
DeFL: Defending Against Model Poisoning Attacks in Federated Learning via
Critical Learning Periods Awareness

Gang Yan1, Hao Wang2, Xu Yuan3, Jian Li1

1SUNY-Binghamton University
2 Louisiana State University

3University of Louisiana at Lafayette
gyan2@binghamton.edu, haowang@lsu.edu, xu.yuan@louisiana.edu, lij@binghamton.edu

Abstract

Federated learning (FL) is known to be susceptible to model
poisoning attacks in which malicious clients hamper the ac-
curacy of the global model by sending manipulated model up-
dates to the central server during the FL training process. Ex-
isting defenses mainly focus on Byzantine-robust FL aggre-
gations, and largely ignore the impact of the underlying deep
neural network (DNN) that is used to FL training. Inspired by
recent findings on critical learning periods (CLP) in DNNs,
where small gradient errors have irrecoverable impact on the
final model accuracy, we propose a new defense, called a
CLP-aware defense against poisoning of FL (DeFL). The key
idea of DeFL is to measure fine-grained differences between
DNN model updates via an easy-to-compute federated gradi-
ent norm vector (FGNV) metric. Using FGNV, DeFL simul-
taneously detects malicious clients and identifies CLP, which
in turn is leveraged to guide the adaptive removal of detected
malicious clients from aggregation. As a result, DeFL not
only mitigates model poisoning attacks on the global model
but also is robust to detection errors. Our extensive experi-
ments on three benchmark datasets demonstrate that DeFL
produces significant performance gain over conventional de-
fenses against state-of-the-art model poisoning attacks.

Introduction
Federated learning (FL) (McMahan et al. 2017) is an emerg-
ing distributed learning paradigm that enables many clients
to collaboratively learn a deep neural network (DNN) model
(called the global model) without sharing their private local
training data. This is done through an iterative process where
a central server repeatedly coordinates dispersed clients via
collecting clients’ local model updates computed on their lo-
cal data, aggregating clients’ updates using an aggregation
rule, and finally using the aggregated updates to tune the
global model, which is broadcast to a subset of clients at the
beginning of each FL training round.

However, due to its distributed nature, FL is vulnerable to
model poisoning attacks (Imteaj et al. 2023), which attempt
to degrade the global model accuracy by contributing mali-
cious model updates during the training process. Depending
on the adversarial goal, model poisoning attacks can be ei-
ther untargeted (Blanchard et al. 2017; El El Mhamdi, Guer-

Copyright c© 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

raoui, and Rouault 2018; Mahloujifar, Mahmoody, and Mo-
hammed 2019; Baruch, Baruch, and Goldberg 2019; Fang
et al. 2020; Xie, Koyejo, and Gupta 2020; Shejwalkar and
Houmansadr 2021), where the goal is to minimize the global
model accuracy on any test input, or targeted (Bhagoji et al.
2019; Sun et al. 2019; Bagdasaryan et al. 2020), where the
goal is to minimize the accuracy on specific test inputs. To
this end, untargeted model poisoning attacks can completely
cripple the global model and hence pose more severe threats
to FL, which is the focus of this paper.

Existing defenses against model poisoning attacks mainly
rely on robust methods, where the central server leverages
Byzantine-robust aggregation rules to reduce the impact of
malicious model updates via either detecting and removing
statistical outliers or limiting their impacts. However, these
approaches suffer from several key limitations: i) only robust
when there is a smaller number of malicious clients (Blan-
chard et al. 2017; Yin et al. 2018); ii) prediction based mali-
cious client detection using historical update information is
accurate when there is a larger number of malicious clients
in each training round (Zhang et al. 2022); and iii) require
the central server to have access to a clean validation dataset
whose distribution does not diverge too much from the over-
all training data distribution (Li et al. 2020; Cao et al. 2021).
As a result, existing defenses are shown (Bhagoji et al. 2019;
Fang et al. 2020) to be still vulnerable to model poisoning
attacks, especially to those with high attack impacts.

Exacerbating these limitations is the fact that existing de-
fenses mainly focus on designing Byzantine-robust aggre-
gation rules, and largely ignore the impact of the underly-
ing DNN that is used to training FL models since existing
defenses implicitly assume that all FL training phases are
equally important. Unfortunately, this assumption is invalid
due to the existence of critical learning periods (CLP), i.e.,
the final quality of a DNN model is determined by the first
few training rounds, in which deficits such as low quality or
quantity of training data will cause irreversible model degra-
dation (Achille, Rovere, and Soatto 2019; Jastrzebski et al.
2019; Golatkar, Achille, and Soatto 2019; Jastrzebski et al.
2021; Yan, Wang, and Li 2022).

To address the above limitations, we propose DeFL, a
novel CLP-aware defense against model poisoning attacks
to FL that seamlessly analyzes the DNN that is used for
FL training and leverages its structural information to de-

tect malicious model updates and identify CLP. Specifically,
we propose a new easy-to-compute federated gradient norm
vector (FGNV) metric to analyze the internal structure of the
DNN and measure fine-grained differences between model
updates. Using FGNV, we develop lightweight approaches to
not only identify CLP but also reliably detect statistical out-
liers and consequently exclude them from aggregation in an
adaptive manner. Our extensive evaluations using three real-
world datasets, CIFAR-10 (Krizhevsky, Hinton et al. 2009),
MNIST and Fashion-MNIST (LeCun et al. 1998), show that
DeFL dramatically mitigates the impacts of state-of-the-
art model poisoning attacks (Baruch, Baruch, and Goldberg
2019; Fang et al. 2020; Shejwalkar and Houmansadr 2021).
Furthermore, DeFL can effectively detect statistical outliers
and is also robust to detection errors since our proposed
FGNV is able to capture the fine-grained differences in the
structure of the DNN that is used for FL training.

