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Abstract—Serverless computing has revolutionized online service development and deployment with ease-to-use operations,
auto-scaling, fine-grained resource allocation, and pay-as-you-go pricing. However, a gap remains in configuring serverless
functions—the actual resource consumption may vary due to function types, dependencies, and input data sizes, thus mismatching the
static resource configuration by users. Dynamic resource consumption against static configuration may lead to either poor function
execution performance or low utilization. This paper proposes Freyrt, a novel resource manager (RM) that dynamically harvests idle
resources from over-provisioned functions to accelerate under-provisioned functions for serverless platforms. Freyr™ monitors each
function’s resource utilization in real-time and detects the mismatches between user configuration and actual resource consumption.
We design deep reinforcement learning (DRL) algorithms with attention-enhanced embedding, incremental learning, and safeguard
mechanism for Freyrt to harvest idle resources safely and accelerate functions efficiently. We have implemented and deployed a
FreyrT prototype in a 13-node Apache OpenWhisk cluster using AWS EC2. Freyrt is evaluated on both large-scale simulation and
real-world testbed. Experimental results show that Freyr* harvests 38% of function invocations’ idle resources and accelerates 39% of
invocations using harvested resources. Freyrt reduces the 99th-percentile function response latency by 26% compared to the

baseline RMs.

Index Terms—Serverless computing, resource harvesting, reinforcement learning, attention, incremental learning

1 INTRODUCTION

ERVERLESS computing, known as the next-generation
Scloud computing, has extensively simplified the way
that developers access cloud resources. A wide spectrum
of cloud applications, including web services [2], video
processing [3, 4], data analytics [5, 6], and machine learn-
ing [7, 8] have been running on existing serverless com-
puting platforms, such as AWS Lambda, Google Cloud
Functions, and Azure Functions, with automated resource
provisioning and management. By decoupling traditional
monolithic cloud applications into inter-linked microser-
vices executed by stateless functions, serverless computing
frees developers from infrastructure management and ad-
ministration with fine-grained resource provisioning, auto-
scaling, and pay-as-you-go billing [9].

Existing serverless computing platforms enforce static
resource provisioning for functions. For example, AWS
Lambda allocates function CPU cores in a fixed proportion
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to the memory size configured by users, leading to either
CPU over-provisioned or under-provisioned for the func-
tion execution. Therefore, serverless service providers are
enduring poor resource utilization due to users” inappro-
priate function configuration—some functions are assigned
with more resources than they need [10]. The high con-
currency and fine-grained resource isolation of serverless
computing further amplify such inefficient resource provi-
sioning.

A few recent studies attempted to address the above
issues. Some researchers proposed to maximize resource
utilization and reduce the number of cold-starts by pre-
dicting the keep-alive windows of individual serverless
functions [11, 12]. Fifer [10] incorporated the awareness
of function dependencies into the design of a new re-
source manager to improve resource utilization. COSE [13]
attempts to use Bayesian Optimization to seek for the
optimal configuration for functions. Furthermore, several
works [14, 15, 16] aimed to accelerate functions and improve
resource efficiency by adjusting CPU core allocations for
serverless functions in reaction to their performance degra-
dation during function executions.

However, none of the existing studies has directly tackled
the low resource efficiency issue raised by the inappropriate
function configurations. There are three critical challenges
from the perspective of serverless service providers to ad-
dress this issue. First, a user function is secured as a black
box that shares no information about its internal code and
workloads, making it hardly possible for the serverless
system to estimate the precise resource demands of user
functions. Second, decoupling monolithic cloud applications
to serverless computing architectures generates a variety



of functions with diverse resource demands and dynamic
input workloads. Third, the resource provisioning for server-
less functions is fine-grained spatially (i.e., small resource
volumes) and temporally (i.e., short available time).

In this paper, we address the aforementioned chal-
lenges by presenting Freyr', a new serverless resource
manager (RM) that dynamically harvests idle resources
to accelerate functions and maximize resource utilization.
Freyr* estimates the CPU and memory saturation points
respectively of each function and identifies whether a func-
tion is over-provisioned or under-provisioned. For those
over-provisioned functions, Freyr“‘ harvests the wasted re-
sources according to their saturation points; for those under-
provisioned functions, Freyr™ tries to accelerate them by
offering additional, and just-in-need allocations to approach
saturation points.

We apply an experience-driven algorithm to identify
functions over-supplied and under-supplied by monitoring
a series of performance metrics and resource footprints,
including CPU utilization, memory utilization, and function
response latency to estimate the actual resource demands
of running functions. Instead of inputting raw state fea-
tures, Freyr™ leverages an attention-enhanced embedding to
automatically extract critical information and prioritize the
features in the latent space using attention mechanism [17],
which improves the training efficiency and generality of
the reinforcement learning agent. To deal with the highly
volatile environment of serverless computing and large
numbers of concurrent functions, we propose to apply the
Proximal Policy Optimization (PPO) algorithm [18] to learn
from the realistic serverless system and make per-invocation
resource adjustments. We equip Freyr™ with incremental
learning to quickly adapt to environmental changes, such as
function update and new function deployment, which com-
monly occur in serverless computing. Besides, we design
a safeguard mechanism for safely harvesting idle resources
without introducing any performance degradation to func-
tion executions that have resource harvested.

