
Nitro: Boosting Distributed Reinforcement Learning with
Serverless Computing

Hanfei Yu

Stevens Institute of Technology

hyu42@stevens.edu

Jacob Carter

Louisiana State University

jcar116@lsu.edu

Hao Wang

Stevens Institute of Technology

hwang9@stevens.edu

Devesh Tiwari

Northeastern University

d.tiwari@northeastern.edu

Jian Li

Stony Brook University

jian.li.3@stonybrook.edu

Seung-Jong Park

Missouri University of Science and

Technology

seung-jong.park@mst.edu

ABSTRACT
Deep reinforcement learning (DRL) has demonstrated significant

potential in various applications, including gaming AI, robotics, and

system scheduling. DRL algorithms produce, sample, and learn from

training data online through a trial-and-error process, demanding

considerable time and computational resources. To address this,

distributed DRL algorithms and paradigms have been developed

to expedite training using extensive resources. Through carefully

designed experiments, we are the first to observe that strategically

increasing the actor-environment interactions by spawning more

concurrent actors at certain training rounds within ephemeral time

frames can significantly enhance training efficiency. Yet, current

distributed DRL solutions, which are predominantly server-based

(or serverful), fail to capitalize on these opportunities due to their

long startup times, limited adaptability, and cumbersome scalability.

This paper proposes Nitro, a generic training engine for dis-

tributed DRL algorithms that enforces timely and effective boost-

ing with concurrent actors instantaneously spawned by serverless

computing. With serverless functions, Nitro adjusts data sampling

strategies dynamically according to the DRL training demands. Ni-
tro seizes the opportunity of real-time boosting by accurately and

swiftly detecting an empirical metric. To achieve cost efficiency,

we design a heuristic actor scaling algorithm to guide Nitro for

cost-aware boosting budget allocation. We integrate Nitro with

state-of-the-art DRL algorithms and frameworks and evaluate them

on AWS EC2 and Lambda. Experiments with Mujoco and Atari

benchmarks show that Nitro improves the final rewards (i.e., train-
ing quality) by up to 6× and reduces training costs by up to 42%.

PVLDB Reference Format:
Hanfei Yu, Jacob Carter, Hao Wang, Devesh Tiwari, Jian Li,

and Seung-Jong Park. Nitro: Boosting Distributed Reinforcement Learning

with Serverless Computing. PVLDB, 18(1): 66 - 79, 2024.

doi:10.14778/3696435.3696441

PVLDB Artifact Availability:

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 1 ISSN 2150-8097.

doi:10.14778/3696435.3696441

The source code, data, and/or other artifacts have been made available at

https://github.com/IntelliSys-Lab/Nitro-VLDB25.

1 INTRODUCTION
Deep reinforcement learning (DRL) has achieved remarkable suc-

cess in various fields, including gaming AI [10, 35, 65, 70], robot-

ics [13, 78], and system scheduling [12, 45, 49, 55]. Unlike supervised

learning, which trains on readily labeled data, DRL algorithms pro-

duce, sample, and learn from fresh training data online through

time-consuming and resource-intensive trials and errors. This pro-

cess presents fundamental challenges for both data sampling and

resource provisioning. A few distributed DRL algorithms and in-

frastructures have been proposed to accelerate training by utilizing

large-scale distributed computing [17, 21, 23, 31, 43, 50, 51, 72].

Existing distributed DRL solutions heavily rely on serverful com-

puting infrastructures (e.g., virtual machines (VMs) or bare-metal

machines), suffering from low learning efficiency when training

with large-scale resources [38]. Specifically, due to the lengthy ini-

tialization and startup overheads, serverful infrastructures fail to

scale promptly at runtime to satisfy DRL algorithms’ dynamic de-

mands for training data and resources [74, 75]. Recent distributed

DRL algorithms [17, 43] and frameworks [38, 39, 77] have been

developed to optimize the training and resource efficiency by par-

allelizing training with large clusters and high-end workstations.

However, existing studies ignore the opportunities to accelerate

DRL training by jointly optimizing training data sampling efficiency

and computing resource provisioning. We are the first to observe

that strategically and timely increasing the volume of data sampled

by DRL actors during specific training periods can drastically ac-

celerate training, which can be supported by existing theoretical

studies on DRL training process [29, 66]. In this paper, we define

the increase of actor-environment interactions via spawning more

concurrent actors as “boosting.” The time frameworks for boost-

ing DRL training are typically ephemeral and unpredictable (§2.3).
However, existing serverful solutions fail to capture such boosting

opportunities due to their long startup times, limited adaptability,

and clumsy scalability.

Thus, we propose Nitro, a generic training engine for DRL with

serverless computing. Nitro is applicable to general actor-learner ar-
chitectures by abstracting actors as lightweight serverless functions

for both on-policy and off-policy algorithms. Serverless functions

are known for their auto-scaling, which allows DRL actors to ad-

just data sampling strategies dynamically according to the training

https://doi.org/10.14778/3696435.3696441
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3696435.3696441
https://github.com/IntelliSys-Lab/Nitro-VLDB25

(b)
Time

Learner

Actors

(a)

Learner

…Actors

… …

BackwardForwardEnv. steps Data sampling

…

…
…

Policy sync.

Figure 1: Actor-learner architectures for distributed DRL
training, including (a) on-policy (synchronous) training and
(b) off-policy (asynchronous) training.

demands. Specifically, we inspect the neural network updates of

learner policy and compute a boosting score by approximating the

Hessian matrix to detect the boosting opportunities. By evaluating

the runtime boosting efficiency at different rounds through DRL

training, we devise a cost-aware heuristic algorithm to guide Nitro
to optimize training efficiency at a minimal resource cost. The main

contributions of this paper are summarized as follows:

• We design Nitro, a generic serverless training engine for

both distributed on-policy and off-policy DRL algorithms

by jointly optimizing training data sampling efficiency and

resource provisioningwith timely and effective DRL boosting.

Nitro is prototyped with AWS EC2 and Lambda.

• We verify the effectiveness and robustness of boosting and

devise a boosting score to detect and quantify the boosting

opportunities in real-time DRL training. We also design a

cost-aware heuristic algorithm to guide the budget allocation

of Nitro through training.

• We evaluate the Nitro prototype by integrating with state-of-

the-art (SOTA) DRL algorithms and frameworks. Extensive

experiments with Mujoco and Atari benchmarks show that

Nitro improves the final reward (i.e., training quality) by up

to 6× and reduces the training cost by up to 42%.

2 BACKGROUND AND MOTIVATION
2.1 DRL Actor-learner Architectures
DRL aims to optimize a policy 𝜋 parameterized with 𝜃 by max-

imizing the expected return. The DRL agent learns to maximize

the cumulative reward 𝐽 (𝜋) := E𝜏∼𝜋
[∑𝑛

𝑡=0 𝛾
𝑡𝑟𝑡

]
, where 𝜏 is a tra-

jectory, 𝑟𝑡 is the reward at timestep 𝑡 , and 𝛾 is the discount factor.

Trajectory 𝜏 is a specific data type to describe the training data used

by DRL. One trajectory consists of a series of state-action pairs that

a DRL agent experienced through environment interactions.

Actor-learner architectures are one of the most performant

and efficient large-scale approaches to enable distributed DRL train-

ing [16, 17, 21, 23, 31, 43, 72]. Fig. 1 illustrates the actor-learner

architecture for DRL training workloads. In actor-learner, an agent

is divided into two sub-modules, i.e., one learner and multiple actors.
Each training round consists of two steps: 1) each actor interacts

with a copy of the same environment under the guidance of a policy

and submits the sampled data to the learner, and 2) the centralized

learner computes gradients using the sampled data, updates its

Always boosting
No boosting
Boosting scheme 1
Boosting scheme 2
Boosting scheme 3

M
ea

n
ep

is
od

ic
 re

w
ar

ds

0

100

200

Round
1 2 3 4 5 6 7 8 9 10

Figure 2: Boosting Proximal Policy Optimization (PPO) train-
ing in the Hopper environment by increasing the number
of actors from default 1 to 16.⋆ indicates a boostable round,
and × indicates non-boostable rounds for boosting.

policy, and synchronizes the new policy to multiple actors. Though

synchronous (on-policy in Fig. 1(a)) actor-learner training is more

stable [18], recent solutions have shifted to asynchronous (off-policy

in Fig. 1(b)) due to higher sampling efficiency [16, 17, 43].

2.2 Boosting Distributed DRL
Drawing inspiration from actor-learner architectures that separate

the learner and actors, we propose that augmenting the number of

concurrent actors during certain rounds (i.e., bootable rounds) could
accelerate distributed DRL training. We define boostable rounds as

those that have a high potential for achieving large reward gains

and significant data quality improvement, compared to other rounds

when provided with the same budget. Our hypothesis posits that

provisioning a greater number of concurrent actors at boostable

rounds results in an increased volume of data samples, obtained

through interaction with the DRL environment. This potentially

accelerates the learner’s ability to escape local optima traps [29].

To verify this hypothesis, we should address the following three

questions: Q1: Do such boostable rounds exist for accelerating DRL
training? Q2: Why can boosting accelerate the training? Q3: When

do boostable rounds appear, and how do we capture them?

We answer Q1 through a preliminary experiment of ten-round

training with PPO algorithm [63] in the Mujoco [68] Hopper envi-

ronment. Fig. 2 demonstrates boosting DRL training by increasing

the number of actors at a boostable round. The no-boosting scheme

launches only one actor by default to sample 256 timesteps per

round. In the experiment, we design three boosting schemes. Each

scheme boosts DRL with 16 actors and uniformly samples in total

4,096 (16×256) timesteps at a specific round and resumes one actor

at other rounds. Scheme 1 performs boosting at Round 4, Scheme 2

at Round 5, and Scheme 3 at Round 3.
1
Note that all three boosting

schemes require the same number of total actors (timesteps), thus

under the same budget.We also include an always-boosting baseline

with 16 actors throughout the ten rounds as an upper-bound.

Scheme 1 achieves significantly higher episodic rewards, Schemes

2 and 3 fail to accelerate the training due to boosting at non-

boostable rounds. The experiment demonstrates that Round 4 is a

boostable round. Compared to non-boostable rounds (i.e., Rounds 3

1
For a fair comparison between boosting schemes, we checkpointed and replayed the

same learner policy at each boosting round, and individually retrained PPO for the

remaining rounds.

120

40
80

-1.0
0.0 1.0

0.0
1.0X

Z

Y
-1.0

(a) 256 t (1 actor).

120

40
80

-1.0
0.0

1.0

0.0
1.0X

Z

Y
-1.0

(b) 2048 t (8 actors).

