
FaaSRank: Learning to Schedule Functions in
Serverless Platforms

Hanfei Yu
University of Washington

hanfeiyu@uw.edu

Athirai A. Irissappane
University of Washington

athirai@uw.edu

Hao Wang
Louisiana State University

haowang@lsu.edu

Wes J. Lloyd
University of Washington

wlloyd@uw.edu

Abstract—Current serverless Function-as-a-Service (FaaS)
platforms generally use simple, classic scheduling algorithms for
distributing function invocations while ignoring FaaS character-
istics such as rapid changes in resource utilization and the freeze-
thaw life cycle. In this paper, we present FaaSRank, a function
scheduler for serverless FaaS platforms based on information
monitored from servers and functions. FaaSRank automatically
learns scheduling policies through experience using reinforcement
learning (RL) and neural networks supported by our novel
Score-Rank-Select architecture. We implemented FaaSRank in
Apache OpenWhisk, an open source FaaS platform, and eval-
uated performance against other baseline schedulers including
OpenWhisk’s default scheduler on two 13-node OpenWhisk
clusters. For training and evaluation, we adapted real-world
serverless workload traces provided by Microsoft Azure. For
the duration of test workloads, FaaSRank sustained on average
a lower number of inflight invocations 59.62% and 70.43% as
measured on two clusters respectively. We also demonstrate the
generalizability of FaaSRank for any workload. When trained
using a composite of 50 episodes each for 10 distinct random
workloads, FaaSRank reduced average function completion time
by 23.05% compared to OpenWhisk’s default scheduler.

I. INTRODUCTION

Serverless computing is a new cloud computing paradigm
that has growing prosperously in recent years. Function-as-
a-Service (FaaS), the most commonly used service delivery
model of serverless computing, has become increasingly pop-
ular [1]. Serverless FaaS platforms free users from low-level
tasks while automating resource provisioning, scaling, and
isolation. Users are only responsible for deploying source
code and configuring memory limits for applications. FaaS
platforms feature pay-as-you-go pricing models while enabling
simplified deployment of applications. Consequently, FaaS
platforms provide an enticing option for developers to consider
for hosting computational workloads that simplify manage-
ment with potential to reduce costs incurred from renting idle
servers. Major cloud providers offer FaaS platforms such as
AWS Lambda [2], Microsoft Azure Functions [3], Google
Cloud Function [4], and IBM Cloud Functions [5].

Similar to traditional web service load balancing, FaaS
platforms schedule function invocations by distributing re-
quests across available servers known as workers for exe-
cution. Though sharing some characteristics with traditional
web service scheduling, FaaS scheduling introduces new chal-
lenges. First, FaaS exposes unique characteristics that tradi-
tional scheduling strategies don’t consider. On a traditional

web service cluster, service deployments are typically fixed
and do not change. On a FaaS cluster, function invocations
are stateless and much more bursty than traditional web
requests while also experiencing the infrastructure freeze-thaw
life cycle [6]. Several minutes after finishing execution, the
temporary infrastructure used to host FaaS functions known
as function instances [7] are removed from a server. When
function instances are recreated, they may not be provisioned
on the same server. This inconvenience can result in additional
initialization overhead as necessary source code and libraries
may not be cached on the new host, a phenomenon contribut-
ing to cold start latency [8]. FaaS function deployments con-
stantly change the location of free capacity across the cluster,
whereas traditional web service hosting features largely static
deployment and resource management. Second, FaaS clusters
enable all resources for unused functions to be reclaimed and
reprovisioned: e.g., processes, memory, disk space, and CPU
capacity. It’s non-trivial to provide an intelligent scheduling
approach to simultaneously address new challenges unique
to FaaS scheduling. New scheduling approaches are needed
to address these challenges that expand upon traditional load
balancing algorithms for web services.

However, existing FaaS platforms have generally adopted
simple, classic scheduling algorithms while ignoring the
unique challenges associated with FaaS characteristics (e.g.,
AWS Lambda [2] and Apache OpenWhisk [9]). In this paper,
we present FaaSRank, a function scheduler designed for
serverless FaaS platforms. FaaSRank learns dynamic schedul-
ing policies through experience using reinforcement learning
(RL) and neural networks. Given a high-level goal (e.g.,
minimize average function completion time in our context),
FaaSRank leverages function and worker metrics to auto-
matically make decisions on scheduling function invocations.
FaaSRank optimizes the average function completion time
(FCT) of FaaS workloads while maintaining scheduling fair-
ness for scheduling individual functions from different clients.
FaaSRank strives to improve upon the use of traditional neural
networks for training smart schedulers for scalable clusters,
by developing a novel Score-Rank-Select architecture based
on reinforcement learning.

