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Abstract

Federated finetuning of Large Language Mod-
els (LLMs) using Low-Rank Adaptation
(LoRA) offers computational efficiency and
preserves data privacy. However, apply-
ing LoRA in federated settings faces signif-
icant challenges: standard approaches strug-
gle with data heterogeneity, and existing per-
sonalization techniques fail to precisely adapt
shared global knowledge to individual client
needs. To address these issues, we propose
pFedGPT, a framework that leverages Hier-
archical Bayesian Optimization (HBO) for
fine-grained, personalized LoRA aggregation.
pFedGPT intelligently partitions LoORA param-
eters based on model structure and client infor-
mation, then employs HBO to hierarchically
search for optimal, module-specific weights.
This enables a nuanced integration of the down-
loaded global LoRA state with each client’s
local model, precisely capturing client-specific
requirements. To manage the optimization cost
inherent in HBO, pFedGPT incorporates effi-
cient multi-fidelity evaluations and a curricu-
lum learning strategy. Extensive experiments
demonstrate that pFedGPT achieves state-of-
the-art (SOTA) performance on personalized
FL benchmarks, showcasing robustness and
scalability while introducing only minimal (ap-
prox. 4%) additional optimization overhead.
Our results also underscore the limitations of
traditional FL. methods for LoRA-based LLM
personalization, highlighting the need for tai-
lored approaches like pFedGPT.

1 Introduction

The rapid development of Large language mod-
els (LLMs) has drawn widespread attention from
academia (Devlin et al., 2018; Radford et al., 2019;
Raffel et al., 2020; Zhang et al., 2022). To further
improve LLM performance on various downstream
tasks, the demand for high-quality training data
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across different domains is growing. However, this
creates a conflict with the need to protect data sen-
sitivity and privacy (Balunovic et al., 2022; Gupta
et al., 2022; Klymenko et al., 2022).

This challenge has led to increasing interest
in fine-tuning LLMs within the framework of
federated learning (FL) (Yu et al., 2023; Zhang
et al., 2024a), as it allows for decentralized train-
ing while preserving data privacy. To reduce com-
munication and computational costs, Parameter-
Efficient Fine-Tuning (PEFT) methods like low-
rank adaptation (LoRA) (Hu et al., 2021) have been
adopted, offering a more efficient way to update
models without transmitting large weights. How-
ever, applying LoRA in FL presents challenges. As
data becomes more heterogeneous across clients,
the gap between fully fine-tuning the model and
using LoRA widens (Babakniya et al., 2023). Addi-
tionally, privacy-preserving techniques, such as gra-
dient noise for differential privacy, can destabilize
LoRA’s performance (Sun et al., 2024). Moreover,
global models may not perform well for specific
personalized tasks (Wang et al., 2023).

These problems prompted us to propose a
method for achieving model personalization in
LLMs. While personalized Federated Learn-
ing (pFL) has been well-researched in traditional
machine learning, directly applying it to LLM
fine-tuning presents challenges. Most existing
Personalized Federated Learning (pFL) solutions
are designed for fully trained models (Collins et al.,
2021; Oh et al., 2021; Zhang et al., 2023b), mak-
ing them incompatible with Parameter-Efficient
Fine-Tuning (PEFT) methods. In addition, some
pFL approaches are not specifically optimized for
LLMs (Wuetal., 2023; Yi et al., 2023; Zhang et al.,
2023a). Although they can theoretically provide
personalized solutions, they often fall short in prac-
tice due to the complexity of LLMs and the specific
needs of PEFT methods. Thus, there is a pressing
need for personalized FL approaches tailored to



LLMs, capable of leveraging global information
while enhancing the performance of local models.

Recent efforts to personalize LLMs in FL sce-
narios still face challenges. FedDPA (Yang et al.,
2024) combines local and global LoRA outputs
with a single weight, but struggles with managing
multiple adapters and fail to capture the personal-
ized information precisely. PerFIT (Zhang et al.,
2024b) uses neural architecture search to identify
personalized architectures, yet it overlooks that the
degree of personalization in the parameter space
evolves during training, leading to suboptimal re-
sults. In short, these approaches fail to accurately
capture the client-specific information in the global
model, preventing the local model from fully ben-
efiting from FL. Most importantly, their tailored
personalization for LLMs is just superficial and not
based on LoRA’s own structure.

Thus motivated, to better capture the necessary
information in the global model downloaded by
each client, dynamically implement optimal person-
alization of the local model, and tailor the training
framework for the LLM, we propose Personalized
Federated GPT (pFedGPT), a novel pFL method
with Hierarchical Bayesian Optimization (HBO)
to introduce hierarchical Bayesian optimization
based on curriculum learning and multi-fidelity al-
gorithms into the model training. Our contributions
are as follows:

* We introduce pFedGPT, a method that per-
forms more fine-grained parameter aggrega-
tion of local and global model by conducting
Bayesian Optimization on a personalized pa-
rameter space searched by each client, thus
accurately capturing the desired information
in the downloaded global LoRA.