120

40
80

-1.0
0.0

1.0

0.0
1.0X

Z

Y
-1.0

(c) 4096 t (16 actors).

Figure 3: 3D landscapes of the DRL surrogate objective
boosted with 256 (1 actor), 2048 (8 actors), and 4096 (16 actors)
trajectory timesteps at the boostable round in Fig. 2. X and Y
axes show the two-dimensional perturbations on neural net-
work parameters, and the Z axis shows the episodic rewards.
Red and blue areas represent high and low rewards.

and 5), boosting DRL at Round 4 leads to higher boosting benefits

(i.e., episodic reward increase) given the same budget.

The existence of boostable rounds leads us to Q2—why can

boosting accelerate the training? To figure it out, we plot and an-

alyze the 3D landscapes of the surrogate objective, which is com-

monly employed by modern DRL algorithms to facilitate train-

ing [42, 61, 63, 67, 72]. Since it is difficult to directly optimize the

true rewards, DRL algorithms tend to design a surrogate objective

to guide the training, where the algorithms optimize the surrogates

instead of true rewards. Therefore, we investigate how boosting (i.e.,
increasing the volume of trajectory sampling) impacts the reward

surfaces of DRL surrogate objective.

Following existing neural network visualization techniques [29,

36, 66, 73], we add two-dimensional perturbations (ranging from

-1.0 to 1.0) to neural network parameters, where two perturbation

directions are based on top two Hessian eigenvectors [73]. We eval-

uate the episodic rewards of each set of perturbations within a grid

size of 30×30. Fig. 3 shows the reward surfaces of the surrogate

objective boosted with 256 (1 actor), 2048 (8 actors), and 4096 (16

actors) trajectory timesteps at the boostable round, respectively.

Boosting brings more diverse trajectories for the DRL neural net-

work to learn by increasing the actor-parallelism in real-time. The

surface of the surrogate objective gradually develops more high-

reward regions (red areas) when the volume of sampled trajectories

grows [29, 66], indicating that boosting can discover higher re-

wards and accelerate the training process. We provide a theoretical

analysis in §6.1 to further justify the boosting performance gains.

Finally, the existence and effectiveness of boostable rounds nat-

urally lead to Q3—when do they appear, and how to capture them?

2.3 Characteristics of Boostable Rounds
To answer Q3, we conducted a series of experiments across different

DRL environments, algorithms, and runs in Fig. 4. Our observations

indicate that boostable rounds are ephemeral and unpredictable in
DRL training. Specifically, we devise a metric in §5, boosting score,
that identifies boostable rounds in the ten-round training. Training

rounds with a higher score indicate a potential for achieving higher

boosting benefits.

Concretely, Fig. 4(a) shows the boosting scores when training

PPO across three environments: Hopper, Humanoid, and Walker2d,

Hopper Humanoid Walker2d

Bo
os

t s
co

re

0

1

of round
2 4 6 8 10

IMPALA IMPACT PPO

Bo
os

t s
co

re

0

1

of round
2 4 6 8 10

Run #1 Run #2 Run #3

Bo
os

t s
co

re

0

1

of round
2 4 6 8 10

(a) Three RL environments

(b) Three RL algorithms

(c) Three runs in Hopper

Figure 4: Boosting opportunities vary from environments (a),
algorithms (b), and different runs in the same setting (c).

from Mujoco [68] benchmark. The result demonstrates that boost-

ing opportunities vary from task to task. Fig. 4(b) shows the boost-

ing scores for three popular DRL algorithms, including IMPALA [17],

IMPACT [43], and PPO, training in the Hopper environment. Boost-

ing opportunities can vary from algorithm to algorithm while train-

ing in the same environment. Fig. 4(c) shows the boosting scores for

three different runs of PPO in the Hopper environment. Even for

the same reinforcement learning (RL) task and algorithm, boosting

opportunities are still stochastic and unpredictable.

Through the experiments, we can conclude that capturing boost-

able rounds in DRL training is challenging. The ephemerality and

unpredictability of boosting opportunities make potential boosting

solutions with high scaling overheads (i.e., serverful backends) or
predictions infeasible. We must seek a timely design that seizes the

opportunities immediately upon detection for effective boosting.

2.4 Serverful vs. Serverless Distributed DRL
Serverless computing is becoming a promising computing infras-

tructure for Machine Learning (ML) training [11, 19, 59, 71] due

to its fine-grained resource allocation, pay-as-you-go pricing, and

agile scalability. Fig. 5(a) depicts the startup time of AWS Lambda

functions and three popular types of EC2 instances. In contrast to

the lengthy startup of VMs, functions deployed on serverless com-

puting platforms (e.g., AWS Lambda [5]) can be initialized within

seconds, exhibiting a natural fit for instant boosting in DRL training.

Existing distributed DRL solutions [16, 17, 21, 23, 31, 43, 72] train

on serverful clusters, such as VM-based cloud platforms. However,

serverful DRL solutions fail to catch the potential boost opportunities
due to VMs’ long startup time and clumsy scalability.

During the idle window of VM initialization, actor-learner archi-

tectures must either pause the learner (synchronous) or replay old

trajectories for learner update (asynchronous). Both approaches

slow down the training process significantly. Fig. 5(b) shows the

mean episodic reward curves with one-time boosting using server-

less and two VM approaches (i.e., VM pause and VM reply) with

St
ar

tu
p

tim
e

(s
)

0

20

40

60

Lambda
c5.4x

m5.4x
r5.4x

Paused

Boost here

VM replay VM pause Serverless

0
200

M
ea

n
Ep

is
od

ic
 re

w
ar

ds

0
200

0
200

Wall clock time (s)
5 10 20 50

(a) Startup time (b) Training performance

Figure 5: Startup time of AWS Lambda and three popular EC2
instances (c5.4xlarge, m5.4xlarge, and r5.4xlarge).

the same experimental setup in §2.2. We train PPO in the Hopper

environment and boost with 16 actors for all three methods. For

the serverless boosting, we launch 16 AWS Lambda functions as

serverless actors. The two VM-based baselines both launch an AWS

EC2 c5.4xlarge with 16 CPU cores, where each CPU core hosts

an actor process. VM pause baseline stops the learner and waits for

the VM startup, whereas VM replay baseline updates the learner

with old trajectories from previous training rounds while waiting

for the VM startup. When using VMs to boost training, pausing
the learner incurs a long waiting time and severely increases the

training time, while replaying old trajectories hinders the training

performance. Unlike VMs, serverless functions can be launched

in seconds and instantly bring new trajectories for learner update,

thus achieving smooth and efficient boosting.

3 OBJECTIVES AND CHALLENGES
Nitro is carefully designed to achieve the three goals:

Effective and timely boosting. Due to the ephemerality and

unpredictability (§2.2), serverful solutions can hardly seize the

boosting opportunities instantly. Nitro exploits serverless computing
to power and scale DRL actors for timely boosting. Correspondingly,

Nitro should be scalable to support massive concurrent functions.

Accurate boosting opportunity detection. Nitro is keen on

accurately spotting boosting opportunities for the stochastic train-

ing process of DRL tasks. We design Nitro to compute a metric, i.e.,
boosting score, through the training to guide the boosting.

Cost efficiency. In actor-learner architectures, training cost

comes from both sides of the learner and actor. Nitro should accel-

erate the DRL training while maintaining low cost on running the

learner and actor. Our cost-efficient boosting design is two-fold: 1)

Nitro carefully justifies the budget for each boostable round based

on real-time training process. 2) Nitro enforces boosting decisions
to reduce the computing infrastructure cost using serverless com-

puting as existing works [11, 19, 20]. To realize the above objectives,

we must answer the following fundamental questions:

How to enable efficient boosting with serverless computing
on the actor-learner architecture? Existing actor-learner so-

lutions solely rely on serverful implementation and deployment.

While serverless computing is promising for instant boosting, the

lack of GPU accelerators makes a pure serverless actor-learner ar-

chitecture unfeasible [27, 28]. Therefore, we must carefully craft

Nitro to achieve high boosting efficiency with co-design of serverful

and serverless computing.

Boosting
Score

<latexit sha1_base64="MFr0zU4yhgedBMoA0iS2El5wpeM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8dIzAOSJcxOepMhs7PLzKwQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHstHM0nQj+hQ8pAzaqzUaPTH/XLFrbpzkFXi5aQCOer98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeOtnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVe+6evVwWam5eRxFOIFTOAcPbqAG91CHJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AEpEI2t</latexit>

Sk

Learner
Round

Boosting

Actor
Scaler

Boosting
Detector

1

of

 A
ct

or
s

3

Traj.
Cache

<latexit sha1_base64="hv7EMwt7vSYkMJsy1kx1dwNt7fI=">AAAConic1VHLSsNAFJ3EV62vqEsXDlahQimJ+NoIBRHUhbbUPqAtYTKZtEMmkzAzEUroh/kb7vwbp20W2voDHrhwOOdeZu65XsKoVLb9ZZgrq2vrG4XN4tb2zu6etX/QlnEqMGnhmMWi6yFJGOWkpahipJsIgiKPkY4X3k/9zjsRksb8TY0TMojQkNOAYqS05FofT24I72BQbrphBfoVGJ7D/wHXKtlVewa4TJyclECOumt99v0YpxHhCjMkZc+xEzXIkFAUMzIp9lNJEoRDNCQ9TTmKiBxks4gn8EwrPgxioYsrOFN/TmQoknIcebozQmokF72p+JfXS1VwO8goT1JFOJ4/FKQMqhhO7wV9KghWbKwJwoLqv0I8QgJhpa9a1CE4iysvk/ZF1bmuXjUuSzU7j6MAjsAJKAMH3IAaeAR10ALYODYejBfj1Tw1n82G2Zy3mkY+cwh+wex/A31apJE=</latexit>

Ik = f(Sk, d, k)

…

4

Policy
Model

2

<latexit sha1_base64="CEYgN0UdEGpoC8QsrPXb5X+n0lE=">AAAB8HicjVDJSgNBEK2JW4xb1KOXxiB4ChNxOwa8eIxgFswMoadTkzTp6Rm6a4Qw5C88eFHx6t949G+cLAcVBR8UPN6roqpekChpyXU/nMLS8srqWnG9tLG5tb1T3t1r2Tg1ApsiVrHpBNyikhqbJElhJzHIo0BhOxhdTf32PRorY31L4wT9iA+0DKXglEt3XiJ7Hg2ReK9cqVXdGdjfpAILNHrld68fizRCTUJxa7s1NyE/44akUDgpeanFhIsRH2A3p5pHaP1sdvGEHeVKn4WxyUsTm6lfJzIeWTuOgrwz4jS0P72p+JvXTSm89DOpk5RQi/miMFWMYjZ9n/WlQUFqnBMujMxvZWLIDReUh/S/DFon1dp59ezmtFJ3F2kU4QAO4RhqcAF1uIYGNEGAhgd4gmfHOI/Oi/M6by04i5l9+Abn7RMj2JDP</latexit>⇡✓
Online
Detect