Here are the main contributions of the paper:

• We describe the design of FaaSRank, a general function
scheduler for serverless platforms.

1

• We implement a prototype of FaaSRank and four other
baseline schedulers in the Apache OpenWhisk [9].

• We evaluate FaaSRank using realistic serverless functions
collected from [10] [11] and [12].

• We adapt real-world serverless traces from Microsoft
Azure Functions [13] to conduct extensive evaluations
of FaaSRank performance.

II. BACKGROUND AND MOTIVATION

In this section, we introduce general FaaS platforms and
existing function scheduling strategies. We use an example
evaluated on a realistic FaaS platform to motivate the need
for an intelligent scheduler. We also briefly illustrate how to
learn scheduling policies using reinforcement learning.

A. FaaS and Function Scheduling

FaaS platforms generally consist of a frontend, a controller,
and multiple servers hosting backend services. The frontend
receives function invocations and forwards them to a scheduler.
The scheduler maintains a list of available servers for function
execution. Once informed of an incoming invocation, the
scheduler selects a server on which to execute the function.

Function scheduling algorithms vary for existing FaaS
platforms. Open-source FaaS platforms generally use classic
algorithms for function scheduling. For example, Apache
OpenWhisk [9] adopts a hashing method to schedule func-
tions within a distributed cluster. Details regarding scheduling
algorithms implemented by commercial FaaS platforms are
not available publicly, nevertheless researchers reveal some
facts through reverse engineering. [7] and [14] identify that
AWS Lambda [2] greedily packs containers running function
invocations on Virtual Machines (VMs) to improve resource
utilization.

Existing approaches for function scheduling, e.g., classic
algorithms or the packing strategy employed by AWS Lambda,
tend to introduce performance problems. For classic algo-
rithms, in addition to the cold start delay when launching a new
function instance with its dependencies [8], performance can
suffer further from resource contention if function instances
are co-located on busy servers with too many other functions.
Round-robin and least-connections algorithms are unaware of
function dependencies, which can result in more cold starts.
Greedy packing strategies also introduce resource contention,
and can produce performance degradation [7]. Given available
server metrics, it’s non-trivial to select a suitable server to
schedule a function invocation. Section II-B illustrates that
human-designed strategies are conservative and can hardly
handle complicated FaaS workloads.

B. An Illustrating Example

To motivate the need of an intelligent scheduler for FaaS
platforms, we conduct an evaluation of function scheduling
on Apache OpenWhisk [9], an open-source FaaS platform
used to implement IBM Cloud Functions [5], to demonstrate
performance of adopting different schedulers. We deployed an
OpenWhisk cluster with 10 servers for executing functions.

Fig. 1: Average Function Completion Time (FCT) of three schedulers

Each server had 8 vCPU cores and 16 GBs of memory, with
2 GBs available for function runtimes. The details of our
OpenWhisk configuration are described in Section VI-B.

Our motivating experiment examines three schedulers:
• Hashing scheduler. The default scheduler employed by

OpenWhisk. The hashing scheduler calculates a hash
value for each function, and always schedules the same
function invocation to the same server with the aim of
minimizing cold starts.

• Greedy scheduler. We use a simple greedy algorithm to
mimic the scheduling strategy adopted by AWS Lambda,
which always schedules functions to the same server until
the server no longer has available resources. The greedy
scheduler maximizes the resource utilization of servers
in-use while minimizing the total number of servers to
shrink the platform’s footprint.

• Static-rank scheduler. A fine-tuned heuristic scheduler
we developed that calculates an overall score for each
server using a fixed fitness function. The overall score is
calculated as

score = 2� cpu+ 1:5�memory + disk

+ network + load avg + infra

+ 3� avail mem slots;

(1)

where 2, 1.5 and 3 are weights assigned to CPU, memory,
and available slots based on server free memory.

We evaluated these schedulers using a testing workload
adapted from real-world serverless function traces provided
by Microsoft Azure [13] that describes function invocations
over a 60-second period. Further details of our experimental
workload traces are described in Section VI-B.

Figure 1 reports the average function completion time (FCT)
for our three schedulers for 10 repetitions of the workload.
The Static-rank scheduler reduced the average FCT by 10.10%
and 14.88% respectively, compared to OpenWhisk’s default
Hashing scheduler and the Greedy scheduler. The Static-rank
scheduler considers FaaS characteristics as well as conven-
tional factors (load average and available resource) when
scheduling functions. However, given a variety of serverless
workloads, manually devising a reasonable fitness function for
each may require countless testing and carefully fine-tuning.