* We propose a new LLM-based distribution of
data heterogeneity: Task-specific distribution,
which we use together with the traditional
Dichilet distribution as a benchmark for eval-
uating the personalization capability of LLMs
in the context of FL. Based on this, it proves
the inadaptability of the traditional FL. method
in the PEFT of the LLMs and the necessity of
proposing a new personalized method based
on LoRA.

* We conducted extensive experiments on three
benchmark datasets. The results show that
pFedGPT performs better than state-of-the-
art (SOTA) methods but introduces only 4%

additional optimization time.
2 Preliminary

2.1 LoRA

LoRA achieves PEFT by constraining the update
of model parameters to maintain a low intrinsic
rank. For a pre-trained LLM parameterized by
Oinir € R¥* LoRA utilizes a low-rank decom-
position AB to represent the update Af where
A € R and B € R™* with r < min(d, k).
The pre-trained parameter 6 remains fixed during
the fine-tuning while A and B are optimized. The
update of 6;,,;; is formed as:

Hnew = Hinit + Al = Qim't + AB.

2.2 Bayesian Optimization (BO)

Bayesian optimization is used to optimize objec-
tive functions by modeling the objective function
f(x) with a Gaussian process. For a given prior,
we have f(x) ~ GP(u(x), k(x,x’)), where p(x)
is the mean function and k(x, x’) the covariance
function. Given historical data D = {(x;, y;) }}"_1.
the posterior distribution is p(f(x) | D,x) =
N (pn(x), 02(x)), where p,(x) and o2(x) are
the posterior mean and variance. The next sam-
pling point x,,41 is selected by maximizing the ac-
quisition function a(x): X471 = arg maxy o(x).

2.3 Multi-Fidelity and Curriculum Learning

Multi-fidelity optimization aims to reduce the com-
putational cost of evaluating expensive functions
by utilizing cheaper, lower-fidelity approximations.
The key idea is to combine information of vary-
ing fidelity to efficiently guide the optimization
process.

Curriculum learning (Bengio et al., 2009) is a
progressive learning strategy with increasing dif-
ficulty, which can accelerate the convergence of
the training process and improve the generalization
ability of the model. CNAS (Guo et al., 2020) ex-
tends the concept of curriculum learning from the
data level to the generalized model element level.
It starts from a small search space to search for
neural structure, and uses the learned knowledge
to gradually search in a larger space, which signifi-
cantly improves the search efficiency and enhances
the search effect. Our idea is similar to CNAS. The
results of a wide-range rough parameter search in
a simpler, lower-cost parameter space are used to
guide a small-range parameter search in a more
complex parameter space.
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3 Overview

Figure 1 provides an overview of the local learning
process on the client side. The client downloads
the global LoRA parameters from the server and lo-
cally aggregates these parameters with the old local
LoRA parameters through Hierarchical Bayesian
Optimization for initialization (Step 1,2,3), which
we refer to as Algorithm HBO in the subsequent
discussion. Based on this initialization, the client
trains the local model, and finally uploads the
trained local LoRA parameters to the server (Step
4). To initialize next round training, the server ag-
gregate all the LORA modules from last round and
distributes the aggregated LoRA module to clients.
The details are as follows:

Step 1: Bayesian optimization based on basic
parameter space: The local client segments the
basic parameter modules of LoRA based on the
different model structures loaded by LoRA (such
as Q, K, V). Then, it performs Bayesian Opti-
mization within the basic parameter space defined
by these modules to determine the initial optimal
update weights wq, Wk, and wy. These weights
are used to aggregate the global LoRA parameters
with the local LoRA parameters.

Step 2: Personalized parameter space search
Mechanism: To enable the local model to better
learn the specific parts of the global knowledge
at a more fine-grained level, we define a personal-
ized parameter space. Based on the personalized
training information, the local client executes the
personalized clustering algorithm in each large pa-

rameter module divided in the first stage, so as to
find the parameter layers with similar personalized
degree to form a finer granularity small parame-
ter module like wq1, wqQ2, ..., wqk (where k is
the number of clusters). These smaller parameter
modules are the basic units that make up the per-
sonalized parameter space, which allows for more
detailed optimization.

Step 3: Bayesian Optimization In Personal-
ized Parameter Space Based on Curriculum
Learning: The training strategy follows a curricu-
lum learning approach. The results from Bayesian
optimization within the basic parameter space, are
then used as priors for Bayesian optimization in the
searched personalized parameter space. This ad-
vanced optimization seeks to determine the optimal
way to aggregate the global LoRA parameters with
the old local LoRA parameters in a more refined,
personalized parameter space.

Step 4: Regular Local Training: Each client
performs regular local training using LoRA, which
is initialized by optimally combining global knowl-
edge with local knowledge.