In summary, we make the following contributions:

• We propose an easy-to-compute federated gradient norm
vector metric to analyze the internal structure of the DNN
that is used for FL training and measure fine-grained dif-
ferences between model updates. Using this metric, we
design a threshold-based rule to identify the CLP, and
build a voting-based statistical outlier detector, being ca-
pable to labeling model updates as benign or malicious.
• We propose DeFL, a novel CLP-aware defense against

model poisoning attacks to FL. DeFL adaptively removes
malicious clients from model aggregation in each FL
training round via holistically combining the CLP and
detector. To the best of our knowledge, this is the first
work that conducts a deep DNN model inspection on
each layer to mitigate model poisoning attacks to FL.
• We empirically evaluate the performance and effective-

ness of DeFL against several state-of-the-art model poi-
soning attacks on three benchmark datasets. Our exten-
sive results show that DeFL is up to 12× more effective
against these model poisoning attacks compared to state-
of-the-art defenses.

Background
Federated Learning
FL leverages a large set of clients N = {1, · · · , N} to col-
laboratively learn a model with decentralized data under the
coordination of a central server. Formally, the goal of FL is
to solve the following optimization problem

min
w∈Rd

F (w) :=
∑
i∈N

piFi(w), (1)

where Fi(w) = 1
|Di|

∑
ξ∈Di

`i(w; ξ) is the local loss func-
tion associated with client i’s dataset Di, pi = |Di|/

∑
i |Di|

is the relative sample size. The training process is orches-
trated by repeating the following two steps in each round t:
• Local training. The central sever randomly selects a set
of clients N (t) to participate the training in round t. For
ease of illustration, let |N (t)| = n,∀t. Each client i ∈ N (t)
pulls the latest global model wi(t−1) from the central sever,
and then performs the local updates wki (t) ← wk−1i (t −

1) − ηg(wk−1i (t − 1),Di), where η is the learning rate and
k = 1, · · · ,K is the index of local iterations.
•Model aggregation. Participants in round t push their lo-
cal updated models to the central sever, which aggregates
local models to obtain a new global model w(t): w(t) ←
H(wK1 (t), · · · ,wKi (t), · · · ,wKn (t)), where H is the aggre-
gation rule, e.g., the most widely used federated averaging
(FedAvg) (McMahan et al. 2017) performs a weighted aver-
age as w(t)←

∑
i∈N (t)

|Di|
|∪i∈N(t)Di|w

K
i (t).

Critical Learning Periods
The first few training epochs—known as critical learning
periods (CLP)—have been revealed to determine the final
quality of a DNN model in both traditional centralized learn-
ing (Achille, Rovere, and Soatto 2019; Jastrzebski et al.
2019; Golatkar, Achille, and Soatto 2019; Frankle, Schwab,
and Morcos 2020; Jastrzebski et al. 2021) and FL (Yan,
Wang, and Li 2022). During the CLP, deficits such as low
quality or quantity of training data will cause irreversible
model degradation, no matter how much additional train-
ing is performed after the period. However, studying criti-
cal learning phenomena hinged on costly information met-
ric (e.g., eigenvalues of the Hessian) that emerges after the
full training, limiting their practical benefits. We differ from
existing works by developing an easy-to-compute metric to
identify CLP during the training process in an online man-
ner. Importantly, our new metric measures the fine-grained
differences in the structure of the DNN, which can be eas-
ily leveraged to simultaneously detect malicious clients and
identify CLP, which in turn is used to guide the removal of
detected malicious clients from aggregation.

Byzantine-Robust Aggregation Rules
The mean aggregation rule has been widely used in non-
adversarial settings (Dean et al. 2012; Konečnỳ et al. 2016;
McMahan et al. 2017), which, however, is not robust and can
be manipulated by even a single malicious client (Blanchard
et al. 2017; Yin et al. 2018; Bhagoji et al. 2019). Therefore,
multiple Byzantine-robust aggregation rules have been pro-
posed to defend against poisoning attacks. In the following,
we review several representative Byzantine-robust aggrega-
tion rules that will be used in this paper.
• FLDetector (Zhang et al. 2022) defends FL via detecting
and removing majority of malicious clients from the aggre-
gation. Specifically, FLDetector detects malicious clients by
measuring the consistency between the client’s model up-
date and the server’s predicted model update based on histor-
ical model updates. As a result, a larger number of malicious
clients is often needed to build up historical information so
as to guarantee the prediction and detection accuracy.
• FLTrust (Cao et al. 2021) leverages the validation dataset
on the central server to assign a trust score to each clients.
Specifically, a local model update has a lower trust score if
its update direction deviates more from that of the server
model update calculated based on the validation dataset.
• Adaptive federated average (AFA) (Muñoz-González,
Co, and Lupu 2019) first computes a weighted average of
collected gradients in each communication round. Then it

0 40 80 120 160 200
Round

0

1

2

3

4

Fe
dF

IM

1e−1

(a) α=0.1

0

1

2

3

FG
N

V

FedFIM
FGNV

0 40 80 120 160 200
Round

0

1

2

3

4

Fe
dF

IM

1e−1

(b) α=0.5

0

1

2

3

FG
N

V

(a) CIFAR-10

0 40 80 120 160 200
Round

0

1

2

3

4

5

6

Fe
dF

IM

1e−1

(a) α=0.1

0

1

2

3

4

FG
N

V

FedFIM
FGNV

0 40 80 120 160 200
Round

0

2

4

6

8

Fe
dF

IM

1e−1

(b) α=0.5

0

1

2

3

4

5

6

FG
N

V

(b) Fashion-MNIST

Figure 1: Comparison of detecting CLP in federated settings using FGNV with δ = 0.05 and FedFIM, where the shade and
double-arrows indicate identified CLP. The results are conducted using AlexNet on (a) CIFAR-10 and (b) Fashion-MNIST
datasets, which are partitioned across 32 clients using Dirichlet distributions Dir32(0.1) and Dir32(0.5), respectively.

computes cosine similarities between the weighted average
and each of collected gradients. Finally, AFA discards gradi-
ents with similarities out of a range, which is a simple func-
tion of mean, median and standard deviation of similarities.
• Multi-krum (Blanchard et al. 2017). Krum (Blanchard
et al. 2017) selects gradients from the set of its input gra-
dients that is close to its n − m − 2 neighbor gradients in
squared Euclidean norm space withm being an upper bound
on the number of malicious clients and n being the number
of participated clients in each FL training round. Multi-krum
selects a gradient using Krum from a remaining set, adds it
to a selection set and removes it from the remaining set.
• Trimmed-mean (Yin et al. 2018; Xie, Koyejo, and
Gupta 2018) coordinate-wisely aggregates each dimension
of input gradients separately. Specifically, for a given dimen-
sion j, the j-th parameters of n local models {gji}i=1,··· ,n,
Trimmed-mean removes the largest and smallest β of them,
and computes the mean of the remaining n− 2β parameters
as the j-th dimension of the global model.