In address the challenge of manually tuning a heuristic-
based scheduler like Static-rank, we present FaaSRank, a self-
learning algorithm to schedule functions for FaaS platforms

2

based on deep reinforcement learning (DRL). FaaSRank uses
neural networks to automatically learn the optimal function
scheduling policies based on high-level objectives such as
average FCT. FaaSRank evaluates resource utilization metrics
of individual servers and information of the incoming function
invocation, ranks all the servers, and selects the best server to
schedule the function.

C. Deep Reinforcement Learning

FaaSRank uses RL and neural networks to learn function
scheduling algorithms for FaaS. In a general RL setting, an
agent learns how to benefit most from making sequential
decisions by iteratively interacting with the environment and
accumulating knowledge from previous experience. RL is
well-suited to learning policies for computer systems, because
RL agents are able to learn from real-world workloads and
operating conditions without human-designed inaccurate as-
sumptions. RL has been applied to various scheduling prob-
lems, such as resource management [15], network optimization
[16], and device placement [17].

Specifically in RL, at every time t, the agent first observes
a state st of the environment, and then makes a decision on
taking an action at. Following the action, the environment
changes its state to st+1 and the agent perceives a reward rt
as feedback. The interactions are stochastic and assumed to
be a Markov process, i.e., the next state st+1 and reward rt
solely depend on the previous state-action pair (st, at). Thus
the agent learns to maximize its expected cumulative rewards

E
h ∞X
t=0

t � rt
i
; (2)

where 2 (0; 1] is the discount factor to discount the sum of
rewards by how far off in the future they’re obtained [18].

The agent takes actions based on a policy, defined as a
mapping between states and actions. A policy � outputs an
action at when given a state st, i.e., at � �(�jst). Function
approximators are commonly used to represent parameter-
ized policies. A function approximator outputs computable
functions that depend on a set of adjustable parameters, �,
which we can adjust to affect the behavior of a policy via
optimization algorithms. We refer to � as policy parameters
and represent the policy as at � ��(�jst). In DRL, neural net-
works are used as function approximators to solve stochastic
RL tasks, as neural networks are end-to-end differentiable for
training and self-adaptive without hand-crafted features [19].
Therefore we use neural networks to represent FaaSRank’s
scheduling policy.

III. OVERVIEW

FaaSRank is an intelligent scheduler that uses neural net-
works to make function scheduling decisions for serverless
platforms. On FaaS platforms, scheduling events involves or-
chestrating where a function executes on a distributed cluster.
Activated by an event, FaaSRank takes as an input the current
state information of the cluster, and the function request, and

outputs a scheduling action, i.e., a server to schedule the
incoming function invocation on.

A. Challenges

We tackle three key challenges by designing FaaSRank:
1) Server Assessment. Given a function invocation re-

quest, the scheduler must select the best server from
a FaaS cluster for function scheduling. It’s non-trivial to
compose together available metrics to assess individual
servers to make reasonable trade-offs between cold starts
and resource contention in real-time.

2) Cluster Scalability. It’s necessary to define a fixed
output size of a neural network, i.e., a fixed number
of servers within a cluster. However, it’s common for
multiple servers to join or leave the cluster, a problem
that can force neural networks to be retrained.

3) Huge action space. Providers host commercial FaaS
platforms on clusters consisting of thousands of servers.
Selecting a server from a huge cluster requires the
scheduler agent be trained over a huge action space, i.e.,
the output size of a neural network must be linear to the
cluster size. Mapping conditions to thousands of actions
poses a challenge for training the scheduler, which has
to explore the action space to learn a good policy.

To address Challenge 1, we adopt a combination of resource
utilization metrics and function information as features to
characterize the state of individual servers for function exe-
cution. To address Challenge 2 and 3, we propose a score
function inspired by [19], which is implemented using neural
networks to make scheduling decisions across clusters having
an arbitrary number of servers. We describe our proposed
solutions in detail in Section IV.

B. Objective

FaaSRank optimizes the average Function Completion Time
(FCT) of a workload. The FCT of a function invocation is
defined as the time from its arrival until completion. This
includes initialization overhead, waiting time in any platform
queues, and execution time.

We consider a FaaS platform that handles a multiple func-
tion concurrent workload. Let S denote the set of functions
invoked within the workload, f denotes a function invocation
in S. The platform captures the FCT cf of an invocation
after it completes execution. The total FCT C of a workload
is denoted by C =

P
f∈S cf , which we want to minimize.

Hence, we aim to minimize the average FCT given by:

�C =

P
f∈S cf

jSj
: (3)

Note that this objective does not guarantee scheduling fair-
ness of individual functions, i.e., FaaSRank treats a workload
as an entity to optimize the average FCT, but does not
guarantee a performance improvement for every function. We
assessed the scheduling fairness provided by FaaSRank and
report our results in Section VI. We compared the average
FCT of individual functions processed by FaaSRank and with

3

other baseline scheduling approaches. Our results show that in
additional to the average FCT of the workload, FaaSRank is
able to achieve the best average FCT for most of the individual
functions while maintaining good performance for others.