The backbone of the LLM is frozen throughout
federated training processes. The complete feder-
ated training process is described in Appendix A.

4 pFedGPT’s Design

4.1 Multi-fidelity Mechanism at the Data
Level

To reduce the training costs of Bayesian optimiza-
tion, we employ a multi-fidelity mechanism at the
data level. This mechanism involves selecting a
subset of the global dataset that closely resembles
the local data distribution for each client as lo-
cal validation set V, followed by clustering and
sampling to create low-fidelity validation datasets
Vampled- The full algorithmic details of subset se-
lection, clustering, and sampling are presented in
Appendix B.

The final outcome is the creation of:

1) High-fidelity validation dataset Vy;gh-fidelity:
The full validation dataset V obtained from the
global data.

2) Low-fidelity validation dataset Voy.fidelity:
A sampled subset Vaypleq Of the validation dataset.

4.2 BO based on Basic Parameter Space

Basic Parameter Space Partitioning Based on
Model Internal Structure. We classify model pa-
rameters according to their roles within the LoRA



layers. Specifically, we focus on value projection
(Ovaiue), query projection (fguery), and key projec-
tion (fyey). Other projections include output projec-
tion, feed-forward network input and output, and
word token embeddings (denoted as Ooutputs Fc_in.
efc_out’ ewte)-

Let 6 denote the set of all model parameters. We
categorize 6 into subsets based on their original
structural roles. For detailed discussion, we focus
on the main attention components. Therefore, in
the basic parameter space for the first Bayesian
optimization stage, we have the parameter subsets
are: Gbasic = {Hvaluea equery; ery}-

Bayesian optimization based on basic parame-
ter space. In the first stage, we optimize the param-
eters in the basic parameter space. Each parameter
subset 0, € Opasic 18 assigned a hyperparameter w,
for global optimization. The aggregation of local
and global parameters for each parameter subset 0,
is defined as:

ep,agg = Wp - ep,local + (1 - Wp) : ep,globala

where w), € [0, 1]. The objective function for this
optimization is defined as the loss function evalu-
ated on a low-fidelity validation dataset Vow-fidelity-
The optimal weights for these parameters are de-
noted as:

Witage-1 = aI'g n})‘i,n L(M (W)7 Vlow—ﬁdelity)-

Then we use Gaussian process to apply Bayesian
optimization to the objective function above. In
the end, we get an approximate optimal solution
stage-1 . . .
W for searching in the basic parameter space
based on the low-fidelity dataset, which represents
the approximate range of optimal solutions based
on which we will conduct further fine-grained

searches.

4.3 Personalized Parameter Space Search

To enhance FL by balancing global information
with local personalization, we employ a personal-
ized parameter space search mechanism based on
the model’s internal structure and training informa-
tion for each client.

Personalized Parameter Space Based on
Training Information. After partitioning the basic
parameter space, we expand it by clustering param-
eters based on training information to capture the
personalized needs of each client.

For each classified subset 0, €
{Ovatue, Oquery, Oxey }, We compute the follow-
ing metrics for each parameter: 1) Mean squared

difference between local and global parameters
for LoORA-A and LoRA-B matrices, denoted as
04,p,i and dp p; respectively. 2) The difference in
parameter change magnitude between local and
global models for LORA-A and LoRA-B matrices,
denoted as A 4 ,,; and Ap,, ; respectively. These
metrics are defined as:

lA,J 954,512
Z 0, Hp,i ) ’

5A,p,i =

_ E: lBu 9,B,5\2
5B,p7i - e/pﬂ' ) ’

I LA Aj
Appi = o Z(A‘%,i 7 - Mi,’i 7)2,
i=1
L A gl B 9.B.j\2
ABpi = n Z(Aep,i - A‘gp,i ).

<
Il
—

Here, AGZ A’] and A6Y: AJ represent the local and
global parameter changes for LoRA-A, respec-
tively:

LAG _ p(T),Aj (0),A,j
Aep,i I = ep,i - ep,i ]’
l7B7 ] — (T)7B7-j (O)’th
Aem ) = 9p7z- — vai .
The global parameters 0197” and Hz’l , as well as

their change magnitudes, are obtained by averaging
the local parameters and their changes across all
clients:

1 — 1 —
— k g _ k
=D Ui DG =) Ad
k=1 k=1

where m is the number of clients, Hk ; represents the
parameters of the k-th client, and AH’“ ; represents
the parameter changes of the k-th chent These
metrics form the feature vectors F, ; for clustering:
Fp,i = [6A,p,i’ 5B,p,i7 AA,p,i) AB,p,i]-

Personalized Parameter Partition Result. Fi-
nally, we splice the clustering results of all parame-
ter subsets together to get the personalized param-
eter subset of the client. The subset is defined as:
Gpersonalized = {Cp,b Cp2y .- 7Cp,n}-

This personalized parameter subset constitutes
the local personalized parameter space of the client.
Subsequent fine-grained Bayesian optimization
will be based on this space.