We implement Freyrt based on Apache OpenWhisk [19],
a popular open-source serverless computing platform. We
develop a Deep Reinforcement Learning (DRL) model and
training algorithm using PyTorch and enable multi-process
support for concurrent function invocations. We evaluate
Freyr™ with the other three baselines on large-scale simu-
lation and an OpenWhisk cluster using realistic serverless
workloads. Compared to the default resource manager in
OpenWhisk, Freyr™ reduces the 99th-percentile function
response latency of invocations' by 26%. Particularly, Freyr™
harvests idle resources from 38% of function invocations
while accelerating 39% on the OpenWhisk cluster. Notably,
Freyr™ only degrades a negligible percentage of function
performance under the system performance variations of
the OpenWhisk cluster.

2 BACKGROUND AND MOTIVATION

This section first introduces the status quo of resource pro-
visioning and allocation in serverless computing. Then, we

1. In this paper, a function denotes an executable code package de-
ployed on serverless platforms, and a function invocation is a running
instance of the code package.

2

use real-world experiments to demonstrate that serverless
functions can easily become under-provisioned or over-
provisioned, and motivate the necessity to accelerate under-
provisioned functions and optimize resource utilization by
harvesting idle resources at runtime.

2.1 Resource Provisioning and Allocation in Server-
less Computing

Existing serverless computing platforms (e.g., AWS Lambda,
Google Cloud Functions, and Apache OpenWhisk) request
users to define memory up limits for their functions and
allocate CPU cores according to a fixed proportion of the
memory limits [19, 20, 21, 22]. Obviously, the fixed propor-
tion between CPU and memory allocations leaves serverless
functions either under-provisioned or over-provisioned be-
cause functions” CPU and memory demands differ signifi-
cantly.

Further it is non-trivial for users to accurately allocate
appropriate amounts of resource for their functions [13, 15]
due to various function types, dependencies, and input
sizes. Users are prone to oversize their resource alloca-
tion to accommodate potential peak workloads and fail-
ures [15, 23]. Finally, users’ inappropriate resource alloca-
tions and providers’ fixed CPU and memory provisioning
proportion jointly degrade the resource utilization in server-
less computing as resources allocated to functions remain
idle.

Integrating Freyr™ to existing serverless computing sys-
tems, such as OpenWhisk, AWS Lambda, and Google Cloud
Functions, leads to merits for both service providers and
users. For service providers, Freyr™ carefully harvests idle
resources and reuses them to accelerate function invoca-
tions, which improves the overall serverless platform’s re-
source utilization. For users who mistakenly configured
insufficient resource allocation for their functions, Freyr™
transparently brings potential performance improvement
(i.e., faster function executions) using harvested idle re-
sources without significantly degrading other users’ perfor-
mance.

2.2 Resource Saturation Points

We further demonstrate how easily a serverless function
becomes under-provisioned or over-provisioned by intro-
ducing a new notion of saturation points. Given a function
and an input size, there exists a resource allocation saturation
point—allocating resource beyond this point can no longer
improve the function’s performance, but allocating resource
below this point severely degrades the performance.

We profile the saturation points of two applications:
email generation (EG) and K-nearest neighbors (KNN),
representing two popular serverless application categories:
web applications and machine learning (ML), respectively.
We identify the allocation saturation points of CPUs and
memory separately by measuring the response latency of
functions allocated with different number of CPU cores and
different sizes of memory. When adjusting a function’s CPU
(memory) allocation, we fix its memory (CPU) allocation to
1,024 MB (8 cores).

Figure 1 shows that saturation points vary from func-
tions and input sizes. It is non-trivial for users to identify the
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Fig. 1: Saturation points of EG and KNN with small (S)
and large (L) workload sizes. EG-S (L) generates 1K (10K)
emails, and KNN-S (L) inputs 2K (20K) data samples.

saturation points for every function with specific input sizes
in their applications. Particularly, serverless functions are
typically driven by events with varying input sizes. Without
dynamic and careful resource allocations, functions tend to
become either over-provisioned or under-provisioned.

2.3 The Need for Harvesting Idle Resources

Resource harvesting is a common methodology in vir-
tual environments that increases resource utilization by
reallocating idle resources to under-provisioned services
without degrading the performance of services being har-
vested [24, 25, 26].

To motivate the need for dynamic resource harvesting in
serverless computing, we compare the function response la-
tency achieved by the default resource manager (Fixed RM)
and greedy resource manager (Greedy RM) when executing
four real-world serverless functions. The Fixed RM simply
accepts and applies a fixed resource allocation pre-defined
by users, such as the RM in OpenWhisk and AWS Lambda.
The Greedy RM dynamically harvests CPU cores from func-
tions over-provisioned and assigns the harvested CPU cores
to functions under-provisioned in a first-come-first-serve
manner based on the estimated function saturation points
learned from functions’ recent resource utilization (details in
Section 6). In this experiment, we collect historical resource
utilizations of four functions and profile their saturation
points.

Figure 2(a) shows the Greedy RM accelerates the ALU by
harvesting three CPU cores from the EG (i.e., the EG function
invocation) and one CPU core from the IR. Though the
KNN is also under-provisioned, the Greedy RM assigns all
harvested CPU cores to the ALU since the ALU is invoked
before the KNN. As a comparison, Figure 2 also plots
the saturation points of each function invocation and their
response latency when allocated with saturated resources.
Figure 2(b) shows the Greedy RM can increase resource uti-
lization and accelerate under-provisioned functions without
sacrificing over-provisioned functions’ performance in the
motivation scenario.