DeFL
Federated Gradient Norm Vector
Existing defenses for detecting poisoned model updates are
based on metrics that treat the DNN as a black box, e.g.,
cosine (Muñoz-González, Co, and Lupu 2019) or L2-norm
(Blanchard et al. 2017; Zhang et al. 2022). However, recent
studies (Fung, Yoon, and Beschastnikh 2020; Rieger et al.
2022) showed that different DNN layers exhibit various vul-
nerabilities to model poisoning attacks and hence may play
different roles in defending FL against model poisoning at-
tacks. To this end, we design a new metric, called Feder-
ated Gradient Norm Vector (FGNV) that allows to analyze
the DNN used for FL training, and measures fine-grained
differences between model updates.

Specifically, we consider a DNN with L layers for FL
training. Let gi(wji ; ξ) = ∂

∂wj
i

`(wji ; ξ) be client i’s gradi-
ent update on layer ∀j = 1, · · · , L evaluated on ξ. After
performing a step SGD on this sample, the training loss or
the global model update difference of client i on layer j is
∆`ji = `(wji − ηgi(wji ; ξ); ξ) − `(wji ; ξ), which can be ap-
proximated by its gradient norm using Taylor expansion, i.e.,

∆`ji ≈ −η‖gi(wji ; ξ)‖
2. (2)

We call this as the FGNVi of client i on layer j, i.e.,
FGNVji := ∆`ji . Denote FGNVi = (FGNV1

i , · · · ,FGNVLi) as
the federated gradient norm vector of client i, which repre-
sents the global model update difference of client i over each
layer of the DNN. Then the global model update difference
over each layer l at round t can be approximated using the
weighted average of FGNVji across all selected clients, i.e.,

FGNVj(t) =
∑

i∈N (t)

|Di|∑
i∈N (t) |Di|

FGNVji (t). (3)

Detecting Critical Learning Periods
We develop a simple threshold-based rule to identify the
CLP based on the FGNV as follows: if∑L

j=1 FGNV
j(t)−

∑L
j=1 FGNV

j(t− 1)∑L
j=1 FGNV

j(t− 1)
≥ δ, (4)

then the current training round t is in CLP, where δ is the
threshold used to declare CLP in federated settings. We set
δ = 0.05 as the default value in our experiments and will
investigate its impact in Figure 3.

We compare the CLP identified by our FGNV approach
with the federated Fisher information (FedFIM) approach in
(Yan, Wang, and Li 2022). When training AlexNet on non-
IID CIFAR-10 and Fashion-MNIST, we observe that these
two approaches yield similar results as shown in Figure 1.
However, our FGNV approach is much more computation-
ally efficient (being orders of magnitude faster to compute)
and can be easily leveraged for defending FL against model
poisoning attacks in each round during the FL training pro-
cess in an online manner.

Detecting Malicious Clients
In each round t, we identify malicious clients based on the
FGNV discussed above. Specifically, we cast the malicious
client detection as a statistical outlier detection problem
(Zhang, Yuan, and Tzeng 2021). Different from existing de-
fenses that consider the DNN as a black box, our FGNVmea-
sures fine-grained differences in each layer of the DNN. To
this end, we assign the FGNVi to each client i as its feature
vector in our statistical outline detection problem in each
training round t, and develop a lightweight voting based

method via leveraging a statistical methodology named mas-
sive unsupervised outlier detection (MOUD) (Azcorra et al.
2018) to determine if a client is an outlier or not.

The inputs to the MOUD algorithm are the FGNVji over
each layer j of each client i. The output of the MOUD al-
gorithm is the outlier in each layer. Generally, MOUD com-
pares the similarity of each client i’s global model update
difference on layer j, i.e., FGNVji with respect to a reference
observed from all participated clients, to determine if client
i’s update on layer j is an outlier. Specifically, the computa-
tion of MOUD in each round t involves the following steps:
1) Based on FGNVi,∀i ∈ N (t), generate reference vectors
on each layer j as FGNVj := (FGNVj1, · · · ,FGNV

j
|N (t)|); 2)

Compute β̂i′ =
Cov(FGNVj

i ,FGNV
j

i′)

V ar(FGNVj

i′)
as the estimated slope of a

simple linear regression model; 3) Define the index of client
i on layer j as I(FGNVji ,FGNV

j) = 1
|N (t)|

∑|N (t)|
i′=1 β̂i′ and

output layer j of client i as an outlier if its value deviates
significantly from others.

Based on the detection of each layer j of each client i,
we further develop a simple voting method to determine if
client i is an outlier or not. To reduce the detection errors and
improve the robustness, we leverage an adaptive threshold
(as the number of layers declared as outliers from MOUD)
for voting. Specifically, we first set the threshold as L, i.e.,
if MOUD outputs all L layers of client i as outliers, then
client i is declared as an outlier in round t. If no client is
detected as malicious, then we set the threshold as L−1 and
repeat the above process until at least one client is clarified
as malicious. We call our detection method that couples a
FGNV based MOUD with a voting strategy as MOUD-Vote.