4.4 BO in Personalized Parameter Space

Our training strategy uses a curriculum learning ap-
proach. In the previous steps, we have completed



a simple and inexpensive Bayesian optimization
in the basic parameter space and determined the
roughly optimal update weights. Now, we want
to apply the results of this preliminary phase with
the relevant training information as a prior to more
complex, costly and high-precision Bayesian opti-
mization. This advanced optimization aims to find
the optimal way to aggregate global LoRA parame-
ters with the old local LoRA parameters in a more
refined, personalized parameter space.
Curriculum Learning for Personalized BO: In
the second stage, each parameter cluster c,; €
Opersonalized 15 assigned a hyperparameter w,, ; for
global optimization. The aggregation of local and
global parameters for each parameter cluster ¢, ; is
defined as: ¢p j agg = We, ; * Cpiilocal + (1 — W, ;) -
Cp,i,globals where We, ; € [0, 1].

Before the second stage bayesian optimization,
the curriculum learning initialization incorporates
two key components:

1) Initialization using Wggage.1: The results
from the first stage are used to initialize the op-
timization process for each cluster ¢, ; based on its
parameter subset 0, wgg?i = w;tage'l.

2) Initialization Incorporating Prior Infor-
mation: The training information from the basic
parameter space optimization serves as the prior
for the personalized parameter space optimization.
The training process for each cluster ¢, ; is initial-
ized using the training information from the corre-
sponding parameter subset ¢,,. This is achieved by
fitting a Gaussian Process (GP) model using the col-
lected prior information: GP ~ N (Xoprior, ¥prior)-

The optimization objective for the second stage
bayesian optimization is defined as:

Witage-2 = ar'g m“i,n L(M (W)7 Vlow—ﬁdelitya Pprior) .

Selection of Top Results for High-Fidelity Opti-
mization: After performing low-fidelity Bayesian
optimization, we select the top k best results and
use them to perform high-fidelity optimization on
the full validation dataset Vg figeliy- The final
optimal weights are denoted as Wpq:

Wiinat = arg_ min  L(M(W), Vhigh-fidelity ) -

weTop-k

The final parameters are aggregated with the opti-
mal eagg = Wrinal * Plocal + (1 - Wﬁnal) : eglobal-

4.5 Personalized Slow Start Mechanism

In FL, as shown in Appendix D, local fine-tuning
may achieve faster initial convergence compared

to federated training (FedIT), but it often results in
lower final accuracy. Since our method involves
the aggregation of locally trained LoRA parameters
and globally aggregated LoRA parameters, in order
to avoid the local optima caused by the aggregation
weight being too biased to the local parameters
in the early stage of training, we employ a per-
sonalized slow start mechanism. Specifically, we
monitor the convergence of the FL process using
the relative change in evaluation loss over a sliding
window. The process is defined as follows:

Let L; and L;_; be the arrays of training losses
in the current and the previous sliding window,
respectively, and let € > 0 be a small constant that
avoids division by zero. We denote the relative
change at round ¢ by Ay:

L ’mean(Lt) — mean(Lt,lﬂ

max (mean (Lt_l) , e)

The local client is regarded as having accumu-
lated sufficient global knowledge (the “Slow-Start”
phase ends) when A, falls below a predefined tol-
erance dmax Or When the training epoch index ¢
reaches the upper bound Ty ax:

True, if Ay < dmax O t > Thnax,
SlowStart(t) =
False, otherwise.

5 Experiments

5.1 Experimental Settings

Dataset. We conducted our experiments on three
datasets from the previous federal learning re-
search: Databricks-dolly-15k (Zhang et al., 2024a),
Flan 1 and Flan 2 (Yang et al., 2024). Each dataset
has eight different NLP tasks. Details of each task
can be found in the original article.

Data Distribution. To emulate the heteroge-
neous data distribution in local clients, we proposed
two data heterogeneity distribution settings based
on these datasets. The first is a Dirichlet distri-
bution parameterized by a coefficient 3, denoted
as Dir(3), with 3 set to 0.5 throughout the exper-
iments. At the same time, based on the powerful
generalization ability of LLMs, we propose a new
type of data distribution, which assigns each client
a unique task type from the dataset categories, re-
ferred to as the Task-Specific distribution, as shown
in Appendix C. Other training details are docu-
mented in Appendix E.