2.4 Deep Reinforcement Learning (DRL)

Due to the volatility and burstiness of serverless computing,
it is non-trivial to accurately estimate the saturation points
based on functions’ recent resource utilization, and the
greedy resource harvesting and re-assignment can hardly
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Fig. 2: The CPU allocation and response latency of four
real-world functions: EG, image recognition (IR), arith-
metic logic units (ALU), and KNN, where the EG generates
100K emails, the IR classifies ten images, the ALU calcu-
lates 20M loops, and the KNN inputs 20K data samples.

minimize the overall function response latency. Thus, we
propose to utilize reinforcement learning (RL) algorithms
to learn the optimal resource harvesting and re-assignment
strategies.

At every timestep ¢, the agent is in a specific state s;, and
evolves to state s;y; according to a Markov process with
the transition probability P(s;, at, st+1) when action a; is
taken [27]. The immediate reward for the agent to take ac-
tion a; in state s; is denoted as r;. The goal of the agent is to
find a policy 7 that makes decisions regarding what action
to take at each timestep, a; ~ m(-|s;), so as to maximize
the expected cumulative rewards, E[> ;= 7'~ 'r], where
v € (0, 1] is a discount factor.

To capture the patterns of real-world systems and ad-
dress the curse-of-dimensionality, deep reinforcement learn-
ing (DRL) has been introduced to solve scheduling and
resource provisioning problems in distributed systems [28,
29, 30, 31], where deep neural networks serve as the function
approximators that describe the relationship between deci-
sions, observations, and rewards. We design a lightweight
score network as the approximator in DRL algorithms,
which introduces negligible inference overheads in real-time
serving (Section 6.7).

2.5

DRL unearths optimal resource harvesting and reassign-
ment strategies for function invocations, though training a
performant DRL agent is extremely time-consuming. The
interaction between the DRL agent and realistic serverless
computing systems contributes to most of the training time.
For example, before the agent observes the next state, it
has to wait until the completion of system operations (e.g.,
container preparation and function execution).

Any environmental changes (i.e., new functions deploy-
ment) may enforce retraining of the DRL agent, which
makes DRL-based solutions inefficient for serving highly-
volatile serverless functions. Thus, Freyr+ should be care-
fully designed to adapt to dynamic changes in serverless
platforms and avoid retraining from scratch. We introduce
incremental learning for Freyr™ to swiftly accommodate envi-
ronmental changes. Incremental learning refers to a method
that enables ML models to take input data continuously
to extend the existing model’s knowledge, i.e., to further
train the model. ML algorithms leverage incremental learn-
ing to adapt to new input data [32, 33, 34]. We design

Incremental Learning



a novel score network for Freyr™ to share parameters of
neural networks among different functions, thus supporting
incremental learning inherently. With incremental learning,
Freyr™ is evaluated to achieve sub-optimal performance
for harvesting and accelerating functions in a changing
environment while converging to optimal performance in
several training episodes (Section 6.5).

3 OVERVIEW
3.1 Design Challenges

Unlike long-running VMs with substantial historical traces
for demand prediction and flexible time windows for re-
source harvesting, function executions in serverless com-
puting are highly concurrent, event-driven, and short-lived
with bursty input workloads [35], making it hardly practical
to reuse the existing VM resource harvesting methods. To
enable efficient and safe resource harvesting and perfor-
mance acceleration in serverless computing, Freyrt’s design
tackles three key challenges:

Volatile and bursty serverless environments. The het-
erogeneity of serverless functions, the high concurrency of
invocation events, and the burstiness of input workloads
jointly make it non-trivial to accurately determine whether
a function execution has idle resources to be harvested.
Besides, serverless functions are sensitive to the latency
introduced by resource harvesting and re-assignment due
to their short lifetime and event-driven nature.

Huge space of harvesting and re-assignment decisions.
Unlike the default resource managers that enforce a fixed
proportion between the CPU and memory allocations, we
decouple the resource provisioning for CPU and memory
for more accurate resource harvesting and re-assignment,
leading to a two-dimensional resource pool for Freyr™ to
seek for the optimal resource allocation. This is an immense
action space for the DRL agent. For example, AWS Lambda
allows any memory sizes between 128 MB and 10,240 MB
and up to 6 CPU cores—60,672 choices in total. Such a huge
action space complicates the DRL algorithm design and
extensively increases the computation complexity to train
the DRL agent.

Undeserved performance degradation. Freyrt harvests
resources from invocations deemed as over-provisioned to
improves the entire workload. One necessary requirement
is to prevent the performance of those functions from de-
grading. In this paper, undeserved performance degradation is
defined as an invocation’s performance degrades when the
resource it receives at runtime is below the user-defined
allocation. It is vital to guarantee that harvested functions
have no significant performance degradation.

3.2 Freyr'’s Architecture

Freyr™ is a resource manager in serverless platforms that
dynamically harvests idle resources from over-provisioned
function invocations and reassign the harvested resources
to accelerate under-provisioned function invocations. It
is located with the controller of a serverless computing
framework and interacts with the container system (e.g.,
Docker [36]) that executes function invocations.