The Design of DeFL Defense
Per our discussions on CLP, the final model accuracy will
be permanently impaired if the global model is severely poi-
soned during the early training phase, no matter how much
additional training is performed after the period (Achille,
Rovere, and Soatto 2019; Yan, Wang, and Li 2022). There-
fore, once the CLP is identified, our DeFL removes all de-
tected malicious clients from the model aggregation. How-
ever, a false positive rate (FPR), i.e., benign clients may be
falsely claimed as malicious clients, often occurs in exist-
ing detection methods, though our MOUD-Vote is shown
to have a low FPR, see the Experiments Section. As a re-
sult, if DeFL strictly removes all detected malicious clients
from the model aggregation throughout the training process,
it may be of the detriment of the final model accuracy. To this
end, we further use a Bayesian model to estimate the clients’
probability to provide good model updates based on our
detected CLP and MOUD-Vote. As inspired by (Muñoz-
González, Co, and Lupu 2019), the ability of the clients to
provide good model updates can be modeled as a Hidden
Markov model. At each round t, the probability pi(t) that
client i provides a good update is given as

pi(t) =
αi(t)

αi(t) + βi(t)
, (5)

Algorithm 1: The DeFL defense
Input: wi(0), ∀i;
Initialize αi(0) = βi(0) = 1, ∀i;

1: for t = 1, · · · , T do
2: //Compute federated gradient norm vector FGNV
3: Perform local model updates wi(t) and compute the

global model update difference of each client i on
each layer j as in (2) to generate FGNVi(t) =
(FGNV1

i (t), · · · ,FGNVLi (t)),∀i ∈ N (t);
4: //Detect malicious client using MOUD-Vote
5: for i = 1, · · · ,N (t) do
6: if MOUD-Vote claims i as a benign client then
7: αi(t) = αi(t− 1) + 1;
8: else
9: βi(t) = βi(t− 1) + 1;

10: end if
11: end for
12: //Detect CLP and update clients’ aggregation weight
13: if Round t is in CLP then
14: The aggregation weight for the detected malicious

client i is pi(t) = 0;
15: The aggregation weight for the detected benign

client i is pi(t) = αi(t)
αi(t)+βi(t)

;
16: end if
17: //Model aggregation
18: Obtain a new global model w(t) via local model up-

date aggregation:

w(t)←
∑

i∈N (t)

pi(t)
|Di|

| ∪i∈N (t) Di|
wi(t).

19: end for

where αi and βi are the parameters of a Beta distribution,
and αi(t) = αi(t − 1) + 1 if client i is claimed as a benign
client (i.e., provides good update) by our MOUD-Vote in
round t; otherwise, βi(t) = βi(t − 1) + 1. We summarize
our DeFL defense in Algorithm 1.

From a high-level perspective, DeFL strictly removes all
detected malicious clients from the model aggregation dur-
ing the initial phase of the learning procedure (i.e., the de-
tected CLP) to avoid poisoning attacks on the global model
since the initial learning phase plays a critical role in FL per-
formance. However, the malicious client detection may suf-
fer from FPR, and removing too many clients from global
model aggregation may degrade the final model accuracy.
To address these issues and improve the robustness of DeFL
against FPR, we augment DeFL with a Bayesian model
to learn to associate a “good” update probability to each
client. Roughly speaking, after the CLP, a smaller aggrega-
tion weight is associated with detected malicious clients in
the global model aggregation rather than completely remov-
ing them. Likewise, a larger aggregation weight is assigned
to detected benign clients in the global model aggregation
after the CLP. As a result, DeFL is able to consistently de-
fend FL against model poisoning attacks and is robust to the
FPR of the detection method.

Dataset
(Model) Aggregation Rule Fang LIE Min-Max Min-Sum

Full Partial Full Partial Full Partial Full Partial

CIFAR-10
(AlexNet)

DeFL 7.36 5.37 7.97 4.62 7.52 7.48 9.83 8.51
FLDetector 18.34 16.9 13.0 11.27 18.29 17.85 17.51 16.11
FLTrust 9.37 13.84 11.84 9.39 26.87 15.52 21.57 22.5
AFA 11.67 18.83 13.55 18.12 35.41 33.4 43.59 29.48
Multi-krum 33.85 29.38 34.41 32.11 37.28 34.7 40.61 32.25
Trimmed-mean 38.71 36.11 40.56 34.28 45.04 35.68 44.58 36.36

CIFAR-10
(VGG-11)

DeFL 4.25 4.26 3.98 1.47 4.19 1.92 8.83 8.91
FLDetector 13.47 13.17 13.81 8.68 7.61 4.88 20.88 13.84
FLTrust 8.62 8.14 7.72 7.78 24.83 15.73 13.21 14.97
AFA 13.21 11.31 9.81 19.06 42.43 33.41 34.66 30.07
Multi-krum 26.41 24.71 30.03 26.42 48.03 41.82 44.23 35.39
Trimmed-mean 35.35 34.62 38.95 34.76 47.35 43.03 40.71 43.12

MNIST
(FC)

DeFL 0.95 0.87 1.01 1.03 0.93 0.91 0.78 0.85
FLDetector 3.18 2.92 2.98 3.17 2.14 2.17 2.32 2.39
FLTrust 1.49 1.6 1.57 1.59 1.73 1.71 1.58 1.8
AFA 3.09 2.33 2.43 2.15 2.99 2.57 2.76 3.18
Multi-krum 9.99 8.69 13.89 10.6 13.0 7.63 11.6 6.82
Trimmed-mean 5.5 5.44 10.34 6.24 6.43 4.86 6.32 4.66

Fashion
MNIST

(AlexNet)

DeFL 1.76 0.96 2.8 1.98 3.73 4.34 1.8 1.96
FLDetector 10.97 13.27 10.04 13.64 14.28 11.64 15.9 10.52
FLTrust 15.97 16.77 17.52 16.99 18.99 18.07 18.81 17.82
AFA 10.89 11.56 11.05 13.3 24.75 19.28 21.81 25.95
Multi-krum 39.15 38.96 35.77 24.83 52.04 44.42 51.04 38.88
Trimmed-mean 42.99 43.24 45.95 43.26 53.35 42.0 48.93 44.99

Table 1: Attack impacts of state-of-the-art model poisoning attacks defended by our DeFL and state-of-the-art defenses when
benign gradients are either known (Full) or unknown (Partial) to the adversary, using non-IID partitioned datasets with α = 0.1.