Metric Description
∆cpu_user CPU time in user mode
∆cpu_nice CPU time executing prioritized processes

∆cpu_kernel CPU time in kernel mode
∆cpu_idle CPU idle time

∆cpu_iowait CPU time waiting for I/O to complete
∆cpu_irq CPU time servicing HW interrupts

∆cpu_softirq CPU time servicing soft interrupts
∆cpu_steal CPU time spent by other operating systems

∆cpu_ctx_switches Number of context switches
cpu_load_avg Average system load over the last minute
memory_free Physical RAM left unused by the system

memory_buffers Temporary storage for raw disk blocks
memory_cached Physical RAM used as cache memory
∆disk_read Number of disk reads completed

∆disk_read_merged Number of disk reads merged together
∆disk_read_time Time spent reading from the disk

∆disk_write Number of disk reads completed
∆disk_write_merged Number of disk writes merged together
∆disk_write_time Time spent writing
∆net_byte_recv Network Bytes received
∆net_byte_sent Network Bytes written

(a) Resource utilization metrics

Metric Description
avail_memory Memory available in the server

inflight_invocations Number of inflight requests in the server
warm_infrastructures Warm infrastructures in the server

requested_memory Memory requested by the function
init_time Measured function cold initialization time

(b) Server and function metrics

TABLE I: Metrics that comprise state observed by FaaSRank.

IV. DESIGN

In this section, we present the design of FaaSRank. We
present our approaches to address the challenges identified in
Section III: server assessment (Section IV-A), cluster scalabil-
ity, and huge action space (Section IV-B). We also describe
the algorithm used to train FaaSRank (Section IV-C).

Resource Utilization Metrics

CPU

Requested Memory

Invocation

Server

State Vector

Avg Init Time

Warm Infrastructures

Inflight Invocations

Available Memory Slots

C
on

ca
te

na
te

Memory

Disk Network

Fig. 2: The embedding of a state observed by FaaSRank

A. Server Assessment

FaaSRank uses resource utilization metrics to assess the
resource condition of individual servers. Table I(a) shows the
resource utilization metrics that FaaSRank collects from each
server, where � indicates the change in resource utilization
for the sampling interval. We characterize four dominant
types of resource utilization when assessing a server: CPU,
memory, disk, and network I/O. Previous research has shown
that resource utilization metrics are powerful in identifying
resource contention of Infrastructure-as-a-Service (IaaS) cloud
[20] [21] [22], and predicting performance and costs of cloud
workloads [23]. In addition to resource utilization metrics,
FaaSRank also leverages metrics to assess cluster load and
infrastructure as shown in Table I(b).

To observe state, FaaSRank collects the resource utilization
metrics from each server, and encapsulates them with other
metrics shown in Table I(b). Figure 2 describes the embedding
of a state observed by FaaSRank, which contains information
of a server and the incoming function invocation. FaaSRank
concatenates the information into a flat feature vector as input
to the score function in Section IV-B.

B. Score Function

FaaSRank calculates a score function to rank each server.
The server with the highest score is selected for function
scheduling. FaaSRank learns how to score individual servers
using a common score function to select a server with the
highest score, rather than training a neural network to choose
a specific server, which would require a fixed size cluster
resulting in a huge action space. Figure 3 visualizes the policy
network and shows how FaaSRank selects the best server given
a batch of state information. At time t, the FaaS cluster has
in total N available servers to schedule an invocation event.
FaaSRank collects a batch of the latest state vectors st =
(s1
t ; : : : ; s

n
t ; : : : ; s

N
t) from the cluster, where n represents the

n-th available server. After collecting state vectors, FaaSRank
normalizes the state batch to s′t = (s′

1
t ; : : : ; s

′n
t ; : : : ; s

′N
t) as

inputs to the score function. The score function is implemented
using two neural networks, an actor and a critic network.
Actor-Critic methods are effective in reducing training vari-
ance and delivering faster convergence [24].
• Actor network computes a score qnt , which is a scalar

value mapped from the normalized state vector s′nt rep-
resenting a priority to select the server n. Then FaaS-
Rank applies a Softmax operation [25] to the scores
(q1
t ; : : : ; q

n
t ; : : : ; q

N
t) to compute the probability of se-

lecting server n based on the priority scores, given by

Pt(server = n) =
exp(qnt)PN
n=1 exp(qnt)

; (4)

at time t.
• Critic network outputs a baseline value bnt for server n,

the averaged baseline value �bt is calculated as

�bt =

PN
n=1 b

n
t

N
; (5)

4

Server
Information

Invocation

Server 1

Server
Information

Server N

...