Databricks-dolly-15k Flan 1 Flan 2
Method
Dir(0.5) Task-Specific Dir(0.5) Task-Specific Dir(0.5) Task-Specific

FedAvg 72.58 72.59 73.65 71.52 72.76 69.12
FedAvgM 70.26 64.78 65.38 57.99 63.32 55.74
FedAdagrad  72.19 73.38 70.42 70.25 68.78 69.16
FedAdam 70.57 62.03 61.66 66.41 64.39 64.49
FedProx 72.22 72.80 72.98 69.72 75.89 69.02
FedYogi 69.40 63.00 64.43 65.81 64.18 65.35
FedIT 72.30 71.14 70.01 71.50 70.84 70.88
PerFIT 73.49 71.55 73.78 77.91 75.58 70.04
FedDPA 73.30 73.83 72.05 78.69 74.25 72.58
pFedGPT 73.90 74.38 74.25 79.13 76.25 72.63

Table 1: Comparison of our method with traditional and recent FL. methods under Dir(0.5) and Task-Specific settings

on Databricks-dolly-15k, Flan 1, and Flan 2 datasets.

Dir(0.5) Task-Specific Overall

Method
Mean Mean Mean
FedAvg 72.33 71.08 71.71
FedAvgM 66.32 59.50 6291
FedAdagrad 70.46 70.93 70.70
FedAdam 65.54 64.31 64.93
FedProx 73.03 70.51 71.77
FedYogi 65.34 64.05 64.69
FedIT 71.05 71.17 71.11
PerFIT 74.28 73.17 73.72
FedDPA 73.20 75.03 74.12
pFedGPT  74.80 75.38 75.09

Table 2: Mean performance under Dir(0.5), Task-
Specific settings, and overall mean across three datasets.

5.2 Main Results

We compared our method with traditional FL. meth-
ods compatible with LoRA (FedAvg (McMahan
etal., 2017), FedAvgM (Hsu et al., 2019), FedAda-
grad (Reddi et al., 2020), FedAdam (Reddi et al.,
2020)), FedProx (Li et al., 2020), FedYogi (Reddi
etal., 2020), as well as recent works specifically de-
signed for applying LoRA in FL with large models
(FedIT (Zhang et al., 2024a), PerFIT (Zhang et al.,
2024b), FedDPA (Yang et al., 2024)). Our method
was evaluated under the two proposed data distri-
bution settings across the three datasets mentioned
above. Following FedIT (Zhang et al., 2024a), we
use the GPT-40 score as an evaluation indicator of
the effectiveness of our model generation. Other
baseline details are documented in Appendix E.2.

The results indicate the effectiveness of our ap-
proach across different tasks and data distributions,
as shown in Table 1. Our method consistently out-
performs traditional FL. methods and recent works
designed for LLMs with LoRA, highlighting the
improvements in local task performance.

The statistical analysis, shown in Table 2, fur-

‘Computation Communication

Method ‘ Total time Param./iter.
FedAvg 1386 min 2x X
FedAvgM 1422 min 2x3
FedAdagrad 1424 min 2x Y
FedAdam 1456 min 2 X3
FedProx 1506 min 2x 3
FedYogi 1448 min 2x X
FedIT 1369 min 2x X
PerFIT 1866 min 2x X
FedDPA 2705 min 2 X2
pFedGPT 1431 min 2x %

Table 3: Computing and communication cost on dolly
dataset. X is the parameter amount in the LoRA.

ther proves our findings. Under the Dir(0.5),
Task-Specific, and combined settings, our method
demonstrates higher mean performance compared
to traditional FL. methods. This consistency across
different data distributions and tasks highlights the
limitations of traditional methods and emphasizes
the necessity for novel pFL approaches.

Above all, our findings are:

1) SOTA Performance: Our method achieves
SOTA performance across all tested datasets and
methods, demonstrating the robustness and effec-
tiveness of our method in enhancing local task per-
formance.

2) Limitations of Traditional FL. Methods:
When faced with LLM scenarios that bring new
forms of data heterogeneity to distribution, tra-
ditional FL methods often exhibit inferior perfor-
mance under Task-Specific settings compared to
Dir(0.5) settings. In contrast, our method shows im-
proved performance under Task-Specific settings,
indicating its superior adaptability to new tasks in
LLM +FL scenarios. These results underscore the
inadequacy of traditional FL methods in handling
the complexities of LLMs and diverse data distribu-



Configuration GPT-40 Avg. Score
Stage-1 BO + low fidelity 72.84
Stage-1 BO + high fidelity 73.56
Stage-2 BO + low fidelity 73.51
Stage-2 BO + high fidelity 73.63
Full pFedGPT (ours) 73.90
pFedGPT-slow start removed 73.59
pFedGPT + high fidelity ' 74.01

Table 4: Ablation on BO stages and validation fidelity
levels on Databricks-dolly-15k (Dir(0.5)). Scores are
the mean of three independent GPT-40 judgments per
output (higher is better). T Always uses the high-fidelity
validation set in both stages (higher cost).

tions, thus supporting the need for innovative pFL
methods designed for LLMs in the FL context.