Figure 3 shows an overview of Freyr'’s architecture.
First, concurrent function requests arrive at the frontend to
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Fig. 3: Freyr*’s architecture.

invoke specific functions with user-defined resource alloca-
tions. The controller admits the function requests, registers
their configurations, and schedules them to the invokers.
Before the function executions, Freyr+ inputs observations
from serverless platform database and makes resource har-
vesting and re-assignment decisions. The controller enforces
invokers with the decisions when executing function invo-
cations.

To handle the volatile and bursty serverless environ-
ments, Freyr™ is designed to be event-driven with multi-
process support that the arrival of a function request triggers
Freyr* to make resource harvesting decisions. To shrink the
huge decision space, Freyr* trains a score network to justify
each allocation option of function invocations, converting
the action space of all potential allocation options to a
score for individual allocation option. Freyr™ evaluates the
score of each allocation option using this score network and
enforces the allocation option with the highest score. To
avoid potential performance degradation of functions with
resources harvested, Freyr™ applies a safeguard mechanism to
prevent those potentially dangerous allocation options and
guarantees the performance of every function invocation
within a workload. The safeguard examines whether the
allocation decision made by the DRL agent is below a
function’s historical resource usage peak. Besides, the safe-
guard monitors the function’s runtime resource utilization
and returns all harvested resources by calling a safeguard
invocation when its resources appear to be fully utilized.

4 DESIGN
4.1 Problem Formulation

We consider a serverless platform that handles a workload
W with multiple concurrent function invocations. Let v
denote a function invocation in W. We assume the response
latency [ of v is dominated by CPU and memory. Each
function invocation v has a resource allocation p = (pc, pm ),
where p. and p,, denote a set of CPU and memory re-
sources, respectively. We assume p is non-preemptive and
fixed when the platform is executing v, i.e., p is consistently



provisioned to v until the execution completes. Thus, we
define the relationship between the response latency and the
resource allocation as: [ = B(p). Section 2.2 demonstrates
that a function invocation has a pair of saturation points for
CPU and memory denoted by p= = (pZ, pZ,), respectively.

The platform determines whether it can harvest or ac-
celerate a function invocation v by comparing p with p=: if
P> < pe (P5, < Pm), v has idle CPU (memory), the platform
can harvest at most p. — pS resources without increasing
response latency [; if p= > p. (p5, > pm), the allocation
of v hasn’t saturated, the platform can provide v with at
most p5 — p. resources to improve the performance of v,
i.e., reduce response latency /. Thus for CPU or memory,
function invocations in a workload W can be classified into
three groups of invocations: W = W), + W, + W, where
W), denotes the set of invocations that can be harvested, W,
denotes the set of invocations that can be accelerated, and
W4 denotes the set of invocations which have descent user
configurations (p= = p).

We define a speedup value as the performance metric
to avoid prioritizing long invocations while keeping short
invocations starving. Recall that 1V denotes the workload, v
denotes a function invocation in W. Function invocations
arrive at the platform in a sequential order. At the first
invocation of a function, the platform captures the response
latency 1° with resources (p%,p?,) configured by the user
and employs it as a baseline denoted by b. When i-th
invocation completes execution, the platform captures the
response latency [’ of it. The speedup of the i-th invocation

is calculated as )
L

5 M)

We normalize the response latency of each invocation
with baseline latency of user configuration. Intuitively, the
speedup indicates how an invocation performs regardless
of its duration length. A positive speedup value means
the invocation is accelerated, otherwise the performance is
degraded. We design the speedup value (Equation 1) as
a unified metric for evaluation across different allocation
schemes of functions in our experiments, and the speedup
is embedded into the reward design (Section 4.5) of Freyr+
to guide the DRL decisions.

A function invocation may be accelerated while being
harvested at the same time (e.g., p= < p. while pZ, > py,).
In this case, the speedup is a mixed result. For individual
invocations, we only focus on the performance regardless of
details of resource allocation, i.e., the invocation is good as
long as it yields positive speedup. We use average speedup
to measure how well a workload is handled by the platform
with harvesting and acceleration. Hence, the goal is to find
a set of resource allocation p = (p',p?,...,p!"!) which
maximizes the average speedup of a workload, defined as

speedup 1=

1 ey

avg_speedup ::W Z -
i=1

1 W]

_ 1 B0 - B0
W] i=1

B(p")
However, as introduced in Section 2.2, estimating vary-
ing saturation points of sequential function invocations

5
TABLE 1: The observation state space of the DRL agent.

Platform avail_cpu, avail_mem

State inflight_request_num

Function avg_;pu_peak,avg_mem_peék, .
State avg_interval, avg_execution_time,

baseline

posts a challenging sequential decision problem. The com-
plex mapping from set of p to objective average speedup
can hardly be solved by existing deterministic algorithms.
Hence, we opt for DRL and propose Freyr', which learns
to optimize the problem by replaying experiences through
training. Freyrt observes information from platform level
and function level in real time. Figure 4 depicts how Freyr™
estimates CPU/memory saturation points. Given a function
invocation, we encode every possible CPU and memory
option into a scalar value representing the choice.

4.2 Attention-enhanced Information Pre-processing

When allocating resources for a function invocation, Freyr™
collects information from two levels in Table 1: platform
level and function level. Specifically, for the platform, Freyr™
captures the number of invocations remaining in the system
(ie., inflight_request_num), available CPU cores, and
available memory. For the incoming function, Freyr* queries
invocation history of the function which records average
CPU peak, average memory peak, average inter-arrival time
(IAT), average execution time, and baseline execution time
(i.e., baseline) with user-requested resources. We embed
all information and the potential configuration options to-
gether into a flat state vector as input to Freyr™ agent.