Function
Information

Invocation

......

Embedding Layer

Function
Information

Ranking Procedure

Best Server

N
or

m
al

iz
e ...

...

So
ftm

ax ...

Selecting Procedure

...

...

...

...

... M
ea

n

Score Function

Critic Network

Actor Network

Fig. 3: The policy network in FaaSRank

which is used to reduce variance when training FaaS-
Rank.

The whole operation of our policy network is end-to-end
differentiable.

FaaSRank requires no manual feature engineering for its
score function, i.e., nothing is hard-coded in the score func-
tion. Through training, FaaSRank automatically learns what is
important for computing a priority score given a state vector.
More importantly, the design of FaaSRank is lightweight as
it reuses the same score function for all servers and all
function invocations. We further describe the details of training
FaaSRank in Section IV-C.

Algorithm 1 FaaSRank Training Algorithm.

1: Initial policy (actor network) parameters �0 and value
function (critic network) parameters �0

2: for episode k = 0, 1, 2, . . . do
3: Run policy �k = �(�k) in the environment until

terminating at time T
4: Collect set of trajectories Dk = f�ig, where �i =

(si; ai); i 2 [0; T]
5: Compute reward r̂t via Equation 2
6: Compute baseline value �bt via Equation 5
7: Compute advantage Ât = r̂t � �bt
8: Update actor network by maximizing objective using

stochastic gradient ascent:

�k+1 = arg max
�

1

jDkjT
X
�∈Dk

TX
t=0

L(st; at; �k; �) (6)

9: Update critic network by regression on mean-squared
error using stochastic gradient descent:

�k+1 = arg min
�

1

jDkjT
X
�∈Dk

TX
t=0

(�bt � r̂t)2 (7)

10: end for

C. Algorithm for Training FaaSRank
FaaSRank training proceeds in episodes. In each episode,

client function invocations arrive at the FaaS platform where

each requires a scheduling action to select a server. When all
function invocations finish, we consider the episode complete.
Let T denote the total number of actions in an episode, and
ti denote the wall clock time of the i-th action. Similar to
[19], we continuously feed FaaSRank with a reward r after
FaaSRank takes an action based on the objective (average
FCT) mentioned in Section III-B. Concretely, we penalize
FaaSRank with ri = �(ti�ti−1)�Fi after the ith action, where
Fi is the number of inflight function invocations in the FaaS
system during the interval [ti−1; ti). By setting the discount
factor to be 1 in Equation 2, the goal of the algorithm is to
maximize the expected cumulative rewards given by

E
h TX
i=1

�(ti � ti−1) � Fi
i
; (8)

which is aligned with Equation 2. Notice that this cumulative
objective approximates the total FCT of a workload, and hence
FaaSRank learns to minimize the average FCT in Equation 3
for a given workload.

FaaSRank uses a policy gradient algorithm for training.
Policy gradient methods [26] are a class of RL algorithms
that learn policies by performing gradient ascent directly on
the parameters of neural networks, denoted by �, using the
rewards received during training. When updating policies, a
large number of steps may deteriorate the performance, while
a small number of steps may worsen the sampling efficiency.
We use the Proximal Policy Optimization (PPO) algorithms
to ensure FaaSRank takes appropriate steps when updating
its policies. Recall in Section II-C, �� denotes a policy with
parameters �, a is the action taken when observing state s, the
PPO algorithm updates policies via

�k+1 = arg max
�

E
s;a∼�θk

h
L(s; a; �k; �)

i
; (9)

where L is the surrogate advantage [27], a measure of how
policy �� performs relative to the old policy ��k using data
from the old policy. Specifically we use the PPO-clip version
of a PPO algorithm, where L is given by

L(s; a; �k; �) = min
� ��(ajs)
��k(ajs)

A�θk (s; a); g(�; A�θk (s; a))
�
;

(10)

5

and g(�; A) is a clip operation defined as

g(�; A) =

(
(1 + �)A A � 0

(1� �)A A < 0;
(11)

where A is the advantage calculated as rewards r subtracted
by baseline values b.

In Equation 11, � is a hyperparameter which restricts how
far the new policy is allowed to go from the old. Intuitively,
the PPO algorithm sets a cap for the range of policy updates,
to prevent the new policy from going too far (either positive
or negative) from the old, thus ensuring an appropriate range
of update steps.

Algorithm 1 presents the training of FaaSRank. During
training for each server, the actor network outputs a score,
and the critic network outputs a baseline value. For each
episode, we record the whole set of trajectories including
the states, actions, rewards, baseline values predicted by the
critic network, and the logarithm probability of the actions
for all events. After each training episode finishes, we use the
collected information to update the actor and critic networks.