Experiments
Experimental Setup
Datasets. We use CIFAR-10 (Krizhevsky, Hinton et al.
2009), MNIST and Fashion-MNIST (LeCun et al. 1998) as
evaluation datasets, which are widely used in prior works.
We simulate the non-identically and independent distributed
(non-IID) FL scenario by considering a heterogeneous par-
tition for which the number of data points and class propor-
tions are unbalanced. In particular, we simulate a heteroge-
neous partition into N clients by sampling pi ∼ DirN (α),
where α is the parameter of the Dirichlet distribution. The
level of heterogeneity among local datasets across different
clients can be reduced when α increases. We choose α = 0.1
as the default parameter in our experiments as done in (Fang
et al. 2020; Wang et al. 2020a,b; Cao and Gong 2022) and
investigate its impact in Figure 5.
Machine learning models. We consider three representative
DNN models: AlexNet (Krizhevsky, Sutskever, and Hinton
2012), VGG-11 (Simonyan and Zisserman 2015) and a fully
connected network (FC) with layer sizes {784, 512, 10}. In
particular, we use AlexNet and VGG-11 as the global model
architecture for CIFAR-10, FC for MNIST and AlexNet for
Fashion-MNIST, respectively.
Baseline defenses and attacks. We consider the afore-
mentioned state-of-the-art defenses: FLDetector, FLTrust,
AFA, Multi-krum and Trimmed-mean, and the following
four strongest model poisoning attacks in the literature,
i.e., Fang (Fang et al. 2020), LIE (Baruch, Baruch, and
Goldberg 2019), Min-Sum and Min-Max (Shejwalkar and
Houmansadr 2021). Similar to (Baruch, Baruch, and Gold-
berg 2019; Fang et al. 2020; Shejwalkar and Houmansadr
2021), we consider two settings regarding the adversary’s
knowledge: (a) Full: the adversary knows the gradients of
benign clients; and (b) Partial: the adversary is agnostic to

the gradient updates shared by benign clients.
• Fang is an optimization based model poisoning attack that
can be tailored to aforementioned aggregation rules. Specif-
ically, the adversary computes the average µ of benign gra-
dients that she has access to. Then the adversary computes
−sign(µ) and a malicious update by solving for a global co-
efficient λ. The adversary attacks all malicious clients and
change their gradient updates’ direction based on λ.
•LIE adds small amounts of noises to each dimension of the
average of benign gradients. The small noises can be suffi-
ciently large to adversely impact the global model and can be
sufficiently small to evade detection by the Byzantine-robust
aggregation rules. In particular, the adversary computes the
average µ and standard deviation σ of benign gradients that
she has access to. Furthermore, the adversary computes a co-
efficient z based on the total number of benign and malicious
clients, and hence obtains the malicious update as µ+ zσ.
•Min-Sum ensures that the sum of squared distances of ma-
licious gradients from all benign gradients is upper bounded
by the sum of squared distances of any benign gradient from
the other benign gradients. All malicious gradients are kept
the same for the maximum attack impact.
•Min-Max computes malicious gradients such that its max-
imum distance from any other gradient is upper bounded by
the maximum distance between any two benign gradients.
As a result, the malicious gradients lie close to the clique of
benign gradients.
Parameter settings. We implement our defenses, attacks
and FL in PyTorch (Paszke et al. 2017) on Python 3 with
three NVIDIA RTX A6000 GPUs. We run each experiments
for 100 independent trials and report the average results. For
ease of presentation, we omit the variances which are ob-
served to be small in the experiments. By default, we con-
sider a total number of N = 128 clients in our experiments.

0 40 80 120 160 200
10

15

20

25

30

Te
st

 A
cc

ur
ac

y
(%

)

0 40 80 120 160 200
10

15

20

25

30

0 40 80 120 160 200
10

15

20

25

30

0 40 80 120 160 200
10

15

20

25

30

0 40 80 120 160 200
Round

10
15
20
25
30

Te
st

 A
cc

ur
ac

y
(%

)

(a) Fang

0 40 80 120 160 200
Round

10
15
20
25
30

(b) LIE

0 40 80 120 160 200
Round

10

15

20

25

30

(c) Min-Max

0 40 80 120 160 200
Round

10

15

20

25

30

(d) Min-Sum

DeFL FLDetector FLTrust AFA Multi-krum Trimmed-mean

Figure 2: The global model accuracy when state-of-the-art model poisoning attacks are defended by our DeFL and state-of-the-
art defenses using AlexNet on non-IID partitioned CIFAR-10 under (top) Full and (bottom) Partial scenarios.

In each round, the FL central server randomly selects n = 32
clients to participate in the global model update, in which
m = 4 are malicious clients. We investigate the impact of
the number of malicious clients in Figure 4 and relegate ad-
ditional experimental results with different number of mali-
cious clients to supplementary materials.

Each client applies 20 iterations of the stochastic gradi-
ent descent to update its local model and the central server
aggregates local model updates from all selected clients. We
set 200 rounds for all DNN classifiers on all datasets con-
sidered in this paper. The local learning rate η is initialized
as 0.01 and decayed by a constant factor after each commu-
nication round. The batch size is set to be 16. We set the
weight decay to be 10−4. The detection threshold δ is tun-
able parameters. We set δ = 0.05 in all of our experiments
and investigate its impact in Figure 3. The Trimmed-mean
aggregation rule prunes the largest and smallest β parame-
ters, where m ≤ β ≤ n/2. We set β = m which is the
default setting in Trimmed-mean (Yin et al. 2018).