Once collecting such information and encapsulating the
state vector, we enhance the plain state features using the
attention mechanism in the latent space. Freyr™ automatically
learns the importance of individual state features by assign-
ing a learnable weight using soft attention. Intuitively, the
idea behind the attention mechanism is to learn the relative
importance of each feature in the state space. To calculate the
attention weight, we treat the feature as a query = and the
rest of the features as a key matrix Y. The attention weight
Attn is calculated by

T
x

Attn(z,Y) = softmax( ), 2)

where d is the dimension of the query z. Given a state

s = {hl,...,hJ,...,hJ}, we denote h’ as a feature and

J is the total number of features in s, where j € J. Refer-
ring to the Equation 2, Freyr* learns an attention weight
Attn’ for each h’/ by replacing z and YT with k7 and
s ={nt, ... WL WL K7}, given by

Attn’ = Attn(Z]h, Z)s™), (3)
where ZJ and ZJ are learnable parameters for the query //
and the key matrix s™/, respectively. Finally, according to
the Equation 3, the attention-enhanced state s is obtained

by weighting the original state s with the attention output
Attn, = {Attn', ... Attn’, ... Attn’}, given by

5 = sxAting = {Attn'A!, ... Attn/A7, ... Attn’ b7}, (4)
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Fig. 4: The workflow of Freyr™.

We feed the attention-enhanced state § to Freyrt agent
for choosing an allocation. We illustrate the information
embedding process in Figure 4.

4.3 Score Network

Freyr™ uses a score network to calculate the priority of select-
ing potential resource allocation options. Figure 4 visualizes
the policy network of Freyrt agent, and illustrates the
workflow of how the agent selects the best allocation option
based on states. At time ¢, a function invocation arrives
at the platform which has in total /N potential resource
configuration options. After embedding procedure, Freyr
collects a batch of state vectors 5, = (5;,...,87,...,5"),
where 3 maps the state to the n-th option. Freyr™ inputs s,
to the score network. We implement the score network using
two neural networks, an actor network and a critic network.
The actor network computes a score ¢;*, which is a scalar
value mapped from the state vector §;' representing the
priority to select configuration option n. Then Freyr™ applies
a softmax operation to the scores (qtl7 RN AR ,qiv) to
compute the probability of selecting option n based on the
priority scores, given by

exp(q;’)
N b
> n—1 €xp(qf")

at time ¢. The critic network outputs a baseline value b} for
option n, the average baseline value b, is calculated as

_ 1 X
bt:N;bﬁ, (5)

which is used to reduce variance when training Freyr™. The
whole operation of policy network is end-to-end differen-
tiable.

The score network itself contains no manual feature en-
gineering. Freyr™ agent automatically learns to compute ac-
curate priority score of allocation options through training.
More importantly, Freyr™ uses the same score network for
all function invocations and all potential resource allocation
options. By embedding options into state vectors, Freyr™
can distinguish between different options and use the score
network to select the best option. Reusing the score network
reduces the size of networks and limits the action space of
Freyr™ agent significantly.

Pi(option = n) =

Algorithm 1: Safeguard mechanism atop Freyr™.

1 while request_queue.notEmpty do

2 function_id < request_queue.dequeue()
3 calibrate_baseline < False
4 last_request <
QueryRequestHistory(function_id)
5 if last_request == None then
/+ Trigger safeguard =*/
6 range < [user_defined]
7 calibrate_baseline < True
8 else
9 threshold < 0.8
10 last_alloc < last_request.alloc
11 last_peak < last_request.peak
12 recent_peak <
GetRecentPeak(function_id)
13 if last_peak < user_defined then
/+ Over-provisioned x/
14 if last_peak / last_alloc > threshold then
/+ Trigger safeguard =*/
15 range < [user_defined]
16 calibrate_baseline < True
17 else
18 range < [recent_peak + 1,
user_defined]
19 end
20 else
/+ Under-provisioned =/
21 range < [recent_peak + 1,
max_per_function]
22 end
23 end
24 alloc_option < Fre yrt(function_id, range)
25 Invoke(function_id, alloc_option,
calibrate_baseline)

26 end

4.4 Safeguard

We design Freyr™ to improve both over-provisioned and
under-provisioned functions. However, when harvesting
resources from functions deemed as over-provisioned, it is
possible that Freyr under-predicts their resource demands.



The performance of functions degrades when being over-
harvested. We devise a safeguard mechanism atop Freyr™
to regulate decisions by avoiding decisions that may harm
performance and returning harvested resources immedi-
ately when detecting a usage spike. We use this safeguard
mechanism to mitigate obvious performance degradation of
individual functions.