V. IMPLEMENTATION

FaaSRank provides a broadly applicable function scheduling
algorithm for use in serverless platforms. For concreteness,
we describe its implementation in the context of Apache
OpenWhisk, an open source, distributed serverless platform.
OpenWhisk executes functions in response to events at any
scale, while managing infrastructure, servers, scaling, and ex-
ecution of functions using Docker containers [9]. This section
briefly describes the architecture of OpenWhisk, and illustrates
the workflow of FaaSRank, i.e., how FaaSRank interacts with
and makes scheduling decisions for OpenWhisk.

FaaSRankController

(Load Balancer)

REST Interface

HTTP Queue Timer ... Storage

Distributed MessagingDatabase

KV
Store

State

Action

Schedule

Invoker

Container

Execute

InvokeReturn

Submit

Integrate

Place

Ack

DRL
Agent

Invoker Pool

Fig. 4: FaaSRank scheduling architecture for OpenWhisk

A. OpenWhisk Architecture

Figure 4 describes the architecture of our FaaSRank sched-
uler integrated with OpenWhisk. OpenWhisk exposes an
NGINX-based [28] REST interface for creating new functions,
invoking functions, and querying results of invocations. In-
vocations are triggered by users via an interface, and then
forwarded to the Controller. The Controller selects an In-
voker (typically hosted using VMs) to schedule the function
invocation. The Load Balancer inside the Controller makes
scheduling decisions for function invocations based on (1)
a hashing algorithm, and (2) information from the Invokers,
such as health, available capacity, and infrastructure state.
Once an Invoker is chosen, the Controller sends the function
invocation request to the selected Invoker via a Kafka-based
[29] distributed message broker. The Invoker receives the
request and executes the function using a Docker container.
After the function execution is finished, the Invoker submits
the results to a CouchDB-based [30] Database and informs
the Controller. Then the Controller returns the results of the
function executions to users synchronously or asynchronously.

B. FaaSRank

Workflow. FaaSRank communicates with OpenWhisk Con-
troller via a Key-Value (KV) Store, which is implemented
using Redis [31]. When receiving a function invocation, the
Load Balancer in the Controller first sends the current state
information to the KV Store. The DRL Agent in FaaSRank
then fetches the state and sends an action to the KV Store,
where the Controller picks up the action. Finally, the Load
Balancer schedules the function invocation on the selected
Invoker based on the action provided by FaaSRank.

Implementation. We implement the policy network of our
FaaSRank prototype using two neural networks, each with
two fully-connected hidden layers. The first hidden layer
has 32 neurons, and the second layer has 16 neurons, each
neuron uses Tanh as its activation function. The agent of
FaaSRank is implemented in Python using PyTorch [32].
The implementation of FaaSRank is lightweight as the policy
network consists of 2,818 parameters (16 KBs in total) because
FaaSRank reuses the score function. Mapping a state to a
scheduling action takes less than 70 ms.

Training. We use the algorithm presented in Section IV-C
to train FaaSRank with 5 epochs per surrogate optimization
and a 0.2 clip threshold [33]. We update the policy network
parameters using the AdamW optimizer [34] with a learn-
ing rate of 0.0002. For single-workload evaluation, we train
FaaSRank over 1000 episodes using the same workload. For
multi-workload evaluation, we retrained FaaSRank over 500
episodes, where each workload had 50 training episodes. The
total time for single-workload and multi-workload training
took about 120 and 96 hours, respectively. We restarted the
OpenWhisk platform before each training episode. Figure 5
shows the learning curve of FaaSRank for single-workload
and multi-workload training. The descending loss trendlines
indicate that FaaSRank gradually learns to make good deci-
sions on scheduling functions through training.

6

Episode Number

C
um

ul
at

iv
e

A
vg

 L
os

s

-5
5

15
25
35

200 400 600 800

Loss Trendline for Loss

(a) Single-workload training

Episode Number

C
um

ul
at

iv
e

A
vg

 L
os

s

0

10

20

30

40

10 20 30 40 50

Loss Trendline for Loss

(b) Multi-workload training

Fig. 5: Learning curve of FaaSRank through single-workload and
multi-workload training

VI. EVALUATION

We conducted extensive evaluations of FaaSRank in the
OpenWhisk platform, using realistic serverless functions and
real-world serverless traces realised by Microsoft Azure [13].
In this section, we first introduce baseline schedulers includ-
ing the default OpenWhisk scheduler used in the evaluation
(Section VI-A). We then describe our experimental setup
including clusters, workloads, and invocation traces (Section
VI-B). We present a comprehensive performance evaluation
of FaaSRank in a single-workload experiment (Section VI-C),
and the generalizability evaluation of FaaSRank in a multi-
workload experiment (Section VI-D).