<latexit sha1_base64="MFr0zU4yhgedBMoA0iS2El5wpeM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8dIzAOSJcxOepMhs7PLzKwQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHstHM0nQj+hQ8pAzaqzUaPTH/XLFrbpzkFXi5aQCOer98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeOtnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVe+6evVwWam5eRxFOIFTOAcPbqAG91CHJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AEpEI2t</latexit>

Sk

<latexit sha1_base64="TS0dTf2fdDlr5HC0r9oMgKue5PI=">AAAB53icbVDLSgNBEOyNrxhfUY9eBoPgKewGX8eAF48JmAckS5id9CZDZmeXmVkhLPkCD15UvPpJHv0bJ8keNLGgoajqprsrSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByP/c7T6g0j+WjmSboR3QkecgZNVZqTgblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDOz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2G5uBt/rxOmnXqt5N9bp5VanX8jSKcAbncAke3EIdHqABLWCA8Ayv8OZw58V5dz6WrQUnnzmFP3A+fwBOLIzZ</latexit>

k

R
ew

ar
ds Boost

No Boost

Bo
os

t S
co

re

<latexit sha1_base64="NFeXMg/ZlMQrgfsIGwZCMTY0pss=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBoOQg4Rd8XUMePEYwTwgWZbZyWwyZHZ2mekVQshvePCi4tWf8ejfOEn2oIkFDUVVN91dYSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6SGS6F4EwVK3kk1p3EoeTsc3c389hPXRiTqEccp92M6UCISjKKVelUT4Dm1pQMMyhW35s5BVomXkwrkaATlr14/YVnMFTJJjel6bor+hGoUTPJpqZcZnlI2ogPetVTRmBt/Mr95Ss6s0idRom0pJHP198SExsaM49B2xhSHZtmbif953QyjW38iVJohV2yxKMokwYTMAiB9oTlDObaEMi3srYQNqaYMbUw2A2/541XSuqh517Wrh8tK3c3TKMIJnEIVPLiBOtxDA5rAIIVneIU3B50X5935WLQWnHzmGP7A+fwBw7+RGQ==</latexit>

(st, at, rt
<latexit sha1_base64="VQ31L6AVraqyCMOg0g/hB+jS1Es=">AAAB7HicbVDLSgMxFL1TX7W+qi7dBIugmzIjvpYFNy4r2Ae0Q8mkmTY2kxmSO0IZ+g8u3Ki49X9c+jem7Sy09UDgcM495N4TJFIYdN1vp7Cyura+UdwsbW3v7O6V9w+aJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecJxwP6IDJULBKFqp2e3HaM565YpbdWcgy8TLSQVy1HvlLxtkacQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/Ntp2QE6v0SRhr+xSSmfo7kdHImHEU2MmI4tAselPxP6+TYnjjZ0IlKXLF5h+FqSQYk+nppC80ZyjHllCmhd2VsCHVlKEtyHbgLV68TJrnVe+qenl/Uam5eRtFOIJjOAUPrqEGd1CHBjB4hGd4hTdHOS/Ou/MxHy04eeYQ/sD5/AHPwo7d</latexit>

. . .)

Nitro

Training Data Sampling

Figure 6: Nitro’s workflow.

How to detect boosting opportunities online with low over-
heads?We demonstrated that the boosting score can effectively re-

veal the boosting opportunities in §2.2. However, boosting real-time

training requires the score computation to be online with negligible

overheads. We must design the score to be easy-to-compute while

providing precise guidance to boosting opportunities.

How to balance cost and efficiency while boosting DRL per-
formance? Given a limited budget, Nitro should carefully justify

and trade-off budgets on every boostable round. Spending too much

on one boostable round may result in an insufficient budget for

future boosting opportunities. However, the efficiency of each boost-

able round varies through training. It is hard to design a cost-aware

actor scaler to boost DRL training efficiency at minimal costs.

4 NITRO’S OVERVIEW
Nitro is a DRL training engine that accelerates general DRL algo-

rithms with cost-efficient boosting. Fig. 6 shows Nitro’s architecture
and workflow. Nitro’s training cycle is supported by the five system
components (Trajectory Cache, Policy Model, Boosting Detector,

Actor Scaler, and Serverless Actors), summarized in four steps:

Step 1 : Policy update. The learner periodically polls the Trajec-
tory Cache and gathers new trajectories to update its policy network.

Trajectory Cache is an in-memory data buffer that resides in Nitro’s
learner server to store trajectories for experience replay. Trajec-

tories submitted by the serverless actors are serialized and stored

as key-value pairs in the cache, where the keys are unique func-

tion invocation IDs. The update procedure consists of two modes:

on-policy and off-policy. In on-policy mode, the learner defers the

update and continuously checks if the trajectory cache has enough

samples until reaching the target. Off-policy mode updates the pol-

icy whenever new trajectories arrive in the cache and can replay

old trajectories [23, 31, 40] if the cache is temporarily empty.

Step 2 : Boosting opportunity detection. After a new policy

is generated, Nitro inspects the new policy network to determine

whether it needs boosting. The Boosting Detector is designed to in-

spect the boosting opportunities and compute the boosting score of

the policy in real-time training. It analyzes the objective landscape

of DRL policy networks and determines if a policy is in boostable

status by calculating a boosting score. Upon identifying a boostable

round, the Detector notifies the Actor Scaler for timely boosting.

Step 3 : Actor scaling. After the policy is analyzed, the Actor
Scaler makes cost-aware actor scaling decisions based on the re-

ceived boosting score and historical information (e.g., the remaining

budget). The decision is then forwarded to a serverless platform

for launching concurrent DRL actors and sampling trajectories by

rolling out the new policy.

Step 4 : Serverless execution. Each Serverless Actor receives the
new policy weights and synchronizes its own policy. Then, the ac-

tors interact with the environment using the new policy and collect

new trajectories from the policy. Once complete, each actor indi-

vidually submits the samples back to Nitro’s cache for future policy
updates. In Nitro, issuing a boosting decision is equivalent to mas-

sively increasing the number of concurrently launched serverless

actors (increasing samples), thus improving policy learning.

To boost on-policy algorithms [61, 63], Nitro defers launching
the actors until the learner completes the policy update, ensuring

each actor receives the latest policy weights. For off-policy algo-

rithms [16, 17, 43, 50], Nitro launches actors while asynchronously
updating itself, free from the blocking of actor synchronization.

We repeatedly train DRL tasks with Nitro in the above four-step

manner until the DRL agent achieves the target reward or runs out

of monetary budget.

5 NITRO’S DESIGN
5.1 Hessian-Based Neural Network Analysis
For a DRL policy neural network model 𝜃 , the first derivative of

the surrogate objective 𝐿(𝜃) w.r.t. the model parameters is the gra-

dient 𝑔𝜃 ∈ R (definitions in §6.1), used for backward propaga-

tion [60]. Differentiating the gradient 𝑔𝜃 yields a square matrix,

𝐻 := ∇2

𝜃
𝐿(𝜃) = ∇𝜃𝑔𝜃 ∈ R, commonly known as the Hessian matrix.

The Hessian matrix is a second-order derivative that effectively

captures important properties of the deep neural network objec-

tive landscape [64, 73]. Existing works have widely employed the

Hessian matrix 𝐻 to analyze the objective surface curvature of

neural networks [15, 29, 32, 36, 52, 66] and guide neural network

training, e.g., natural gradients [3, 30, 46] and Hessian-based policy

gradients [24, 64]. We also leverage Hessian information to design

a boosting score to capture boosting opportunities.

5.2 Boosting Opportunity Detection
We design the Boosting Detector deployed on Nitro’s learner server
(Fig. 6) to inspect and analyze the policy model weights to detect

opportunities for DRL boosting.

Nitro estimates the eigenvalues of the Hessian matrix to inspect

the policy network to measure the local curvature. The eigenvalues

of Hessian 𝜆 := {𝜆1, . . . , 𝜆𝑛} are proved to indicate the curvature of
the objective surface [36]. However, directly forming the full eigen-

values of Hessian can be computationally expensive [73]. Since the

objective optimization of neural networks is typically dominated

by the eigenvalues of the largest magnitude [36], this inspires us to

look for the min-max ratio 𝑅concave of Hessian eigenvalues:

𝑅concave := −max(0, 𝜆min)
𝜆max

, (1)

0.
78

0.
60

0.
56 17 58

1.
32.
16

0.
71 1.
12 30

0

10
54 77
3

3.
43

0.
92 2.
15 68

0

22
92

16
95

Lowest R value
Median R value
Highest R value(a)

(b)

(c)

R
 v

al
ue

s

1
101102103

R
 g

ai
n

1

100

R
ew

ar
d

ga
in

0

100

200

RL environments
HP HN WD SI QB GT

Figure 7: PPO reward gains after boosting at three different
rounds in six environments (HP: Hopper, HN: Humanoid,
WD: Walker2d, SI: SpaceInvaders, QB: Qbert, GT: Gravitar).

where 𝜆min and 𝜆max are minimum and maximum eigenvalues,

respectively. The metric 𝑅concave roughly measures how concave

the local surface of the objective is.

Since DRL studies a reward maximization problem (as opposed

to loss minimization in other learning settings), higher convexity

in the reward surface is better, corresponding to higher rewards.

Hence, we invert Eq. 1 to measure the ratio 𝑅 for convexity:

𝑅 := −𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
. (2)

The intuition behind Eq. 2 is to measure the ratio to approximately

quantify the convexity of the objective surface. Existing works

have verified the importance and effectiveness of convexity mea-

surement on DRL’s surrogate objectives. For example, Li et al. [36]

explains the trainability of neural networks by quantifying the

(non)convexity of loss, Kakade and Langford [29] detects the mis-

match between true rewards and surrogate objectives of DRL by

characterizing convexity, and Sullivan et al. [66] explores the per-

formance cliffs in DRL training by measuring convexity.

We then conduct an experiment to verify whether 𝑅 can be an

effective indicator of boosting opportunities in DRL training. The

experimental setting is the same as in §2.2. We train PPO in the Hop-

per environment with ten rounds, where one actor is launched per

round to sample 256 timesteps. We select three training rounds out

of ten with the lowest, median, and highest 𝑅 values, respectively.