5.3 Ablation Study

Effectiveness of pFedGPT. As shown in Table 4,
we compare six settings on Databricks-dolly-15k
(Dir(0.5)):

(1) Stage-1 BO + low fidelity: optimize only the Ba-
sic Parameter Space; validation on the low-fidelity
subset;

(ii) Stage-1 BO + high fidelity: same as (i) but vali-
dation on the full (high-fidelity) set;

(iii) Stage-2 BO + low fidelity: each client searches
its personalized parameter space; both BO and val-
idation use the low-fidelity subset;

(iv) Stage-2 BO + high fidelity: identical to (iii) but
validation uses the full set;

(V) Full pFedGPT (ours): curriculum links Stage-
1—Stage-2 and switches validation from low—high
fidelity, yielding hierarchical BO with multi-
fidelity;

(vi) pFedGPT + high fidelity: same as (v) but al-
ways validates on the full set in both stages (no
low-fidelity sampling).

As in the main experiment, each reported number
is the average of three independent GPT-40 judg-
ments per output.

Our full pFedGPT even outperforms “Stage-2
BO + high fidelity” despite the latter’s direct use
of the expensive validation set. This suggests that,
under the same number of optimization rounds,
our hierarchical initialization provides a stronger
starting point, allowing faster convergence to the
optimum. Moreover, even when using high fidelity
at every stage, the improvement over full pFedGPT
is marginal (only +0.11), highlighting the efficiency
and robustness of our multi-fidelity, curriculum-
driven HBO framework.

Effectiveness under Different Learning Rates.
To analyze the effectiveness of our method under

different learning rates, we first studied the impact
of different learning rates using the Databricks-
dolly-15k dataset with the Dir(0.5) distribution. We
tested three different learning rates: 5 x 1075, 1 x
1074, and 1.5 x 10~°. The evaluation loss over
communication rounds for each learning rate is
illustrated in Figure 2.

Despite the initial slower convergence rate due
to the reduced data volume when splitting part of
the training set into a global dataset, our method’s
unique advantages ensure that the model achieves
higher final accuracy. Additionally, our approach
demonstrates continuous accuracy improvement
even when FedIT start to overfit.

Computing and Communication Overhead.
We record the total time cost for each method, as
shown in Table 3. pFedGPT achieves SOTA per-
formance while introducing only about 4% addi-
tional training time and no additional communica-
tion cost compared to the baseline methods, plac-
ing it among the top performers in terms of effi-
ciency. Moreover, its extra overhead is significantly
lower than that of the other two personalization
algorithms specifically designed for LLMs, under-
scoring the superior efficiency of our approach.

Impact of different number of clients. To
understand the impact of varying the number of
clients on the performance of different FL. meth-
ods, we conducted experiments with 8, 20, and
50 clients under the Dir(0.5) setting across the
above three datasets. We selected FedAvg, Fed-
Prox, FedIT, PerFIT, and FedDPA based on their
strong performance in the main experiments. The
results are shown in Table 5, demonstrating the
superior scalability and robustness of pFedGPT in
real-world scenarios. In addition, we found that
the increase in the number of clients brought more
performance gains to the FL approach specifically
designed for LLM compared to the traditional FL
approach, further supporting our view of the need
to customize the FL training approach for LLM.

Impact of different sizes of sampling weights.
In order to evaluate the effect of each client’s
weight sampled from the global dataset on the
model performance, we conducted experiments on
all the aforementioned datasets using the sample
weights {1/8, 1/4, 1/2, 1}. As Figure 3 shows, for a
Dirichlet distribution with 3 set to 0.5, the guided
validation set required by each client may need to
be more generalized, so when the sample weight of
the validation set goes up, there is a slight improve-
ment in model performance, representing higher
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Figure 2: Evaluation loss vs. communication rounds for learning rate 5 x 107° /1 x 107% /1.5 x 10~%.

Method Databricks-dolly-15k Flan 1 Flan 2
8 Clients 20 Clients 50 Clients 8 Clients 20 Clients 50 Clients 8 Clients 20 Clients 50 Clients
FedAvg 72.58 71.74 72.51 73.65 73.82 73.87 72.76 70.12 71.07
FedProx 72.22 72.39 74.68 72.98 72.35 73.47 75.89 75.10 74.85
PerFIT 73.49 75.20 76.05 73.78 74.25 75.10 75.58 76.35 76.90
FedDPA 73.30 73.35 74.10 72.05 72.90 72.50 74.25 76.00 76.65
pFedGPT 73.90 75.61 76.74 74.25 74.00 75.90 76.25 77.10 77.85

Table 5: Performance comparison of different methods with varying number of clients under Dir(0.5) setting across

Databricks-dolly-15k, Flan 1, and Flan 2 datasets.
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Figure 3: Comparison of model performance with dif-
ferent sizes of sampling weights.

precision of model personalization initialization.
However, for the Task-Specific distributed data, the
high degree of heterogeneity of the tasks (especially
the Flan1/2 dataset also contains heterogeneity of
output formats) makes it probably a safer choice
for each client to select a smaller validation set that
is more accurate. Specifically, in our experimental
setup, a sample weight of 1/8 for a task-specific dis-
tribution approximates finding only the same Task
data in the global dataset as the guided validation
set, and thus tends to achieve a good experimental
result. However, for our method, even if the worst
sampling weights are selected, the model trained by
our method still outperforms the vast majority of
models on a specific task, and can basically achieve
SOTA on the overall performance of all tasks.