Algorithm 1 summarizes the safeguard mechanism built
atop Freyrt. We refer safeguard invocation as invoking
the function with user-defined resources. When there are
no previous invocations, Freyr™ triggers the safeguard to
obtain resource usage and calibrate the baseline mentioned
in Equation 1 (lines 5-7). For further invocations, Freyr
queries the history of function and polls the usage peak,
allocation of the last invocation, and the highest peak since
last baseline calibration (lines 10-12). Freyr* first checks cur-
rent status of the function, i.e., over-provisioned or under-
provisioned (line 13). We assume functions with resource us-
age below 80% of user-requested level is over-provisioned.
For over-provisioned (harvested) functions, Freyr™ then
checks the usage peak of last invocation (line 14). If the
usage peak approaches 80% of allocation, we suspect there
may be a load spike, which could use more resources than
current allocation. This triggers the safeguard invocation
and baseline re-calibration, Freyr* immediately returns har-
vested resource to the function at the next invocation (lines
15-16). If there is no usage spike, Freyr™ is allowed to select
an allocation option from recent peak plus one unit to a user-
requested level (line 18). For under-provisioned functions,
Freyr™ is allowed to select from recent peak plus one unit
to the maximum available level (line 21). After an allocation
option is selected, Freyrt invokes the function and forwards
the invocation to invoker servers for execution.

Section 4.4 presents a sensitivity analysis of safeguard
thresholds and shows that the safeguard mechanism ef-
fectively regulates decisions made by Freyrt and protects
performance of functions that have resources harvested.

4.5 Training the DRL Agent

Freyr* training proceeds in episodes. In each episode, a series
of function invocations arrive at the serverless platform, and
each requires a two-dimensional action to configure CPU
and memory resources. When the platform completes all
function invocations, the current episode ends. Let T" denote
the total number of invocations in an episode, and ¢; denote
the arrival time of the ¢-th invocation. We continuously feed
Freyr™ with a reward r after it takes an action to handle an
invocation. Concretely, we penalize Freyr™ with

W] lb _ lk‘
Ty = R(speedup>0) - R(speedup<0) + Ta
k=1

after taking action on the i-th invocation, where W is the
set of invocations that finish during the interval [t;_1,%;),
lbl_lk is the speedup of an invocation v* finished dur-
ing the interval [t;_1,¢;), and two constant summaries for

awarding good and penalizing bad actions (i.e., R (speedup<0)
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Fig. 5: The average loss and cumulative reward of Freyr™
and Freyr™-NA with 300-episode training on the Open-
Whisk testbed, respectively. Freyr™ converges faster and
achieves higher cumulative reward with the attention-
enhanced embedding.

and R(specaup>0))- The algorithm’s goal is to maximize the
expected cumulative rewards defined as

W]

T
_ -1k
E[ E ’Yt ! (R(speedup>0) - R(speedup<0) + E 1o )] . (6)
i=1

k=1

We set the discount factor v in Equation 6 to be 0.99 as
commonly used [27]. Hence, Freyr™ learns to maximize the
overall speedup of the given workload.

We use the Algorithm 2 to train Freyrt with 4 epochs
per surrogate optimization and a 0.2 clip threshold [18]. We
update the policy network parameters using the AdamW
optimizer [37] with a learning rate of 0.001. We train Freyr™
with 300 episodes. The total training time is about 36 hours.
Figure 5 shows the learning curve and cumulative rewards
of Freyr™ training on OpenWhisk testbed. In Figure 5(a), the
descending loss trendline indicates that Freyrt gradually
learns to make good resource management decisions. In
Figure 5(b), the ascending trendline shows that Freyr™ seeks
to maximize the cumulative rewards through training.

4.6 The Training Algorithm

Freyr™ uses a policy gradient algorithm for training. Policy
gradient methods are a class of RL algorithms that learn
policies by performing gradient ascent directly on the pa-
rameters of neural networks using the rewards received
during training. When updating policies, large step sizes
may collapse the performance, while small step sizes may
decrease the sampling efficiency. We use the Proximal Policy
Optimization (PPO) algorithms [18] to ensure that Freyr™
takes appropriate step sizes during policy updates. More
specifically, given a policy 7y parameterized by 6, the PPO
algorithm updates policies at the k-th episode via

Ory1 = argmax E [L(s,a,@k,ﬂ)],
0

$,a~Tg,
where L is the surrogate advantage [38], a measure of how
policy mp performs relative to the old policy 7y, using data
from the old policy. We use the PPO-clip version of a PPO
algorithm, where L is given by

mo(als)

L(s,a,0k,0) = min (7T9 (als)
k

A% (s, 0), g(e, A™ (s, 0)) ).

and g(e, A) is a clip operation defined as

)1 +eA,
g(e, A) = {(1 A,

if A>0,
otherwise,



Algorithm 2: Freyrt’s Training Algorithm.

1 Initial policy (actor network) parameters 6y and
value function (critic network) parameters ¢

for episode k < 0,1,2,... do

3 | Run policy 7, = m(6) in the environment until

T'-th invocation completes

4 | Collect set of trajectories Dy, = {7;}, where
7t = (8¢, a¢),t € [0,T] and 8; is computed via
Equation 4

Compute reward 7; via Equation 6

Compute baseline value b; via Equation 5

Compute advantage At =7 — b

Update actor network by maximizing objective
using stochastic gradient ascent:

Z Z 5t7at79k, )

T€Dy t=0

N

® 9 o w

Ok4+1 = arg max

|D T

9 Update critic network by regression on
mean-squared error using stochastic gradient
descent:

i 3D SIS

TGDkt 0

Grsr = argmin -

10 end

where A is the advantage calculated as rewards r subtracted
by baseline values b; € is a hyperparameter that restricts
how far the new policy is allowed to deviate from the
old. Intuitively, the PPO algorithm sets a range for step
sizes of policy updates, which prevents the new policy
from deviating too much from the old (either positive or
negative).