Each round is boosted with 16 actors to sample 4,096 timesteps.

Fig. 7 shows the reward gains of boosting the selected three rounds.

We define the reward gain as the difference between the reward

after and before boosting, likewise 𝑅 gain. The results in Fig. 7(a)

indicate that boosting rounds with a lower 𝑅 can achieve more

benefits (i.e., reward gain) under the same number of actors. The

𝑅 value of each round also increases after boosting (Fig. 7(b)), in-

dicating the surrogate objective can be improved by boosting to

discover higher rewards.

Fig. 8 depicts the 3D reward surfaces of the surrogate objective for

the lowest, median, and highest𝑅 values in theHopper environment

from Fig. 7. With lower 𝑅 values, the reward surface for the DRL

neural network to explore is poorer (less high-reward regions) due

to less diverse trajectories, which indicates that boosting at low-𝑅

points can potentially achieve higher benefits.

120

40
80

-1.0
0.0

1.0
0.0

1.0X

Z

Y
-1.0

(a) Lowest 𝑅 (0.78).

120

40
80

-1.0
0.0

1.0
0.0

1.0X

Z

Y
-1.0

(b) Median 𝑅 (2.16).

150

50
100

-1.0
0.0

1.0

0.0
1.0X

Z

Y
-1.0

(c) Highest 𝑅 (3.43).
Figure 8: 3D landscapes of the DRL surrogate objective for
lowest, median, and highest 𝑅 values in Hopper environ-
ment from Fig. 7, respectively. X and Y axes show the two-
dimensional perturbations on neural network parameters,
and the Z axis shows the episodic rewards. Red and blue areas
represent high and low rewards, respectively.

5.3 Cost-aware Actor Scaling
We have demonstrated that measuring the convexity of the surro-

gate objective (𝑅 in Eq. 2) can be an effective metric to guide boost-

ing. However, given a limited training budget, Nitro cannot assume

every boosting opportunity to have maximum actor-parallelism.

We must design a cost-aware algorithm for Nitro to manage the

boost budget while preserving training efficiency.

Since DRL is a complex and fairly stochastic learning process

that can be affected by numerous factors (e.g., hyperparameters, net-

work initialization, etc.), estimating boosting benefits (i.e., episodic
reward increase) of a given boosting scheme ahead of each round

is hardly possible [69]. Thus, precisely determining the budget for

boosting before each round is infeasible. Therefore, Nitro employs

a heuristic to determine the number of actor functions per round

to achieve cost-efficient training. We design the algorithm based

on a key observation: boosting efficiency decreases through training,
suggesting spending more budget in the early training rounds.

Fig. 9 shows the reward gains and boost efficiency through 50-

round training for PPO in the Hopper environment. We sample five

points with the lowest 𝑅, each from every ten training rounds. Each

point is boosted with 4×, 8×, 16×, and 32× budget compared to no

boosting, respectively. Boosting efficiency is defined as the achieved

reward gain over the spent boosting budget, normalized to [0, 1] in
Fig. 9. While learning to accumulate rewards is relatively simple

in the early training rounds, finding optimal strategies in the late

rounds becomes difficult. As a result, the reward gain and boosting

efficiency gradually decrease through training. This observation

suggests that spending the same budget in early rounds is more
efficient than reserving for the late rounds. Existing studies [20, 76]
on distributedML training also discover similar trends, i.e., spending
more budgets in the early rounds instead of later ones, which is

aligned with our empirical findings.

We use a sliding window of size 𝑛 to monitor and record the

convexity𝑊𝑛 := {𝑅𝑘−𝑛+1, . . . , 𝑅𝑘 } in Eq. 2 for the past 𝑛 rounds.

The boosting score 𝑆𝑘 is estimated using min-max normalization

over the window𝑊𝑛 . To incorporate the observations, we embed

an exponential decay factor 𝑑 ∈ (0, 1) to the convexity metric 𝑅,

which anneals exponentially to the round number 𝑘 :

𝑆𝑘 :=
𝑅𝑚𝑎𝑥 − 𝑅𝑘

𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛
× 𝑑𝑘 ,

where 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 are the minimum and maximum values from

the sliding window𝑊𝑛 , respectively. Hence, the score always falls

Round 1~10
Round 11~20
Round 21~30

Round 31~40
Round 41~50

N
or

m
. b

oo
st

 e
ffi

ci
en

cy

0

0.5

1.0

 R
ew

ar
d

ga
in

0

50

100

150

Boost budget
4X 8X 16X 32X

Figure 9: Reward gain and boosting efficiency across different
rounds when training PPO in the Hopper environment.

within [0, 1], where a score close to 1 indicates a potentially high

boosting benefit and vice versa. Naturally, the number of actors

𝐼𝑘 to scale at round 𝑘 is computed proportionally to the boosting

score 𝑆𝑘 given by

𝐼𝑘 := Clip

(
𝐼𝑚𝑎𝑥 × 𝑆𝑘 , 𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥

)
,

where 𝐼𝑚𝑖𝑛 and 𝐼𝑚𝑎𝑥 are the minimum and maximum number of

actors we can launch per round. The clip function ensures that the

number of actors per round is always within a certain range, which

is adjustable based on the training budget.

6 NITRO’S ANALYSIS
In this section, we present the theoretical analysis to justify the

performance gain of Nitro’s boosting.

6.1 Nitro’s Performance gain
Theorem 1. Define the surrogate objective

𝐿(𝜃) := E𝑡

[
𝑙𝑜𝑔𝜋𝜃 (𝑎𝑡 |𝑠𝑡)𝐴𝑡 (𝑠𝑡 |𝑎𝑡)

]
,

where (𝑠𝑡 , 𝑎𝑡) is the state-action pair at timestep 𝑡 and the advantage
function 𝐴𝑡 (𝑠𝑡 |𝑎𝑡) := 𝑄𝑡 (𝑠𝑡 |𝑎𝑡) −𝑉𝑡 (𝑠𝑡) guides the update of policy
𝜋 parameterized by 𝜃 [62]. The gradient 𝑔𝜃 for updating policy 𝜋𝜃 is
differentiated from the objective as follows

𝑔𝜃 := E
𝜏∼𝜋𝜃

[∑︁
(𝑠𝑡 ,𝑎𝑡) ∈𝜏

∇𝜃 log𝜋𝜃 (𝑎𝑡 |𝑠𝑡)𝐴𝑡 (𝑠𝑡 |𝑎𝑡)
]
,

where 𝜏 denotes the trajectories containing state-action pairs (𝑠𝑡 , 𝑎𝑡)
generated by 𝜋𝜃 .

Intuitively, the gradient 𝑔𝜃 is pushed towards the direction that

increases the probability of taking action 𝑎𝑡 if the advantage feed-

back𝐴𝑡 (𝑠𝑡 |𝑎𝑡) from 𝑎𝑡 is positive, meaning that the action 𝑎𝑡 yields

a higher reward above the average performance 𝑉𝑡 (𝑠𝑡) at state 𝑠𝑡 .
Otherwise, 𝑔𝜃 is forced to go the opposite direction to avoid 𝑎𝑡 if

𝑎𝑡 leads to a reward below the average (i.e., 𝐴𝑡 (𝑠𝑡 |𝑎𝑡) is negative).
Recall that we detect boosting opportunities by measuring the

convexity metric 𝑅 (Eq. 2). If the surrogate objective 𝐿(𝜃) (The-
orem 1) has low 𝑅 values, then its surface is relatively flat [36],

indicating the policy 𝜋𝜃 has a less diverse advantage feedback 𝐴𝑡 .

In this case, the gradient 𝑔𝜃 may struggle to guide what actions

lead to good or bad rewards, potentially resulting in policy updates

in the wrong direction and causing the optimization process to

become trapped in local optima [29]. Existing works also reveal

that limited trajectories can hinder the surrogate objective from

approximating the reward distribution [29, 66]. Thus, Nitro boosts
at training rounds with low 𝑅 by diversifying the trajectories (i.e.,
state-action pairs (𝑠𝑡 , 𝑎𝑡)), thus improving the policy update process

and training performance.

6.2 Nitro’s Complexity
The time complexity of Nitro is mainly dominated by the com-

putation of the metric 𝑅 in Eq. 2, which requires estimating the

maximum and minimum eigenvalues of the Hessian matrix of a

neural network (§7). This section analyzes the complexity of 𝑅

computation in Nitro.
Recall that 𝑔𝜃 is the gradient of the objective w.r.t. a neural net-

work and 𝐻 denotes its Hessian matrix. Explicitly forming the

Hessian matrix by differentiating from 𝑔𝜃 can be computationally

costly. Instead, existing methods compute the Hessian-vector prod-

uct 𝐻𝑣 for inspecting traces or eigenvalues:

𝐻𝑣 = ∇𝜃 (𝑔𝑇𝜃 𝑣) = ∇𝜃 (𝑔𝑇𝜃)𝑣 + 𝑔
𝑇
𝜃
∇𝜃 𝑣,

where𝑇 represents thematrix transpose operation and 𝑣 is a normal-

ized random vector drawn from the Gaussian distribution. While

we can compute 𝐻𝑣 using arbitrary random vectors, the Hessian

approximation quality depends on the choice of 𝑣 . Gaussian dis-

tributions are proved to generate random vectors with the least

computation variances [73]. Therefore, we follow this routine to

compute 𝐻𝑣 using the chain rule of derivatives. Importantly, 𝐻𝑣

has been proved to be easy-to-compute, where the cost of comput-

ing 𝐻𝑣 is the same as one backward propagation of the gradient

𝑔𝜃 [73]. Additionally, instead of computing𝐻𝑣 using all trajectories,

we compute 𝐻𝑣 with a subset of trajectories sampled from Nitro’s
trajectory cache, further reducing the complexity. Therefore, the

computational complexity of Nitro is negligible to the DRL training

complexity itself. We further show that both Hessian matrix ap-

proximation and using trajectory subset are necessary for reducing

computation overheads in §8.7.

6.3 Nitro’s Robustness
We prove that the performance gain of Nitro is robust by holding a

lower bound on monotonic reward improvement, which guarantees

policy update performance during training. Recall that 𝐽 (𝜋) denotes
the cumulative rewards achieved by rolling out policy 𝜋 .