6 Related Work

Parameter-Efficient Fine-Tuning (PEFT): In or-
der to further liberate the limitations of FL in the
context of LLMs, recent work has focused on in-
tegrating PEFT methods with FL Settings, includ-
ing reducing communication costs (Malaviya et al.,
2023; Nguyen et al., 2024; Sun et al., 2024; Xu
et al., 2023; Zhang et al., 2023c), protecting dif-
ferential privacy (Sun et al., 2024; Zhang et al.,

2024a), and establishing fine-tuning frameworks
(Kuang et al., 2023; Ye et al., 2024; Zhang et al.,
2024a). In terms of alleviating data heterogene-
ity and achieving model personalization, SLoRA
(Babakniya et al., 2023) finds a personalized start-
ing point for the model through two-stage training
and SVD matrix decomposition. PerFIT (Zhang
et al., 2024b) uses neural architecture search to find
a personalized architecture for each client. Fed-
DPA (Yang et al., 2024) learns an additional local
adapter during training and combines the output of
the global and local adapters through an instance-
level dynamic weight. Our pFedGPT is more accu-
rate than the above methods and does not introduce
additional memory costs. Fine-grained adaptive
local aggregation based on model internal structure
makes it possible to intelligently aggregate global
and local models to fit local targets on each client.
In addition, because pFedGPT modifies only local
initialization in FL, it can be applied to existing
FL methods to improve their performance without
modifying other learning processes.

Bayesian Federated Learning (BFL) (Cao
et al., 2023) extends traditional FL by deriving a
global posterior distribution that aggregates knowl-
edge from all clients. There are also some ex-
isting methods integrating Bayesian optimization
(BO) with FL, such as FTS (Dai et al., 2020) and
TFP (Zang et al., 2022), focus on improving effi-
ciency through dimensionality reduction or zeroth-
order optimization. However, these approaches
lack considerations for applying BO to achieve
fine-grained personalization and struggle to adapt
to the unique challenges of PEFT in LLMs. Our
proposed method, pFedGPT, introduces a Hierar-



chical Bayesian Optimization framework tailored
for LoRA-based FL, enabling precise integration
of global and local information. This approach
achieves robust personalization, improved scalabil-
ity, and state-of-the-art performance, addressing
key gaps in existing FL-BO methods.

7 Conclusion

In this paper, we introduced pFedGPT, which lever-
ages hierarchical Bayesian optimization to accu-
rately capture the desired information in the down-
loaded global LoRA and integrates curriculum
learning and multi-fidelity algorithms to reduce
computational costs while maintaining accuracy.
Our experiments show that pFedGPT outperforms
SOTA methods with minimal extra optimization
computational cost as well as maintains scalabil-
ity and robustness. Additionally, we proposed a
task-specific distribution benchmark to evaluate
LLM personalization, demonstrating the limita-
tions of traditional pFL methods and the necessity
of proposing a new personalized methods based on
LLMs.

Limitations

While our approach demonstrates strong perfor-
mance, it has a few limitations. First, our exper-
iments focus primarily on the QKV projections,
which are the most frequently loaded in LoRA-
based models, and further exploration is needed
for other projections. Second, we did not inves-
tigate the similarity of personalization across dif-
ferent projections, which could lead to more effi-
cient optimization by grouping similar projections.
Finally, while we introduce a task-specific distri-
bution, further work is needed to develop more
advanced methods for measuring heterogeneity be-
tween different tasks, which would improve the
understanding of LLLM personalization in the con-
text of federated learning.
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Algorithm 1: The pFedGPT Frame-
work
Require: N clients, global rounds 7, initial
global LoRA Oy, local learning rate «,
slow-start thresholds
Ensure: Local LoRA parameters {©;}Y
1: Server initializes O
2: forround¢t =1...7 do
3:  Server selects subset of clients I; and
sends O;_1

4:  for client ¢ € I; in parallel do
5 if Slow Start = True then
6: get Viow-fia this round (cf. Eq. (1))
7 0" « Algorithm HBO
8 else
9: 911;111t < eglobal
10: end if
11: Local training:
0! + 0,‘5“} -« VgL(Hgl;t, D;)
12: Send O to server
13:  end for

14 Server aggregates

Ot ¢ Lien, 7,015 O
15: end for
16: return {O;}

A  The pFedGPT Framework

The complete federated training process is de-
scribed in Algorithm 1.