Experimental Results
Reduced attack impact. We evaluate the performance of
our DeFL defense against state-of-the-art model poisoning
attacks and compare it with state-of-the-art defenses. The
impacts of these attacks when defended by these defenses
when benign gradients are either known or unknown to the
adversary are summarized in Table 1. Due to space con-
straints, we only present the testing accuracy using AlexNet
on non-IID partitioned CIFAR-10 with α = 0.1 in Figure 2.
Similar observations can be made in other cases and hence
are relegated to supplementary materials.

It is clear from Table 1 that our DeFL dramatically mit-
igates the impacts of these strongest model poisoning at-
tacks in the literature, and DeFL is up to 12.04×more effec-
tive against these attacks than the best performing defenses
in consideration. For example, when running AlexNet on
CIFAR-10 with known benign gradients, the Min-Max at-
tack has an attack impact of 7.52 when defended by DeFL,

while the attack impact is 18.29 when defended by FLDetec-
tor, which is the best performing defense in consideration,
i.e., our DeFL is 2.34×more effective. Take the AlexNet on
Fashion-MNIST with unknown benign gradients as another
example, the Fang attack has an attack impact of 11.56 when
defended by AFA, while the attack impact is 0.96 when de-
fended by DeFL, i.e., DeFL is 12.04× more effective.

We note that FLTrust requires the server to have access
to a clean validation dataset, which is not the case in a typ-
ical FL scenario since the server often does not have such a
dataset. FLDetector overcomes this limitation by detecting
and removing malicious clients. However, the prediction-
based detection requires historical information and hence is
accurate when there is a large number of malicious clients
participated in each FL training round. However, in practi-
cal FL systems, only a small fraction of clients is involved
in each training round (Bonawitz et al. 2019). Our DeFL
neither requires a validation dataset nor historical malicious
client information, but instead leverages the internal struc-
ture of DNN and fine-grained model update differences via
FGNV to improve the effectiveness of defending FL against
model poisoning attacks in practical FL scenarios.
Effectiveness of FGNV. As motivated earlier, our DeFL is
a CLP-awareness defense that analyzes the DNN via our
proposed FGNV and leverages the structural information en-
coded in FGNV to detect malicious clients. To this end, we
further understand the effectiveness of the information en-
coded in FGNV on the performance of CLP detection and
malicious clients detection. As shown in Figure 1, our pro-
posed threshold-based rule using FGNV is able to detect CLP
as accurate as that of state-of-the-art approach, however, our
FGNV based approach is much more computation efficient.

Table 2 illustrates the true positive rate (TPR) and false
positive rate (FPR) of our MOUD-Vote, which couples
FGNV with an unsupervised outlier detection method. TPR
(FPR) is the fraction of malicious (benign) clients cor-
rectly (falsely) classified as malicious. We observe that our
MOUD-Vote can consistently detect majority of malicious

Dataset
(Model) Attack Full Partial

TPR FPR TPR FPR

CIFAR-10
(AlexNet)

Fang 1.0 0.02 0.97 0.02
LIE 0.99 0.01 0.99 0.03
Min-Max 0.98 0.03 0.98 0.02
Min-Sum 0.98 0.02 1.0 0.02

CIFAR-10
(VGG-11)

Fang 0.97 0.08 0.99 0.07
LIE 0.98 0.07 0.99 0.07
Min-Max 0.98 0.08 1.0 0.07
Min-Sum 1.0 0.07 1.0 0.05

MNIST
(FC)

Fang 0.99 0.05 0.98 0.09
LIE 0.99 0.04 0.98 0.08
Min-Max 0.99 0.05 0.98 0.08
Min-Sum 0.99 0.05 0.97 0.09

Fashion
MNIST

(AlexNet)

Fang 0.99 0.02 0.98 0.02
LIE 1.0 0.04 0.98 0.03
Min-Max 0.98 0.02 0.97 0.02
Min-Sum 0.97 0.02 0.98 0.02

Table 2: The TPR and FPR of MOUD-Vote for model poi-
soning attacks against our DeFL under Full and Partial sce-
narios using non-IID partitioned datasets with α = 0.1.

clients, and only a small fraction (up to 3%) of malicious
clients are not detected, e.g., the TPR under Fang attack us-
ing VGG-11 on non-IID partitioned CIFAR-10 is 97%. In
addition, MOUD-Vote falsely detects a small fraction of be-
nign clients as malicious, i.e., the FPR of our MOUD-Vote
ranges between 0.01 and 0.09. Importantly, our DeFL is ro-
bust to these TPR and FPR since DeFL not only removes
detected malicious clients from the aggregation during the
CLP, but also learns to estimate the aggregation weight for
each client. These two techniques together contribute to the
improvement of the effectiveness of our DeFL defenses.

0.00 0.20 0.35 0.50
32
34
36
38
40
42
44
46

A
cc

ur
ac

y
(%

)

0.00 0.20 0.35 0.50
32
34
36
38
40
42
44

0.00 0.20 0.35 0.50
32
34
36
38
40
42

0.00 0.20 0.35 0.50
30
32
34
36
38
40
42
44

0.00 0.20 0.35 0.50
δ

30
32
34
36
38
40
42
44
46

A
cc

ur
ac

y
(%

)

(a) Fang

0.00 0.20 0.35 0.50
δ

32
34
36
38
40
42
44

(b) LIE

0.00 0.20 0.35 0.50
δ

32
34
36
38
40
42

(c) Min-Max

0.00 0.20 0.35 0.50
δ

32
34
36
38
40
42
44

(d) Min-Sum

α=0.1 α=0.25 α=0.5

Figure 3: The impact of CLP detection threshold δ on global
model accuracy when state-of-the-art attacks defended by
DeFL using AlexNet on non-IID partitioned CIFAR-10 un-
der (top) Full and (bottom) Partial scenarios.