Theorem 2. When Nitro’s policy 𝜋 updates to a new one 𝜋 ′, the
following reward improvement lower bound holds:

𝐽 (𝜋 ′) − 𝐽 (𝜋) ≥ −
𝛾𝜖𝜋

′√︁
2 log(1 + 𝜌)
(1 − 𝛾)2

,

where the constant 𝜖𝜋 ¤=max𝑠 |E𝑎∼𝜋 [𝐴𝜇] |, 𝛾 is the discount factor,
and 𝜌 is the surrogate clip threshold [37, 43, 63], respectively.

We refer to the Corollary 1 from [2]. First, we replace Total Vari-

ation (TV) divergence with Kullback–Leibler (KL) divergence using

Pinsker’s inequality [14]. Then, we apply Jensen’s inequality [14]

on the log function with 𝜌 to reach the form of Theorem 2.

Table 1: Hyperparameters of PPO and IMPACT in evaluation.

Parameter PPO IMPACT

Learning rate 0.00005 0.0005

Discount factor (𝛾) 0.99 0.99

Batch size (Mujoco) 4096 4096

Batch size (Atari) 256 256

Clip parameter 0.3 0.4

KL coefficient 0.2 1.0

KL target 0.01 0.01

Entropy coefficient 0.0 0.01

Value function coefficient 1.0 1.0

Target update frequency N/A 1.0

7 IMPLEMENTATION
Nitro is designed to be a generic training engine for boosting dis-

tributed DRL training with a hybrid serverful and serverless com-

puting solution. For concreteness, we describe its implementation

in the context of a combination of AWS services, including AWS

EC2 [4] and AWS Lambda [8]. We implement Nitro with 3K lines of

Python, which will be open-sourced after review. We describe the

detailed implementation of Nitro’s components and features below.

Boosting Detector. We employ the PyHessian library [73] and

use a stochastic Lanczos method to estimate the eigenvalues of

Hessian. PyHessian only requires Hessian-vector products for Hes-

sian estimation, which can be calculated directly with PyTorch’s

automatic differentiation [53]. The computation overhead of the

Boosting Detector is trivial compared to Nitro’s training time (§8.7).

Learner.We use AWS EC2 instances with GPU accelerators to host

the learner. The learner’s core logic is implemented by PyTorch [53],

including the policy model’ neural networks and learning process.

Serverless Actor. We employ AWS Lambda to implement light-

weight serverless actor functions. The dependencies of the actor

function are installed and packaged as a Docker container im-

age [48]. We store and manage the actor container image in AWS

Elastic Container Registry [6] for fast function deployment. Before

training DRL tasks, Nitro profiles information about the execution

time and resource demand of actor functions with the task to run.

The profiled results are used to determine the optimal function

memory size when deploying actor functions on AWS Lambda.

We use AWS Lambda’s built-in pre-warming services, provisioned

concurrency [9], to further reduce the function startup overhead.

Actor Scaler. We implement the actor scaler in Python with AWS

Python SDK Boto3 [7], and use Python’s built-in multiprocessing

library to invoke actor functions on AWS Lambda concurrently.

Trajectory Cache. We use Redis [58], an in-memory key-value

cache, to implement the trajectory cache in Nitro. Existing DRL

frameworks generally store the trajectory data in a key-value man-

ner (i.e., dictionary in Python). We also follow the key-value data

structure of existing DRL frameworks to cache trajectories, which

makes key-value databases such as Redis an appropriate choice

for the cache. The Redis instance resides on the learner server and

provides high-performant communications between the learner

and actor functions. Upon completing sampling, actor functions

serialize the trajectories using Pickle [54] and submit the serialized

sample batch to Redis. Depending on the DRL algorithm, Nitro’s
learner performs either asynchronous policy update by periodically

polling Redis or waits for all actors to perform synchronous update.

(a) HopperPPO + Nitro
PPO

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 50 100

(b) Humanoid

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 50 100 150

(c) Walker2d

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 50 100

(d) Gravitar

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 2000 4000

(e) SpaceInvaders

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 2000

(f) Qbert

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

Training round
0 20 40

Wall clock time (s)
0 1000 2000

Figure 10: Nitro improves PPO training efficiency.

8 EVALUATION
This section conducts extensive experiments to evaluate Nitro, in-
cluding overall performance against SOTA baselines (§8.2), effec-

tiveness of actor scaling (§8.3), ablation study (§8.5), scalability

(§8.6), sensitivity analysis (§8.4), and breakdowns and overheads of

Nitro (§8.7). Nitro improves the final reward (i.e., training quality)
by up to 6× and reduces training cost by up to 42% than baselines.

8.1 Experimental Setup
Testbeds.We deploy all serverful baselines to a cluster of AWS EC2

VMs: one p3.2xlarge and one c5.4xlarge. The cluster contains
one NVIDIA V100 GPU and 16 Intel Xeon Platinum CPUs for train-

ing DRL tasks. For Nitro, we use the same p3.2xlarge instance to

host the learner while deploying each actor as a function on AWS

Lambda with 1,024 MB memory.
2
The learner VM has 16 GB GPU

memory, 60 GB CPU memory, and up to 10 Gigabit bandwidth.

Workloads. Six popular environments from OpenAI Gym are used

to evaluate Nitro and SOTA baselines, including three continuous-

action MuJoCo environments (Hopper, Humanoid, and Walker2d)

and three discrete-action Atari environments (SpaceInvaders, Qbert,

2
We use AWS services in the US East 2 region. The hourly unit prices for p3.2xlarge
and c5.4xlarge are $3.06 and $0.68, respectively. The AWS Lambda function invoca-

tion fee is $0.0000166667 per GB-second.

IMPACT + Nitro
IMPACT

(a) Hopper

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 50 100

(b) Humanoid

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 50 100 150

(c) Walker2d

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 50 100 150

(d) Gravitar

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 2000

(e) SpaceInvaders

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 2000

(f) Qbert

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

Training round
0 20 40

Wall clock time (s)
0 1000

Figure 11: Nitro improves IMPACT training efficiency.

and Gravitar). For three MuJoCo environments, the policy network

consists of two fully-connected layers of 256 hidden units with

Tanh activation. For three Atari environments, the policy network

consists of three convolutional layers of 8×8, 4×4, and 11×11 kernel
sizes with ReLU activation, respectively. The input sampled from

Atari games is a stack of three 84×84 images. In both cases, the

critic networks share the same architecture as the policy networks.

Nitro’s setting.We limit the actor allocation range of Nitro within
[8, 64] during everyDRL training round, i.e., 𝐼𝑚𝑖𝑛 = 8 and 𝐼𝑚𝑎𝑥 = 64.

We set AWS Lambda’s provisioned concurrency for Nitro to be 64,

the same as 𝐼𝑚𝑎𝑥 to eliminate cold-starts.
3
Considering the eval-

uation deployment’s cost-efficiency, we choose to verify Nitro’s
effectiveness at the scale of 64 actors for most experiments. The

evaluation results demonstrate that Nitro effectively outperforms

SOTA baselines. Additionally, we also evaluate Nitro’s actor func-
tion scalability and large-scale deployment in §8.6, showing that

larger scales further accelerate DRL training. We allocate 1,024 MB

memory to each serverless actor function and set the timeout limit

to 60 seconds. The exponential decay factor 𝑑 is set to 0.96 when

evaluating Nitro. The sliding window size 𝑛 is set to six rounds. We

further evaluate the sensitivity of three parameters in §8.4.

3
The AWS Lambda provisioned concurrency fee is $0.0000041667 + $0.0000097222 for

every GB-second in US East 2 region.

RLlib + Nitro
RLlib

(a) Hopper

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 50 100 150 200

(b) Humanoid

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 50 100 150

(c) Walker2d

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 50 100

(d) Gravitar

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 2000 4000

(e) SpaceInvaders

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 2000

(f) Qbert

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

Training round
0 20 40

 Wall clock time (s)
0 1000

Figure 12: Nitro improves RLlib training efficiency.

8.2 Overall Performance
8.2.1 Integrating with DRL Algorithms. We evaluate how Nitro
boosts SOTA DRL algorithms. Specifically, we integrate Nitro with
two algorithms, one on-policy and one off-policy: 1) PPO [63] is the

most famous on-policy DRL algorithm that has been employed in

extensive applications [10, 13, 55, 56]. We implement a standard dis-

tributed PPO with Generalized Advantage Estimation (GAE) [62]

and surrogate objective clipping [63]. 2) IMPACT [43] is a SOTA

off-policy algorithm. IMPACT itself builds on a long list of improve-

ments over PPO and combines various tricks for asynchronous

training, such as V-trace importance sampling [17] and the surro-

gate target network [41]. We use PPO and IMPACT as baselines

and integrate them with Nitro for comparison. Table 1 describes

the hyperparameter settings of PPO and IMPACT used in the eval-

uation. We employ the same hyperparameter settings from tuned

examples in RLlib [39]. Both PPO and IMPACT training use Adam

optimizer [33]. We train each algorithm for 50 rounds in six envi-

ronments. The results are averaged over ten repeated experiments,

each with a different random seed.

Training efficiency. Figs. 10 and 11 show the episodic rewards

through training in six environments for PPO and IMPACT, re-

spectively. IMPACT completes training faster than PPO in most

environments due to the advantage of being off-policy. Nitro outper-
forms PPO and IMPACT by training faster in statistical efficiency

MSRL + Nitro
MSRL

(a) Hopper

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 100 200

(b) Humanoid

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 100 200

(c) Walker2d

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 50 100

(d) Gravitar

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 2000 4000

(e) SpaceInvaders

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

0 20 40 0 2000

(f) Qbert

Ep
is

od
ic

 re
w

ar
d

0

200

400

600

Training round
0 20 40

Wall clock time (s)
0 2000

Figure 13: Nitro improves MSRL training efficiency.

Hopper
Humanoid
Walker2d

Gravitar
SpaceInvaders
Qbert

Learner

C
os

t (
$)

0
2
4
6
8
0

0.5

1.0

PPO
PPO+

Nitro
IM

PACT

IM
PACT+

Nitro RLlib
RLlib

+

Nitro MSRL

MSRL+

Nitro

Figure 14:Nitro reduces training costs of PPO, IMPACT, RLlib,
and MSRL. Grey bars represent the time spent on the learner,
and the rest indicate the time spent on actors.

and wall clock time. Nitro improves the final reward by up to 5×
and 3× than PPO and IMPACT, respectively.

Training cost. Fig. 14 shows the training costs of the two base-

lines and variants integrated with Nitro. Nitro reduces training costs
by up to 29% and 42% than the PPO and IMPACT, respectively.