A. Baseline Schedulers

For our evaluation, we compare FaaSRank with five other
schedulers serving as baselines:

1) OpenWhisk default Hashing scheduler. The Open-
Whisk default scheduler uses a hashing algorithm to
schedule function invocations. It calculates a hash value
for each function, and always schedules invocations of
the same function to the same invoker with the aim of
maximizing warm starts.

2) Round-robin scheduler. A scheduler that distributes the
load by sending successive requests to different invokers
in a cyclical manner.

3) Least-connections scheduler. A scheduler that always
sends the incoming invocation to the invoker with least
in-flight requests.

4) Greedy scheduler. A scheduler that greedily packs
function invocations onto the same invoker until the
invoker reaches its capacity. This scheduler mimics the
scheduling strategy of AWS Lambda, with the aim of
improving resource utilization.

5) Static-rank scheduler. A fine-tuned scheduler that
schedules function invocations based on the state in-
formation that FaaSRank receives, including resource
utilization metrics, invoker, and function information.
However, in contrast to FaaSRank’s trained RL net-
work, the static-rank scheduler employs a fixed, human-
designed fitness function (Equation 1) to select the best
invoker for function invocation.

B. Experimental Setup

OpenWhisk clusters. We deployed and tested FaaSRank
using two independent OpenWhisk deployments on different
public clouds, where each OpenWhisk cluster consisted of 13
VMs. One VM hosted the REST front-end, API gateway, and
Redis services; one backend VM hosted the Controller, Dis-
tributed Messaging, and Database services; one VM hosted our
FaaSRank agent; and the remaining 10 VMs were configured
as invokers for scheduling functions. We present the details of
two OpenWhisk clusters:

1) Compute Canada Cloud cluster. We deployed FaaS-
Rank under OpenWhisk on the Compute Canada Cloud
[35] using 13 VMs, each with 8 Intel Xeon Skylake
vCPU cores and 32 GBs memory. Each invoker provided
2 GBs RAM for individual function executions while
allocating CPU power to functions proportionally based
on function memory requirements.

2) AWS EC2 cluster. We deployed FaaSRank under
OpenWhisk on an AWS EC2 cluster consisting of 13
c5d.2xlarge VMs launched as spot instances, each
with 8 Intel Xeon Platinum vCPU cores, and 16 GBs
memory. Each invoker provided 2 GBs RAM for indi-
vidual function executions while allocating CPU power
to functions proportionally based on function memory
requirements.

For single-workload evaluation, we trained FaaSRank on
our Compute Canada Cloud and AWS OpenWhisk clusters
independently. We conducted a comprehensive performance
evaluation for each cluster independently. For multi-workload
evaluation, we retrained FaaSRank using an AWS cluster to
evaluate the generalizability of FaaSRank. To assess scheduler
performance, we repeated our performance experiments 10
times using FaaSRank comparing performance against our five
baseline schedulers in both evaluations.

Functions. For our experiments, we leveraged ten real-
world serverless functions from SeBS [10], ServerlessBench
[11], and ENSURE workloads [12]. Table II characterizes the
memory consumption, cold vs. warm runtimes, and initializa-
tion time for cold starts. All ten functions are implemented
in Python3 using CouchDB to store input and output objects.
To accurately profile the functions, we deployed a mini Open-
Whisk cluster hosted on an AWS EC2 dedicated host [36],
an isolated private server to characterize the average runtime
and overhead in a setting without resource contention from
other users. The test cluster consisted of 4 c5.2xlarge
VMs (user, frontend, backend, and one invoker), each with 8
vCPU cores and 16 GBs memory. We executed each function
10 times to characterize average values for our performance
metrics as shown in Table II.

Adapting Azure Functions Traces. We leveraged public
function invocation traces from Microsoft Azure provided in
[13] for our evaluations. Our objective was to derive realistic
testing workloads that would leverage the full capacity of
our OpenWhisk clusters. We adapted the Azure traces by
reinterpreting the platform sampling interval from minutes

7

Function Type Dependency Memory (MBs) Cold (s) Warm (s) Init (s)
Dynamic Html (DH) Web App Jinja2, CouchDB 512 4.45 2.34 1.55

Email Generation (EG) Web App CouchDB 256 2.20 0.21 1.55
Image Processing (IP) Multimedia Pillow, CouchDB 256 5.88 3.52 1.69
Video Processing (VP) Multimedia FFmpeg, CouchDB 512 6.86 1.19 4.77
Image Recognition (IR) Machine Learning Pillow, torch, torchvision, CouchDB 512 4.28 0.09 1.33