Sensitivity of CLP detection threshold. We leverage FGNV
to detect CLP via a threshold-based rule in (4). We now eval-
uate the sensitivity of the threshold value δ. We consider
the candidate values of {0, 0.05, 0.2, 0.35, 0.5}. The global
model accuracy when state-of-the-art attacks defended by
DeFL using AlexNet on non-IID partitioned CIFAR-10 with
different α is shown in Figure 3. As expected, as δ becomes
larger, fewer rounds in the initial training phases are declared
as CLP by (4). As a result, DeFL only completely removes
detected malicious clients in fewer arounds according to Al-
gorithm 1. However, the global model accuracy does not de-
grade significantly as δ becomes larger, this is due to the fact
that DeFL is further augmented with a learning process to
associate aggregation weight to malicious clients. For ease
of simplicity, we set δ = 0.05 in all of our experiments.

12.50 18.75 25.00 31.25
0

20
40
60
80

100

A
cc

ur
ac

y
(%

)

12.50 18.75 25.00 31.25
0

20
40
60
80

100

12.50 18.75 25.00 31.25
0

20
40
60
80

100

12.50 18.75 25.00 31.25
0

20
40
60
80

100

12.50 18.75 25.00 31.25
Malicious Client Rate

0
20
40
60
80

100

A
cc

ur
ac

y
(%

)

(a) Fang

12.50 18.75 25.00 31.25
Malicious Client Rate

0
20
40
60
80

100

(b) LIE

12.50 18.75 25.00 31.25
Malicious Client Rate

0
20
40
60
80

100

(c) Min-Max

12.50 18.75 25.00 31.25
Malicious Client Rate

0
20
40
60
80

100

(d) Min-Sum

α=0.1 α=0.25 α=0.5 TPR FPR

Figure 4: The impact of the number of malicious clients us-
ing AlexNet on non-IID partitioned CIFAR-10 under (top)
Full and (bottom) Partial scenarios.

Impact of the number of malicious clients. Figure 4 shows
the impact of the number of malicious clients, where we
consider the ratio of malicious clients in each round as
{12.5%, 18.75%, 25%, 31.25%}. We observe that the global
model accuracy only drops slightly. This is because DeFL
can efficiently detect malicious clients with consistently
large TPR and small FPR as shown in Figure 4, and miti-
gate their impacts via CLP awareness.

0.1 0.3 0.5 0.7 0.9
0

20
40
60
80

100

A
cc

ur
ac

y
(%

)

0.1 0.3 0.5 0.7 0.9
0

20
40
60
80

100

0.1 0.3 0.5 0.7 0.9
0

20
40
60
80

100

0.1 0.3 0.5 0.7 0.9
0

20
40
60
80

100

0.1 0.3 0.5 0.7 0.9
α

0
20
40
60
80

100

A
cc

ur
ac

y
(%

)

(a) Fang

0.1 0.3 0.5 0.7 0.9
α

0
20
40
60
80

100

(b) LIE

0.1 0.3 0.5 0.7 0.9
α

0
20
40
60
80

100

(c) Min-Max

0.1 0.3 0.5 0.7 0.9
α

0
20
40
60
80

100

(d) Min-Sum

DeFL TPR FPR

Figure 5: The effect of degree of non-IID nature of data on
global model accuracy using AlexNet on CIFAR-10 under
(top) Full and (bottom) Partial scenarios.

Impact of non-IID degree of data distribution. We sim-
ulate a heterogeneous data partition into N clients using
the Dirichlet distribution with parameter α. As shown in
Figure 5, as the non-IID degree decreases (as α increases),
the global model accuracy when state-of-the-art attacks de-
fended by DeFL increases. This is intuitive since a lower
degree of non-IID data makes the adversaries easier to be
detected and removed from the aggregation. Again we ob-
serve that DeFL consistently has a large TPR and small FPR
across different non-IID degrees.

Conclusion
In this paper, we proposed, DeFL, a CLP-aware defense
against model poisoning attacks to FL. Different from exist-
ing defenses that mainly focused on designing robust aggre-
gation rules, DeFL analyzed the underlying DNN used for
FL training and measured fine-grained difference between
DNN model updates via an easy-to-compute federated gra-
dient norm vector. Using this metric, we designed simple
rules to identify CLP and detect malicious clients, which are
seamlessly integrated into DeFL to mitigate model poison-
ing attacks to FL. Our extensive evaluations on three bench-
mark datasets, four state-of-the-art attacks and five defenses
showed that DeFL outperforms baseline defenses.

Acknowledgements
The work of G. Yan and J. Li was supported in part by
the National Science Foundation (NSF) grants CRII-CNS-
NeTS-2104880 and RINGS-2148309, and was supported in
part by funds from OUSD R&E, NIST, and industry partners
as specified in the Resilient & Intelligent NextG Systems
(RINGS) program, as well as the DOE DE-EE0009341. The
work of H. Wang was supported in part by the NSF grant
CRII-OAC-2153502 and the LSU Provost’s Fund for Inno-
vation in Research–Faculty Travel Grant Program. The work
of X. Yuan was support in part by the NSF grants 1763620,
1948374, and 2146447. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the funding agencies.

References
Achille, A.; Rovere, M.; and Soatto, S. 2019. Critical Learn-
ing Periods in Deep Networks. In Proc. of ICLR.
Azcorra, A.; Chiroque, L. F.; Cuevas, R.; Fernández Anta,
A.; Laniado, H.; Lillo, R. E.; Romo, J.; and Sguera, C. 2018.
Unsupervised scalable statistical method for identifying in-
fluential users in online social networks. Scientific Reports,
8(1): 1–7.
Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; and
Shmatikov, V. 2020. How to backdoor federated learning.
In Proc. of AISTATS.
Baruch, G.; Baruch, M.; and Goldberg, Y. 2019. A little is
enough: Circumventing defenses for distributed learning. In
Proc. of NeurIPS.
Bhagoji, A. N.; Chakraborty, S.; Mittal, P.; and Calo, S.
2019. Analyzing federated learning through an adversarial
lens. In Proc. of ICML.
Blanchard, P.; El Mhamdi, E. M.; Guerraoui, R.; and Stainer,
J. 2017. Machine learning with adversaries: Byzantine tol-
erant gradient descent. In Proc. of NeurIPS.
Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Inger-
man, A.; Ivanov, V.; Kiddon, C.; Konečnỳ, J.; Mazzocchi,
S.; McMahan, B.; et al. 2019. Towards federated learning at
scale: System design. In Proc. of MLSys.
Cao, X.; Fang, M.; Liu, J.; and Gong, N. Z. 2021. FLTrust:
Byzantine-robust Federated Learning via Trust Bootstrap-
ping. In Proc. of NDSS.
Cao, X.; and Gong, N. Z. 2022. MPAF: Model Poisoning
Attacks to Federated Learning based on Fake Clients. arXiv
preprint arXiv:2203.08669.
Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.;
Mao, M.; Ranzato, M.; Senior, A.; Tucker, P.; Yang, K.; et al.
2012. Large scale distributed deep networks. In Proc. of
NIPS.
El El Mhamdi, M.; Guerraoui, R.; and Rouault, S. 2018. The
hidden vulnerability of distributed learning in byzantium. In
Proc. of ICML.
Fang, M.; Cao, X.; Jia, J.; and Gong, N. 2020. Local Model
Poisoning Attacks to Byzantine-Robust Federated Learning.
In Proc. of USENIX Security.