8.2.2 Integrating with DRL Frameworks. We also evaluate how Ni-
tro improves SOTA DRL frameworks. Two popular DRL frame-

works are integrated withNitro in the evaluation: 1)Ray RLlib [39]

of

 a
ct

or
s

0
20
40
60

Round
0 50

Actor
Learner

KungFu
Hydrozoa

MinionsRL
Nitro

Cost ($)
0 2

KungFu Hydrozoa MinionsRL Nitro

Ep
is

od
ic

 re
w

ar
d

0

200

400

0 20 40 0 50 100 150

(a) Actor scaling (b) Training cost

(c) Training performance

Figure 15: Nitro reduces training cost while boosting.

is an open-source industrial-grade RL library with a comprehensive

implementation of algorithms. We replace RLlib’s remote Rollout-

Workers with serverless actor functions for integration. The original

states of RLlib’s actors are transformed into input/output data of

functions and stored in the distributed cache. 2) MSRL [77], the

default RL library developed for MindSpore [26], is a distributed

RL training system that uses dataflow graphs to execute DRL algo-

rithms. Similarly, we replace the original Workers defined in MSRL

with serverless actor functions to execute the algorithm fragments.

We run PPO with two frameworks in six environments using the

same experimental setting in §8.2.1.

Training efficiency. Figs. 12 and 13 show the episodic rewards

through training in six environments for RLlib and MSRL, respec-

tively. In both frameworks, we observe similar improvements with

Nitro. Nitro accelerates PPO training in two frameworks by improv-

ing both statistical and training efficiency. Nitro improves the final

reward by up to 6× and 5× than RLlib and MSRL, respectively.

Training cost. Fig. 14 shows the training costs of the two frame-

works and variants integrated with Nitro. Nitro reduces training
costs by up to 21% and 30% than RLlib and MSRL, respectively.

8.3 Actor Scaling
We compare Nitro’s actor scaling algorithm against three SOTA

dynamic worker scaling schemes for distributed ML and DRL train-

ing: 1) KungFu [44] employs a dynamic worker scaling algorithm

based on gradient noise scale (GNS) for serverfulML training, which

only scales up the number of workers proportional to the increase

of GNS and never scales down. For a fair comparison, we extend

KungFu to a serverless environment by replacing KungFu’s workers

with serverless functions. 2) Hydrozoa [19] doubles the number

of serverless workers with a fixed schedule rate (e.g., every ten

rounds), which serves as a heuristic baseline for actor scaling. 3)

MinionsRL [74] employs a DRL-based actor scheduler to dynam-

ically scale serverless actors, which tries to solve the scheduling

problem via black-box optimization. We train PPO in the Hopper

environment for each scheme with 50 rounds, the same as in §8.2.

Fig. 15(a) depicts how the four schemes scale actors through

training. KungFu and Hydrozoa ignore the budget and quickly in-

crease the number of concurrent actors to the maximum, while

C
os

t (
$)

0
0.5
1.0

Fi
na

l r
ew

ar
d

0
200
400

Decay factor
3 4 5 6 7 8 9

C
os

t (
$)

0

0.5

1.0

Fi
na

l r
ew

ar
d

0
200
400

Window size
3 4 5 6 7 8 910

C
os

t (
$)

0
0.2
0.4

D
ur

at
io

n
(s

)

0
2
4

Function memory size (MB)
256 512 768 1024 1280 1536 1792 2048

(a) (b)

(c)

Figure 16: Sensitivity analysis in the Hopper environment.

Nitro performs cost-aware boosting via careful actor scaling. In-

terestingly, MinionsRL also tends to increase the number of actors

at early rounds and scale down gradually, which aligns with our

observations in §5.3. However, MinionsRL fails to capture the boost-

ing opportunities due to its black-box nature, thus degrading the

training performance. Fig. 15(b) shows four schemes’ training costs.

KungFu andHydrozoa are not designed for distributed DRL training

and ignore training costs, thus incurring significantly higher costs

than Nitro. While MinionsRL’s training cost is less than KungFu

and Hydrozoa, its expensive pre-training cost [74] is omitted, yet

still incurring higher costs than Nitro. As MinionsRL fails to capture

boosting opportunities, it scales actors in non-boostable rounds

and wastes more budgets. Fig. 15(c) shows the statistical training

efficiency and wall clock time of KungFu, Hydrozoa, MinionsRL,

and Nitro, respectively. Nitro achieves higher rewards over the three
schemes at minimal costs.

8.4 Sensitivity Analysis
We analyze the sensitivity of three parameters in Nitro: decay factor
𝑑 , sliding window size 𝑛, and actor function memory size. We

run the same experiment in §8.2, i.e., training PPO in the Hopper

environment, but with different parameter values for analysis. The

results are reported in Fig. 16. Other combinations of algorithms

and environments show similar sensitivity results.

Decay factor 𝑑 .We set the decay factor to 0.96 in the evaluation.

Fig. 16(a) shows the achieved final reward and training cost when

gradually increasing the factor from 0.93 to 0.99 in the step of 0.01.

When the factor increases, both the final reward and cost increase

because Nitro allows spending more budget. The final reward stops

growing at 0.96 while the cost is still increasing.

Sliding window size 𝑛. In our evaluation, we set the sliding

window size to 6. Fig. 16(b) shows the final reward and training cost

when gradually increasing the window size from 3 to 10. Increasing

the window size allows Nitro to track longer historical information,

thus making the boosting score computation more conservative.

Hence, with a larger window size,Nitro tends to launch fewer actors
when boosting, leading to lower costs but worse final rewards. We

Nitro
w/o boosting
w/o serverless

Ep
is

od
ic

 re
w

ar
d

0

200

400

Wall clock time (s)
0 50 100 150

Actor
Learner

Nitro w/o
serverless

Nitro w/o
boosting

Nitro

Cost ($)
0 0.5 1.0 1.5

(a) Training performance (b) Training cost
Figure 17: Ablation study of Nitro.

Hopper
Humanoid

HalfCheetah
Gravitar

SpaceInvaders
Qbert

To

ta
l e

xe
cu

tio
n

tim
e

(s
)

10
20
30

2

4

of actors
100 200 300 400 500 600 700 800 900 1000

Figure 18: Scalability of Nitro with respect to the number of
concurrent actors in six environments.

observe that Nitro achieves minimal training costs while preserving

high performance with a size of 6.

Actor function memory size. Fig. 16(c) shows the actor func-
tion duration and total function cost with different memory sizes.

The actor function duration stops decreasing after the memory size

is larger than 1024 MB, while the total function cost continuously

grows.We conclude thatNitro ’s latency in the Hopper environment

is not sensitive after reaching a certain function memory size. We

plan to verify the sensitivity of other environments in the revision.

8.5 Ablation Study
To verify the effectiveness of two key components: serverless com-

puting and boosting, we compare Nitro with two variants of itself:

1) Nitro w/o serverless. We use a c5.9xlarge with 72 CPU cores

(smallest VM size above 64 CPU cores) as the actor server to replace

the serverless actors. 2) Nitro w/o boosting. This variant statically
launches 16 serverless actors per round without any boosting. We

train PPO in the Hopper environment using the same experimental

setting described in §8.2. Fig. 17(a) and Fig. 17(b) report the episodic

reward and training cost for three baselines, respectively. Nitro
w/o boosting launches fewer serverless actors than Nitro, incurring
minimal cost but suffering from performance degradation. Nitro
w/o serverless achieves similar performance with Nitro yet suffers
from excessive cost. The results demonstrate that both serverless

computing and boosting are necessary to the design of Nitro.

8.6 Scalability
We evaluate the scalability of Nitro’s serverless actor functions and
conduct large-scale testing on Nitro.

Actor function scalability. Fig. 18 shows the scalability of

Nitro with AWS Lambda. We gradually increase the number of

concurrent actors from 100 to 1,000. Here, we measure the total

execution time of a group of actors, defined as the time starting from

invoking actors concurrently until the trajectory cache has received

all submissions, to characterize scalability. The total execution time

RLlib + Nitro
RLlib

(a) Hopper

Ep
is

od
ic

 re
w

ar
d

0
200
400
600

0 50 0 1000

(b) Qbert

Ep
is

od
ic

 re
w

ar
d

0

500

Training round
0 50

 Wall clock time (s)
0 2000

Hopper
Learner

Qbert

 C

os
t (

$)

0
5

10

0

5

RLlib
RLlib+

Nitro

(c)

Figure 19: Large-scale testing of Nitro with RLlib running
PPO in two environments.

Learner update
Detect overhead

Invoke overhead
Lambda startup

Actor execution
Traj. aggregation

QB
SI

GT
WD
HN
HP

Latency (s)
0 20 40 60 80

0.4

61
5

O
ve

rh
ea

d
(s

)

1
10

100

Nitro
w/o app.

w/o sub.

(a)

(b)

Figure 20: Latency breakdown, including (a) one-round train-
ing on six environments and (b) boosting score overhead.

of actors in all environments stays consistent when the number

of concurrent actors increases, indicating that Nitro can scale to

thousand-level serverless functions and achieve further benefits

in large-scale training. Executing actors in Atari environments

(Gravitar, SpaceInvaders, and Qbert) has a higher latency than

Mujoco environments (Hopper, Humanoid, and Walker2d) because

passing data of stacked frames takes more time.

Large-scale testing. We conducted a large-scale experiment

with a serverful baseline (Ray RLlib) and Nitro using the PPO al-

gorithm. The serverful Ray RLlib uses one p3.8xlarge VM with

four NVIDIA V100 GPUs as the learner node and a c5.24xlarge
VM with 96 CPU cores hosting actors. Nitro also uses the same

p3.8xlarge VM with four V100 GPUs but can scale up to 128

serverless actor functions in AWS Lambda. This evaluation aims

to test a larger-scale setting of the whole system, including more

learners, actors, and trajectories with an upgrade of 4× more GPUs

and 6× more CPUs. We use two environments, Hopper and Qbert,

as examples in the experiment. Fig. 19 presents the episodic rewards

through training and total cost. In a large-scale setting, Nitro still
outperforms RLlib by improving the final reward by 2.4× and 2.5×
while reducing training costs by 22% and 27%, for Hopper and Qbert,

respectively. The exponentially increasing rewards indicate that

Nitro can achieve more significant benefits in large-scale settings.

While the rewards stopped growing due to reaching the budget

limit, they will eventually converge with more training budgets.

8.7 Breakdowns and Overheads
We report the latency breakdowns of Nitro’s one-round training.

Latency and overhead breakdowns. Fig. 20(a) characterizes
the latency breakdown of six environments used in evaluation with

Nitro’s one-round training. We evaluate the overheads of Nitro
with a maximum of 64 concurrent actors. The total overhead of all

components incurs less than 5% delay, which is negligible for the

one-round latency while providing boosted performance.

