yu, and Qiang Yang. 2020. Threats to Federated
Learning: A Survey. arXiv preprint arXiv:2003.02133 (2020).

[22] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient Learning of
Deep Networks from Decentralized Data. In International Conference
on Artificial Intelligence and Statistics (ICAIS).

[23] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan
McMahan. 2019. Can You Really Backdoor Federated Learning? arXiv
preprint arXiv:1911.07963 (2019).

[24] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. 2020.
Data Poisoning Attacks Against Federated Learning Systems. arXiv
preprint arXiv:2007.08432 (2020).

[25] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: A
Novel Image Dataset for Benchmarking Machine Learning Algorithms.
arXiv preprint arXiv:1708.07747 (2017).

[26] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2019. DBA: Dis-
tributed Backdoor Attacks against Federated Learning. In International
Conference on Learning Representations (ICLR).

[27] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. 2018. Generalized
Byzantine-tolerant SGD. arXiv preprint arXiv:1802.10116 (2018).

[28] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. 2020. Fall of
Empires: Breaking Byzantine-tolerant SGD by Inner Product Manipu-
lation. In Uncertainty in Artificial Intelligence (UAI).

[29] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Zeno: Distributed
Stochastic Gradient Descent with Suspicion-based Fault-tolerance. In
International Conference on Machine Learning (ICML).

[30] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, et al. 2015.
Petuum: A New Platform for Distributed Machine Learning on Big
Data. IEEE Transactions on Big Data (TBD) 1, 2 (2015), 49–67.

[31] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Feder-
ated Machine Learning: Concept and Applications. ACM Transactions
on Intelligent Systems and Technology (TIST) 10, 2 (2019), 1–19.

[32] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett.
2019. Defending Against Saddle Point Attack in Byzantine-robust
Distributed Learning. In International Conference on Machine Learning
(ICML).

[33] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter L. Bartlett.
2018. Byzantine-robust Distributed Learning: Towards Optimal Statis-
tical Rates. In International Conference on Machine Learning (ICML).

[34] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin,
et al. 2018. Federated Learning with Non-IID Data. arXiv preprint
arXiv:1806.00582 (2018).

60

	Abstract
	1 Introduction
	2 Background
	2.1 Federated Learning
	2.2 Prevailing Attacks to FL
	2.3 Byzantine-robust Aggregation Rules

	3 Problem Setup
	4 The Design of Siren
	4.1 Overview
	4.2 Client End
	4.3 FL Server End
	4.4 Decision Process and Security Analysis
	4.5 Weight Analysis
	4.6 Auxiliary Mechanisms

	5 Evaluation
	5.1 Experiment Settings
	5.2 Parameter Selection
	5.3 Defending Sign-flipping Attack
	5.4 Defending Label-flipping Attack
	5.5 Defending Targeted Model Poisoning
	5.6 Scalability: Experiments with 50 and 200 Clients
	5.7 Generality: Experiments on CIFAR-10 Dataset
	5.8 Efficiency Analysis
	5.9 Recovering the Training from Attacks
	5.10 Adaptability to More Attacks

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