B Details of Validation Subset
Construction

B.1 Selection and Clustering of Validation
Subsets

Each client selects a subset that is most similar to
its local data distribution from the global dataset
as a local validation set. This is achieved by calcu-
lating the cosine similarity between the local and
global dataset embeddings. The similarity scores
are sorted to select the top n most similar global
data points as the local validation dataset V. We
then perform clustering on its normalized embed-
dings Evorm to identify groups of similar data
points. The optimal number of clusters is deter-
mined by maximizing the silhouette score, yielding
cluster labels L and cluster sizes Njygters-



Databricks-dolly-15k

Flan 1 and Flan 2

12.5%
12.5%

w

Figure 4: Data distribution of datasets

B.2 Sampling for Low-fidelity Validation
Dataset

After clustering, we perform weighted probability
sampling to obtain a low-fidelity validation dataset
that best represents the overall data distribution.
Let Vgamplea denote the sampled validation dataset,
and let a be a hyper-parameter representing the
sampling ratio:

T=lax|V].

For each cluster, the number of samples to be drawn
is proportional to the size of the cluster:

Nlusters [c]
The selected points from each cluster form the final
low-fidelity validation dataset V gampled-

C Data Distribution

We conducted our experiments on three datasets
from the previous federal learning research:
Databricks-dolly-15k (Zhang et al., 2024a), Flan
1 and Flan 2 (Yang et al., 2024). Each dataset has
eight different NLP tasks, and their data distribu-
tion is shown in the Figure 4.

D Training Evaluation Loss Comparison

In FL, as shown in Figure 5, local fine-tuning may
achieve faster initial convergence compared to fed-
erated training (FedIT (Zhang et al., 2024a)), but
it often results in lower final accuracy. Since our
method involves the aggregation of locally trained
LoRA parameters and globally aggregated LoRA
parameters, in order to avoid the local optima
caused by the aggregation weight being too biased
to the local parameters in the early stage of training,
we employ a personalized slow start mechanism.
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Figure 5: Training evaluation loss comparison between
federated learning and local fine-tuning.

E Training Details

E.1 Dataset Splits

To simulate the scarcity of local data on the client
(McMabhan et al., 2017; Yang et al., 2024), for the
Databricks-dolly-15k dataset, we extracted 20% of
the data from each NLP task, ensuring its volume
is comparable to the other two datasets. We set
20% of the Databricks-dolly-15k data as the local
test set for each client (Zhang et al., 2024b), while
for Flan datasets, we followed the original training
and testing split. For our method, we extract 40
bars without retracting from the training data for
each NLP task class to form a global validation set
for our method. Our method will be trained using
the segmented data and the other methods will be
trained using the original data.

E.2 Classical FL Baselines: Additional Details

To aid general readers, we provide concise descrip-
tions of all classical FL baselines compared in our
main results.

* FedAvg (McMahan et al., 2017). Clients per-
form multiple local SGD steps and the server
averages model parameters weighted by client
data sizes. This sharply reduces communica-
tion while preserving global convergence in
many practical settings.

* FedAvgM (Hsu et al., 2019). Augments Fe-
dAvg with server-side momentum, smooth-
ing historical update directions and improving
convergence stability under non-IID data.

* FedAdagrad (Reddi et al., 2020). Maintains
each parameter’s cumulative squared gradi-
ent on the server and scales step sizes with
Adagrad, reducing manual tuning and often
speeding convergence under heterogeneous
data.



* FedAdam (Reddi et al., 2020). Incorporates
Adam’s first- and second-moment estimates at
the server, dynamically adapting to gradient
magnitude and direction for greater robustness
to noisy or sparse gradients.

* FedYogi (Reddi et al., 2020). Replaces
Adam’s second-moment update with Yogi’s
sign-corrected rule, curbing unbounded mo-
ment growth and mitigating learning-rate
blow-ups on non-1ID data.

* FedProx (Li et al., 2020). Adds a proximal
term to each client’s objective and allows vari-
able local epochs, constraining update drift
and handling both statistical and system het-
erogeneity.

These baselines were designed in the pre-LLM
era; their limitations relative to our method high-
light the need for LLM-tailored personalized FL
(pFL) algorithms. Other baselines specifically de-
signed for applying LoRA in FL with LLMs (e.g.,
FedIT (Zhang et al., 2024a), PerFIT (Zhang et al.,
2024b), FedDPA (Yang et al., 2024)) are discussed
in detail in the related-work section (see Section 6).

E.3 Configurations

We used Alpaca-7B (Taori et al., 2023) as our base
model, and in the hyperparameters of LoRA and
how it was initialized, Optimizer Settings, template
of the prompt and other model configurations are
completely in accordance with the original FedIT
setting (Zhang et al., 2024a), and we follow the
original setting for different datasets in their FL
research (Yang et al., 2024; Zhang et al., 2024a)
in terms of learning rate. We set up 8 clients cor-
responding to 8 different task data and activated
all clients per communication round based on the
traditional pFL setup. All the experiments run on 2
x A5000 (24 GB).
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