Boosting score computation overhead. Fig. 20(b) shows the
boosting score overheads of three baselines when running on Hop-

per environment, including (i) Nitro with both Hessian matrix ap-

proximation and use of trajectory subset, (ii) Nitro without Hessian
matrix approximation, and (iii) Nitro without using trajectory sub-

set. Hessian approximation and using trajectory subset drastically

reduces the boosting score computation time by 100× and 10×,
respectively. Both techniques are critical to achieving negligible

computation overheads.

9 RELATED WORK
DRL frameworks. Recently, a few open-source DRL training

frameworks have been proposed. Acme [22] is a research-oriented

DRL framework. Stable-Baselines3 [57] is developed for reliable

DRL implementation. CleanRL [25] aims to provide high-quality

single-file DRL implementations. SpinningUP [1] focuses on edu-

cational purposes for DRL beginners. RLlib [39] provides industry-

grade DRL framework. MSRL [77] uses fragmented dataflow graphs

to execute DRL algorithms. Nitro can be integrated with existing

frameworks to enable DRL boosting.We demonstrate this capability

by evaluating RLlib and MSRL integrated with Nitro (§8.2.2).
Distributed DRL training. A3C [50] firstly introduced a simple

actor-leaner prototype. IMPALA [17] is the first off-policy (asyn-

chronous) actor-learner architecture with V-trace correction. IM-

PACT [43] stabilized DRL training performance by adding a surro-

gate target network to the actor-learner architecture. SEED RL [16]

aimed to accelerate off-policy actor-learner architectures by shifting

actor inferences to centralized GPU servers. However, the above dis-

tributed RL solutions were all designed for serverful architectures,

thus can hardly exploit the agile scalability and fine-grained re-

source provisioning of serverless computing. Unlike existing server-

ful solutions,Nitro fuses serverless computing into the actor-learner

architecture to accelerate DRL training by boosting the number of

concurrent actors instantly.

Actor scaling in serverful DRL.Many studies aim to scale out

actors in distributed RL using serverful infrastructures. ActorQ [34]

proposes scaling and accelerating DRL training according to the

quantification of the inference on actors. SRL [47] scaled DRL train-

ing to industrial production environment by abstracting the com-

ponents of actor-learner architectures. Parallel Q-Learning [38]

massively parallelizes and optimizes GPU-based environment inter-

actions on a single workstation. Existing solutions scale distributed

DRL actors to fully utilize large-scale clusters and workstations.

Instead, Nitro enables dynamic actor scaling with serverless com-

puting to boost DRL training cost-efficiently.

Serverless ML training. Serverless computing has recently at-

tracted the ML community to design novel training frameworks.

Cirrus [11] proposes a serverless framework that simplifies end-to-

end ML training. Siren [71] designs a DRL function scheduler to au-

tomate distributed ML training on serverless computing platforms.

Jiang et al. [28] conducts a comprehensive comparison between

server-based and serverless ML training, which indicates serverless

training is cost-efficient. However, due to the lack of GPU support,

the above serverless approaches cannot match the performance

of server-based training [28]. Other works have attempted to en-

able GPUs for serverless training. Llama [59] proposes a serverless

framework for auto-tuning video analytics pipelines, which sup-

ports GPUs in their backends. Hydrozoa [19] presents a deep neural

network (DNN) training framework on top of Azure Container In-

stancess (ACIs) with dynamical data and model parallelism.

Serverless DRL training. Stellaris [75] proposes an asynchronous

learning paradigm for DRL systems with serverless computing,

which focuses on improving learner efficiency instead of actor

boosting. MinionsRL [74] is the closest work to us, which also lever-

ages serverless computing to design DRL training systems with

dynamic actor scaling. However, MinionsRL falls short in three

aspects. First, it is limited in synchronous training and only serves

on-policy DRL algorithms, whereas our solution can accelerate

both on-policy and off-policy algorithms. Second, it is a data-driven

solution relying on a DRL-based scheduler and taking hours of pre-

training and excessive pre-training expenses, whereas our work is a

system solution that serves as a pluggable enhancement to existing

DRL frameworks without any preparation overheads. Third, the

DRL-based scheduler of MinionsRL cannot be well-justified since it

applies a black-box optimization algorithm. In contrast, Nitro lever-
ages provable metrics to explicitly capture boosting opportunities

to accelerate DRL training with cost-efficiency. Nitro outperforms

MinionsRL by training DRL algorithms faster with much less costs.

10 CONCLUSION
This paper proposed Nitro, a generic DRL training engine for actor-

learner architectures that provides strategic boosting with server-

less computing. In Nitro, actors are abstracted and packaged as

lightweight serverless functions for agile scaling while the learner

utilizes a GPU server for efficient training. With serverless func-

tions, Nitro dynamically adjusts data sampling strategies according

to the DRL training demands. To accurately and promptly seize the

ephemeral boosting opportunities in real-time boosting, we design a

boosting score to inspect the neural networks inside Nitro’s learner
policy. Inspired by observations from realistic DRL tasks, we devise

a cost-aware heuristic algorithm to guide Nitro to achieve minimal

training cost. Various SOTA DRL algorithms and frameworks are

integrated with Nitro to evaluate the effectiveness. Experiments on

AWS EC2 and Lambda with Mujoco and Atari benchmarks show

that Nitro improves the final reward (i.e., training quality) by up to

6× and reduces training cost by up to 42%.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their valuable feedback. The

work of Hanfei Yu and Hao Wang was supported in part by NSF

2153502, 2403247, 2403398, and the AWS Cloud Credit for Research

program. Thework of Devesh Tiwari was supported byNSF 2124897.

The work of Jian Li was supported in part by NSF 2148309 and

2337914. The work of Seung-Jong Park was supported in part by

NSF 2403248 and 2403399. This work used JetStream2 at IU through

allocation CIS220024 and CIS240498 from the Advanced Cyberin-

frastructure Coordination Ecosystem: Services & Support (ACCESS)

program, which is supported by National Science Foundation grants

2138259, 2138286, 2138307, 2137603, and 2138296. Any opinions,

findings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the

views of the funding agencies.

REFERENCES
[1] Joshua Achiam. 2018. Spinning Up in Deep Reinforcement Learning. https:

//spinningup.openai.com.

[2] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained

Policy Optimization. In International Conference on Machine Learning (ICML).
[3] Shun-Ichi Amari. 1998. Natural Gradient Works Efficiently in Learning. Neural

Computation (1998).

[4] AWS. 2006. AWS EC2: Secure and Resizable Compute Capacity in the Cloud.

https://aws.amazon.com/ec2/.

[5] AWS. 2014. AWS Lambda: Serverless Compute. https://aws.amazon.com/

lambda/.

[6] AWS. 2015. Amazon Elastic Container Registry. https://aws.amazon.com/ecr/.

[7] AWS. 2015. AWS SDK for Python (Boto3). https://aws.amazon.com/sdk-for-

python/.

[8] AWS. 2018. AWS Lambda: Serverless Compute. https://aws.amazon.com/

lambda/.

[9] AWS. 2019. AWS Lambda: Configuring Provisioned Concurrency. https:

//docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html.

[10] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław

Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris

Hesse, et al. 2019. Dota 2 with Large Scale Deep Reinforcement Learning. arXiv
preprint arXiv:1912.06680 (2019).

[11] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz.

2019. Cirrus: a Serverless Framework for End-to-end ML Workflows. In ACM
Symposium on Cloud Computing (SoCC).

[12] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. 2018. Auto: Scaling Deep Rein-

forcement Learning for Datacenter-scale Automatic Traffic Optimization. In 2018
conference of the ACM special interest group on data communication (SIGCOMM).

[13] Xiangyu Chen, Zelin Ye, Jiankai Sun, Yuda Fan, Fang Hu, Chenxi Wang, and

Cewu Lu. 2020. Transferable Active Grasping and Real Embodied Dataset. In

2020 IEEE International Conference on Robotics and Automation (ICRA).
[14] Imre Csiszár and János Körner. 2011. Information Theory: Coding Theorems for

Discrete Memoryless Systems. Cambridge University Press.

[15] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. 2017. Sharp

Minima Can Generalize for Deep Nets. In International Conference on Machine
Learning (ICML).

[16] Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michal-

ski. 2020. Seed RL: Scalable and Efficient Deep-RL with Accelerated Central

Inference. In International Conference on Learning Representations (ICLR).
[17] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom

Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. 2018. IM-

PALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner

Architectures. In International Conference on Machine Learning (ICML).
[18] Shixiang Shane Gu, Timothy Lillicrap, Richard E Turner, Zoubin Ghahramani,

Bernhard Schölkopf, and Sergey Levine. 2017. Interpolated Policy Gradient:

Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement

Learning. Advances in Neural Information Processing Systems (NIPS) (2017).
[19] Runsheng Guo, Victor Guo, Antonio Kim, Josh Hildred, and Khuzaima Daud-

jee. 2022. Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless

Containers. Proceedings of Machine Learning and Systems (MLSys) (2022).
[20] Wang Hao, Niu Di, and Li Baochun. 2019. Distributed Machine Learning with a

Serverless Architecture. In Proc. the IEEE Conference on Computer Communica-
tions (INFOCOM).

[21] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostro-

vski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver.

2018. Rainbow: Combining Improvements in Deep Reinforcement Learning. In

Thirty-second AAAI conference on artificial intelligence (AAAI).
[22] Matthew W Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron,

Nikola Momchev, Danila Sinopalnikov, Piotr Stańczyk, Sabela Ramos, Anton

Raichuk, Damien Vincent, et al. 2020. Acme: A Research Framework for Dis-

tributed Reinforcement Learning. arXiv preprint arXiv:2006.00979 (2020).
[23] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,

Hado Van Hasselt, and David Silver. 2018. Distributed Prioritized Experience

Replay. In International Conference on Learning Representations (ICLR).
[24] Feihu Huang, Shangqian Gao, Jian Pei, and Heng Huang. 2020. Momentum-

Based Policy Gradient Methods. In International Conference on Machine Learning
(ICML).

[25] Shengyi Huang, Rousslan Fernand JulienDossa Dossa, Chang Ye, Jeff Braga,

Dipam Chakraborty, Kinal Mehta, and João GM Araújo. 2022. CleanRL: High-

quality Single-file Implementations of Deep Reinforcement Learning Algorithms.

The Journal of Machine Learning Research (2022).