Algorithm 2 presents the training process of Freyr™.
For each episode, we record the whole set of trajectories
including the states, actions, rewards, baseline values pre-
dicted by the critic network, and the logarithm probability
of the actions for all invocations. After each training episode
finishes, we use the collected trajectories to update the actor
and critic networks.

4.7 Adapting to Environmental Changes

Functions on serverless platforms are highly volatile, where
users may deploy new functions in any second. Freyr™ can
adapt to environmental changes promptly with the support
of incremental learning. We design the score networks in
Section 4.3 to enable Freyrt with incremental training. Upon
new functions deployed by users, Freyr™ restores the latest
checkpointed agent model and incrementally trains the pa-
rameters of score networks by interacting with new func-
tions. We treat changing function codebases or re-uploading
existing functions as adding new functions for simplicity.
Section 6.5 compares the performance and convergence of
Freyrt with and without incremental learning. We show that
Freyr™ can promptly adapt to environmental changes with
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incremental learning, thus effectively avoiding the overhead
of retraining.

5 IMPLEMENTATION DETAILS

Apache OpenWhisk is an open-source, distributed server-
less platform that powers IBM Cloud Functions [39]. Fig-
ure 3 illustrates the architecture of Freyr" based on Open-
Whisk. OpenWhisk exposes an NGINX-based REST inter-
face for users to interact with the platform. Users can
create new functions, invoke functions, and query results
of invocations via the frontend. The Frontend forwards
function invocations to the Controller, which selects an
Invoker (typically hosted using VMs) to execute invocations.
The Load Balancer inside the Controller implements the
scheduling logic by considering Invoker’s health, available
capacity, and infrastructure state. Once choosing an Invoker,
the Controller sends the function invocation request to the
selected Invoker via a Kafka-based distributed messaging
component. The Invoker receives the request and executes
the function using a Docker container. After finishing the
function execution, the Invoker submits the result to a
CouchDB-based Database and informs the Controller. Then
the Controller returns the result of function executions to
users synchronously or asynchronously. Here we focus on
resource management for containers.

We modify the following modules of OpenWhisk to
implement our resource manager:

Frontend: Initially, OpenWhisk only allows users to
define the memory limit of their functions and allocates
CPU power proportionally based on memory. To decouple
CPU and memory, we add a CPU limit and enable the
Frontend to take CPU and memory inputs from users. Users
are allowed to specify CPU cores and memory of their
functions. The Frontend forwards CPU and memory limits
to the Controller.

Controller: The Load Balancer makes scheduling deci-
sions for the Controller. When selecting an Invoker, the
Load Balancer considers available memory of Invokers. We
modify the Load Balancer also to check available CPU
cores of Invokers—the Load Balancer selects Invokers with
enough available CPU cores and memory to execute func-
tion invocations.

Invoker: The Invoker uses a semaphore-based mecha-
nism to control containers” access to available memory. We
apply the same mechanism to control access to available
CPU cores independently.

Container: By default, OpenWhisk uses cpu-shares
parameter to regulate CPU power of containers. When
plenty of CPU cycles are available, all containers with
cpu-shares use as much CPU as they need. While
cpu-shares improves CPU utilization of Invokers, it can
lead to performance variation of function executions. We
change the CPU parameter to cpus which restricts how
many CPU cores a container can use. This is aligned with the
CPU allocation policy of AWS Lambda?. For each function
invocation, we monitor the CPU cores and memory usage
of its container using cgroups. We record the usage peak
during function execution as history for Freyr™ to query.

2. https://docs.aws.amazon.com/lambda/latest/dg/limits.html



TABLE 2: Characterization of training and testing invo-
cation trace sets used in the simulation and OpenWhisk
evaluation. Metrics include: total number of unique traces,
total number of invocations (Invo.), average inter-arrival
time (IAT), and requests per second.

Set Traces Invo. Avg IAT (s) Regs/sec
SIM-train 15,427 83,521,859 0.71 1.39
SIM-test 1,000 85,470 0.69 1.42
OW-train 1,000 26,705 221 0.44
OW-test 10 268 2.20 0.45

TABLE 3: Characterizations of serverless applications used
in OpenWhisk evaluation. (DH: Dynamic HTML, EG:
Email Generation, IP: Image Processing, VP: Video Pro-
cessing, IR: Image Recognition, KNN: K Nearest Neigh-
bors, GD: Gradient Descent, ALU: Arithmetic Logic Units,
MS: Merge Sorting, and DV: DNA Visualization.)

Function Type Dependency

DH Web App Jinja2, CouchDB
EG Web App CouchDB

1P Multimedia Pillow, CouchDB
VP Multimedia FFmpeg, CouchDB
IR Machine Learning  Pillow, torch, CouchDB
KNN Machine Learning  Scikit-learn, CouchDB
GD Machine Learning NumPy, CouchDB
ALU Scientific CouchDB

MS Scientific CouchDB

DV Scientific Squiggle, CouchDB

DRL agent: We implement the Freyrt’s agent using
two neural networks, each with an attention layer and two
fully connected hidden layers. The attention layer has 32
neurons, and both two hidden layers have 64 neurons. Each
neuron uses Tanh as its activation function. The agent is
implemented in 2K lines of Python code using PyTorch [40].
Freyr™ is lightweight because the policy network consists of
only 1858 parameters (12 KB in total). Mapping a state to an
action takes less than 20 ms, which is sufficiently negligible
for serverless workloads.