K Nearest Neighbors (KNN) Machine Learning scikit-learn, CouchDB 512 4.99 1.11 3.45
Gradient Descent (GD) Machine Learning NumPy, CouchDB 512 4.15 0.60 2.59

Arithmetic Logic Unit (ALU) Scientific CouchDB 256 5.72 3.45 1.50
Merge Sorting (MS) Scientific CouchDB 256 3.87 1.94 1.54

DNA Visualisation (DV) Scientific Squiggle, CouchDB 512 8.57 3.11 4.13

TABLE II: Characterizations of Experimental Serverless Function Workloads

to seconds. This was necessary because the traces captured
the total number of function invocations per minute. This re-
scaling increases the intensity of our workloads while speeding
up our training by reducing the total workload duration. To
derive a workload, we randomly selected 10 individual Azure
traces, and mapped each to a FaaS function from Table II.

WL Load Agg CPU Time Num calls Avg IAT Len
SC 93.75 % 4368.71 s 292 0.262 s 60 s
SA 132.9 % 6196.89 s 408 0.184 s 60 s
M1 56.67 % 2640.94 s 209 0.219 s 37 s
M2 57.00 % 2656.32 s 178 0.242 s 36 s
M3 57.01 % 2656.69 s 201 0.255 s 44 s
M4 59.05 % 2751.87 s 201 0.217 s 35 s
M5 71.83 % 3347.33 s 226 0.236 s 44 s
M6 74.95 % 3492.49 s 253 0.251 s 53 s
M7 80.22 % 3738.29 s 256 0.244 s 52 s
M8 82.54 % 3846.15 s 276 0.215 s 48 s
M9 86.40 % 4026.24 s 318 0.210 s 54 s

M10 100.00 % 4659.86 s 295 0.242 s 59 s

TABLE III: Characterization of workloads used in evaluation. Metrics
include: CPU load (%) relative to workload 10, aggregated CPU
time estimate, total function invocations, average inter-arrival time
(IAT), and workload duration. Workload types include: (SC) single-
workload on Canada Cloud cluster, (SA) single-workload on AWS
EC2 cluster, and (M) 10 multi-workloads on AWS EC2 cluster.

C. Single-workload Evaluation

Workloads. For our single-workload evaluation we created
workloads for the Canada Cloud and AWS by randomly
selecting function invocation traces from the Azure Functions
traces. Each workload contains 10 invocation traces, i.e., one
trace per function. Two workloads (SC and SA) shown in
Table III were designed to intensively occupy the full capacity
of two clusters. To fully occupy available cluster capacity
on AWS, we had to increase the intensity of workload SA
relative to workload SC. The AWS EC2 c5 instances were
found to be more powerful than the Canada Cloud VMs. As
a result we compensated by increasing workload SA intensity
by approximately 40%.

We evaluate the following characteristics of the FaaS sched-
ulers from Section VI-A: (1) Performance. Average FCT is
the primary objective that FaaSRank tries to optimize; (2)
Fairness. We examined how FaaSRank improved the average
FCT of individual functions. Improving FCT for one function
should not degrade that of another; (3) Cluster load. The time

series load condition for the OpenWhisk cluster, which helps
to evaluate the utility of scheduling decisions.

(a) Canada Cloud cluster (b) AWS cluster

Fig. 6: Avg. FCT of schedulers measured on two OpenWhisk clusters

Average FCT. Figure 6 shows the average FCT of indi-
vidual schedulers evaluated on two clusters when scheduling
an experimental workload. FaaSRank outperforms the five
baseline schedulers. Compared to OpenWhisk’s default Hash-
ing scheduler, FaaSRank reduced average FCT by 9.25% and
12.82%, on the Canada Cloud and AWS clusters respectively.
Compared to the baseline schedulers, FaaSRank learns how to
reduce average FCT while improving overall performance.

Fairness. To evaluate the fairness of FaaSRank’s schedul-
ing, we recorded the average FCT for each function during the
experiment. Table IV presents the average FCT of individual
functions from 10 repeated runs. FaaSRank achieves the mini-
mum average FCT for 7 and 8 functions on the Canada Cloud
and AWS clusters respectively. While reducing the average
FCT for most functions, FaaSRank also maintains acceptable
performance for other functions. FaaSRank provided the min-
imum average FCT of workloads of the tested schedulers.

(a) Canada Cloud cluster (b) AWS cluster

Fig. 7: Time series observation of inflight invocations

Cluster load. We recorded the cluster load conditions of
each scheduler during the experiments. Figure 7 displays the
time series of inflight invocations for each scheduler on our

8