[26] Ltd. Huawei Technologies Co. 2022. Huawei MindSpore AI Development Frame-

work. In Artificial Intelligence Technology.
[27] Jiawei Jiang, Shaoduo Gan, Bo Du, Gustavo Alonso, Ana Klimovic, Ankit Singla,

Wentao Wu, Sheng Wang, and Ce Zhang. 2023. A Systematic Evaluation of

Machine Learning on Serverless Infrastructure. The VLDB Journal (2023).

[28] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana Klimovic,

Ankit Singla, WentaoWu, and Ce Zhang. 2021. Towards Demystifying Serverless

Machine Learning Training. In 2021 International Conference on Management of
Data (SIGMOD).

[29] Sham Kakade and John Langford. 2020. A Closer Look at Deep Policy Gradients.

In International Conference on Learning Representations (ICLR).
[30] ShamMKakade. 2001. A Natural Policy Gradient. Advances in Neural Information

Processing Systems (NIPS) (2001).
[31] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, andWill Dabney.

2018. Recurrent Experience Replay in Distributed Reinforcement Learning. In

International Conference on Learning Representations (ICLR).
[32] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,

and Ping Tak Peter Tang. 2017. On Large-batch Training for Deep Learning:

Generalization Gap and Sharp Minima. In International Conference on Learning
Representations (ICLR).

[33] Diederik P Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[34] Maximilian Lam, Sharad Chitlangia, Srivatsan Krishnan, Zishen Wan, Gabriel

Barth-Maron, Aleksandra Faust, and Vijay Janapa Reddi. 2021. ActorQ: Quanti-

zation for Actor-learner Distributed Reinforcement Learning. In Hardware Aware
Efficient Training Workshop at ICLR.

[35] Guillaume Lample and Devendra Singh Chaplot. 2017. Playing FPS Games

with Deep Reinforcement Learning. In Thirty-First AAAI Conference on Artificial
Intelligence (AAAI).

[36] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. 2018.

Visualizing the Loss Landscape of Neural Nets. Advances in neural information
processing systems (NIPS) (2018).

[37] Suyi Li, Luping Wang, Wei Wang, Yinghao Yu, and Bo Li. 2021. George: Learning

to Place Long-Lived Containers in Large Clusters with Operation Constraints.

In ACM Symposium on Cloud Computing (SoCC).
[38] Zechu Li, Tao Chen, Zhang-Wei Hong, Anurag Ajay, and Pulkit Agrawal. 2023.

Parallel Q-Learning: Scaling Off-policy Reinforcement Learning under Massively

Parallel Simulation. In International Conference on Machine Learning (ICML).
[39] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Gold-

berg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2018. RLlib: Abstractions

for Distributed Reinforcement Learning. In International Conference on Machine
Learning (ICML).

[40] Xingxing Liang, Yang Ma, Yanghe Feng, and Zhong Liu. 2021. PTR-PPO: Prox-

imal Policy Optimization with Prioritized Trajectory Replay. arXiv preprint
arXiv:2112.03798 (2021).

[41] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous Control

with Deep Reinforcement Learning. arXiv preprint arXiv:1509.02971 (2015).
[42] Zuxin Liu, Zhepeng Cen, Vladislav Isenbaev, Wei Liu, StevenWu, Bo Li, and Ding

Zhao. 2022. Constrained Variational Policy Optimization for Safe Reinforcement

Learning. In International Conference on Machine Learning (ICML).
[43] Michael Luo, Jiahao Yao, Richard Liaw, Eric Liang, and Ion Stoica. 2020. IM-

PACT: Importance Weighted Asynchronous Architectures with Clipped Target

Networks. In International Conference on Learning Representations (ICLR).
[44] Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos Fertakis, Andrei-Octavian

Brabete, and Peter Pietzuch. 2020. KungFu: Making Training in Distributed

Machine Learning Adaptive. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI).

[45] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,

and Mohammad Alizadeh. 2019. Learning Scheduling Algorithms for Data

Processing Clusters. In ACM Special Interest Group on Data Communication
(SIGCOMM).

[46] James Martens. 2020. New Insights and Perspectives on the Natural Gradient

Method. Journal of Machine Learning Research (JMLR) (2020).
[47] Zhiyu Mei, Wei Fu, Guangju Wang, Huanchen Zhang, and Yi Wu. 2024. SRL:

Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores. Inter-
national Conference on Learning Representations (ICLR) (2024).

[48] Dirk Merkel et al. 2014. Docker: Lightweight Linux Containers for Consistent

Development and Deployment. Linux Journal (2014).
[49] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yue-

feng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean.

2017. Device Placement Optimization with Reinforcement Learning. In Interna-
tional Conference on Machine Learning (ICML).

[50] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-

thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchro-

nous Methods for Deep Reinforcement Learning. In International Conference on
Machine Learning (ICML).

[51] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon,

Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles

Beattie, Stig Petersen, et al. 2015. Massively Parallel Methods for Deep Rein-

forcement Learning. arXiv preprint arXiv:1507.04296 (2015).
[52] Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam Lerer,

Alistair Letcher, Alexander Peysakhovich, Aldo Pacchiano, and Jakob Foerster.

https://spinningup.openai.com
https://spinningup.openai.com
https://aws.amazon.com/ec2/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/ecr/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html

2020. Ridge rider: Finding Diverse Solutions by Following Eigenvectors of the

Hessian. Advances in Neural Information Processing Systems (NIPS) (2020).
[53] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.

2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.

Advances in Neural Information Processing Systems (NIPS) (2019).
[54] Python. 2008. Pickle — Python Object Serialization. https://docs.python.org/3/

library/pickle.html.

[55] Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T Kalbarczyk, and Ravis-

hankar K Iyer. 2020. {FIRM}: An Intelligent Fine-grained Resource Management

Framework for {SLO-Oriented} Microservices. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI).

[56] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever, et al. 2019. Language Models are Unsupervised Multitask Learn-

ers. OpenAI blog (2019).

[57] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernes-

tus, and Noah Dormann. 2021. Stable-baselines3: Reliable Reinforcement Learn-

ing Implementations. The Journal of Machine Learning Research (2021).

[58] Redis. 2009. Redis Official Website. http://redis.io/.

[59] Francisco Romero, Mark Zhao, Neeraja J Yadwadkar, and Christos Kozyrakis.

2021. Llama: A Heterogeneous & Serverless Framework for Auto-Tuning Video

Analytics Pipelines. In ACM Symposium on Cloud Computing (SoCC).
[60] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning

Representations by Back-propagating Errors. Nature (1986).
[61] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

2015. Trust Region Policy Optimization. In International Conference on Machine
Learning (ICML).

[62] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.

2016. High-Dimensional Continuous Control Using Generalized Advantage Esti-

mation. In International Conference on Learning Representations (ICLR).
[63] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347
(2017).

[64] Zebang Shen, Alejandro Ribeiro, Hamed Hassani, Hui Qian, and Chao Mi. 2019.

Hessian Aided Policy Gradient. In International Conference on Machine Learning.
5729–5738.

[65] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. 2016. Mastering the Game of Go with Deep Neural

Networks and Tree Search. Nature (2016).
[66] Ryan Sullivan, Justin K Terry, Benjamin Black, and John P Dickerson. 2022. Cliff

Diving: Exploring Reward Surfaces in Reinforcement Learning Environments.

In Nineteenth International Conference on Machine Learning (ICML).
[67] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999.

Policy Gradient Methods for Reinforcement Learning with Function Approxima-

tion. Advances in Neural Information Processing Systems (NIPS) (1999).
[68] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. MuJoCo: A Physics En-

gine for Model-based Control. In IEEE/RSJ International Conference on Intelligent
Robots and Systems.

[69] Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya

Tolstikhin. 2020. Predicting Neural Network Accuracy from Weights. arXiv
preprint arXiv:2002.11448 (2020).

[70] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-

drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,

Petko Georgiev, et al. 2019. Grandmaster Level in StarCraft II Using Multi-agent

Reinforcement Learning. Nature (2019).
[71] Hao Wang, Di Niu, and Baochun Li. 2019. Distributed Machine Learning with a

Serverless Architecture. In IEEE 2019 Conference on Computer Communications
(INFOCOM).

[72] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh,

Manolis Savva, and Dhruv Batra. 2019. DD-PPO: Learning Near-Perfect Point-

Goal Navigators from 2.5 Billion Frames. arXiv preprint arXiv:1911.00357 (2019).

[73] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. 2020. Pyhes-

sian: Neural Networks Through the Lens of the Hessian. In 2020 IEEE international
conference on big data (Big data).

[74] Hanfei Yu, Jian Li, Yang Hua, Xu Yuan, and Hao Wang. 2024. Cheaper and

Faster: Distributed Deep Reinforcement Learning with Serverless Computing. In

Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI).
[75] Hanfei Yu, Hao Wang, Devesh Tiwari, Jian Li, and Seung-Jong Park. 2024. Stel-

laris: Staleness-Aware Distributed Reinforcement Learning with Serverless Com-

puting. In International Conference for High Performance Computing, Networking,
Storage and Analysis (SC).

[76] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J Freedman. 2017. SLAQ:

Quality-Driven Scheduling for Distributed Machine Learning. In Proc. the 2017
Symposium on Cloud Computing (SoCC). ACM.

[77] Huanzhou Zhu, Bo Zhao, Gang Chen, Weifeng Chen, Yijie Chen, Liang Shi,

Yaodong Yang, Peter Pietzuch, and Lei Chen. 2023. MSRL: Distributed Rein-

forcement Learning with Dataflow Fragments. In 2023 USENIX Annual Technical
Conference (ATC).

[78] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei,

and Ali Farhadi. 2017. Target-driven Visual Navigation in Indoor Scenes Using

Deep Reinforcement Learning. In IEEE International Conference on Robotics and
Automation (ICRA 2017).

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
http://redis.io/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 DRL Actor-learner Architectures
	2.2 Boosting Distributed DRL
	2.3 Characteristics of Boostable Rounds
	2.4 Serverful vs. Serverless Distributed DRL

	3 Objectives and Challenges
	4 Nitro's Overview
	5 Nitro's Design
	5.1 Hessian-Based Neural Network Analysis
	5.2 Boosting Opportunity Detection
	5.3 Cost-aware Actor Scaling

	6 Nitro's Analysis
	6.1 Nitro's Performance gain
	6.2 Nitro's Complexity
	6.3 Nitro's Robustness

	7 Implementation
	8 Evaluation
	8.1 Experimental Setup
	8.2 Overall Performance
	8.3 Actor Scaling
	8.4 Sensitivity Analysis
	8.5 Ablation Study
	8.6 Scalability
	8.7 Breakdowns and Overheads

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