Frankle, J.; Schwab, D. J.; and Morcos, A. S. 2020. The
Early Phase of Neural Network Training. In Proc. of ICLR.
Fung, C.; Yoon, C. J.; and Beschastnikh, I. 2020. The lim-
itations of federated learning in sybil settings. In Proc. of
USENIX RAID.
Golatkar, A. S.; Achille, A.; and Soatto, S. 2019. Time Mat-
ters in Regularizing Deep Networks: Weight Decay and Data
Augmentation Affect Early Learning Dynamics, Matter Lit-
tle Near Convergence. Proc. of NeurIPS.
Imteaj, A.; Mamun Ahmed, K.; Thakker, U.; Wang, S.;
Li, J.; and Amini, M. H. 2023. Federated Learning for
Resource-Constrained IoT Devices: Panoramas and State of
the Art. Federated and Transfer Learning, 7–27.
Jastrzebski, S.; Arpit, D.; Astrand, O.; Kerg, G. B.; Wang,
H.; Xiong, C.; Socher, R.; Cho, K.; and Geras, K. J. 2021.
Catastrophic Fisher Explosion: Early Phase Fisher Matrix
Impacts Generalization. In Proc. of ICML.
Jastrzebski, S.; Kenton, Z.; Ballas, N.; Fischer, A.; Bengio,
Y.; and Storkey, A. J. 2019. On the Relation Between the
Sharpest Directions of DNN Loss and the SGD Step Length.
In Proc. of ICLR.
Konečnỳ, J.; McMahan, H. B.; Yu, F. X.; Richtárik, P.;
Suresh, A. T.; and Bacon, D. 2016. Federated Learning:
Strategies for Improving Communication Efficiency. arXiv
preprint arXiv:1610.05492.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning Multiple
Layers of Features from Tiny Images.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet Classification with Deep Convolutional Neural Net-
works. Proc. of NIPS.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-Based Learning Applied to Document Recogni-
tion. Proceedings of the IEEE, 86(11): 2278–2324.
Li, S.; Cheng, Y.; Wang, W.; Liu, Y.; and Chen, T. 2020.
Learning to detect malicious clients for robust federated
learning. arXiv preprint arXiv:2002.00211.
Mahloujifar, S.; Mahmoody, M.; and Mohammed, A. 2019.
Universal multi-party poisoning attacks. In Proc. of ICML.
McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Proc. of AIS-
TATS.
Muñoz-González, L.; Co, K. T.; and Lupu, E. C. 2019.
Byzantine-robust federated machine learning through adap-
tive model averaging. arXiv preprint arXiv:1909.05125.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in pytorch. In NIPS-W.
Rieger, P.; Nguyen, T. D.; Miettinen, M.; and Sadeghi, A.-R.
2022. Deepsight: Mitigating backdoor attacks in federated
learning through deep model inspection. In Proc. of NDSS.
Shejwalkar, V.; and Houmansadr, A. 2021. Manipulating
the byzantine: Optimizing model poisoning attacks and de-
fenses for federated learning. In Proc. of NDSS.

Simonyan, K.; and Zisserman, A. 2015. Very Deep Con-
volutional Networks for Large-scale Image Recognition. In
Proc. of ICLR.
Sun, Z.; Kairouz, P.; Suresh, A. T.; and McMahan, H. B.
2019. Can you really backdoor federated learning? arXiv
preprint arXiv:1911.07963.
Wang, H.; Yurochkin, M.; Sun, Y.; Papailiopoulos, D.; and
Khazaeni, Y. 2020a. Federated Learning with Matched Av-
eraging. In Proc. of ICLR.
Wang, J.; Liu, Q.; Liang, H.; Joshi, G.; and Poor, H. V.
2020b. Tackling the Objective Inconsistency Problem in
Heterogeneous Federated Optimization. Proc. of NeurIPS.
Xie, C.; Koyejo, O.; and Gupta, I. 2018. Generalized
byzantine-tolerant sgd. arXiv preprint arXiv:1802.10116.
Xie, C.; Koyejo, O.; and Gupta, I. 2020. Fall of empires:
Breaking byzantine-tolerant sgd by inner product manipula-
tion. In Proc. of UAI.
Yan, G.; Wang, H.; and Li, J. 2022. Seizing Critical Learning
Periods in Federated Learning. In Proc. of AAAI.
Yin, D.; Chen, Y.; Kannan, R.; and Bartlett, P. 2018.
Byzantine-robust distributed learning: Towards optimal sta-
tistical rates. In Proc. of ICML.
Zhang, Y.; Yuan, X.; and Tzeng, N. 2021. Platform-
Oblivious Anti-Spam Gateway. In Proc. of ACSAC.
Zhang, Z.; Cao, X.; Jia, J.; and Zhenqiang Gong, N. 2022.
FLDetector: Defending Federated Learning Against Model
Poisoning Attacks via Detecting Malicious Clients. In Proc.
of ACM SIGKDD.