6 EVALUATION

We implement Freyr with 6K lines of Scala code in Apache
OpenWhisk [19] and deploy it to a realistic OpenWhisk clus-
ter. We train and evaluate Freyr™ using realistic workloads
from public serverless benchmarks and invocation traces
sampled from Azure Functions traces [12].

6.1 Methodology

We first describe our experimental methodology below.
Baselines. We compare Freyrt with three baseline RMs:
1) OpenWhisk default RM: the default RM of most existing
serverless platforms (including) that allocates CPU cores in
a fixed proportion to user-defined memory sizes. 2) Greedy
RM detects a function’s saturation points based on its his-
torical resource usage by gradually decreasing (increasing)
the allocation for an over-provisioned (under-provisioned)
function in a fine-tuned and fixed step. Our implementation
sets the detect step size one core and 128 MBs for CPU
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and memory, respectively. Besides, Greedy RM allocates
resources to functions in a first-come-first-serve manner. 3)
ENSURE [15] allocates memory resources as users request
and adjusts the CPU cores for each function at runtime when
detecting performance degradation.

Evaluation metrics. We use the speedup value defined
in Section 4.1 to measure the performance of a function
invocation. Function invocations with positive speedups
have lower response latency. For resource harvesting, Freyr™
aims to maximize the amount of harvested resources while
having minimal impact on the performance of harvested
functions. For resource re-assignment, Freyr™ treats invo-
cations with different lengths of response latency as the
same by maximizing speedups, which improves the overall
performance of the workload. We also report the details of
undeserved performance degradation and 99th-percentile
(P99) function response latency of the workload.

Testbeds. We evaluate Freyr' extensively using both
large-scale simulation and a real OpenWhisk cluster. For
simulation, we develop a simulative serverless computing
environment based on OpenAl Gym [41], an open-source
library for evaluating RL algorithms. We implement the
simulator in Python with 3K lines of code, and various
APIs for defining a customized cluster in the simulator.
We configure our simulative cluster with 30 worker servers,
each with eight CPU cores and 32 GBs of memory available
for functions. Each function has maximum access to eight
CPU cores and 1,024 MBs of memory. For OpenWhisk eval-
uation, we deploy and evaluate Freyr™ on an OpenWhisk
cluster with 13 physical servers using AWS EC2 [42]. Two
of the servers host the OpenWhisk components, such as the
frontend, the controller, the messaging queue, and database
services. One deploys the Freyrt agent. The remaining ten
servers serve as the invokers for executing functions. The
server that hosts Freyrt agent is a c4.4xlarge instance, while
the other 12 servers are c4.2xlarge instances. The server
hosting Freyr* agent has 16 CPU cores and 64 GB memory,
and each of the other 12 servers has eight CPU cores and
32 GB memory. Each function can be configured with eight
CPU cores and 1,024 MB of RAM at most. Considering
the serverless functions’ short lifecycle, we monitor their
CPU and memory usage per 100 ms and keep the historical
resource usage in the Redis (i.e., the KV store in Figure 3).

Invocation traces. We randomly sample four invocation
trace sets consisting of over 16,000 unique functions from
Azure Functions traces. Table 2 depicts the characteristics
of four trace sets used in the simulation (SIM-train and
SIM-test) and OpenWhisk evaluation (OW-train and OW-
test) for training and testing, respectively. We develop a dis-
crete event generator with Python to drive the experiments,
which invokes functions according to the sampled traces.

Workload functions. We employ ten real-world func-
tions from three serverless benchmark suites: SeBS [43],
ServerlessBench [44], and ENSURE-workloads [15]. Table 3
describes the type and dependency of ten serverless ap-
plications from benchmark suites. DH downloads HTML
templates, populates the templates based on input, and
uploads them to CouchDB. EG generates emails based on
the input and returns them to CouchDB. IP downloads
images, resizes them, and uploads them to CouchDB. VP
downloads videos, trims and tags them with a watermark,



and uploads them to CouchDB. IR downloads a batch of
images, classifies them using ResNet-50, and uploads them
to CouchDB. KNN downloads the dataset, performs the
KNN algorithm on it, and uploads the result to CouchDB.
GD performs three kinds of gradient descent based on input
and uploads the result to CouchDB. ALU computes the
arithmetic logic based on input and uploads the result to
CouchDB. MS performs merge-sorting based on input and
uploads the result to CouchDB. DV downloads a DNA se-
quence file, visualizes the sequence, and uploads the result
to CouchDB. For DH, EG, IP, KNN, ALU, MS, and GD, each
is initially configured with one CPU cores and 128 MB of
memory; for VP, IR, and DV, each is initially configured
with eight cores and 1,024 MB. We set the initial resource
configuration of each function according to the default
settings of the suites. We feed input data with dynamic
patterns to functions for individual invocations. Specifically,
IP and IR randomly sample 100 pictures from the CIFAR-
100 dataset [45]. VP randomly samples 100 videos from
the YouTube-8M dataset [46]. DV uses different genome
sequences of Bacillus subtilis from the NCBI dataset [47].
ALU randomly samples two numbers ranging from 100 to
10,000 to perform computations. EG randomly generates
100 to 10,000 emails. GD performs a random number of
optimization steps via SGD, RMSProp, and Adam. DH
randomly renders HTML pages ranging from 10 to 10,000.
KNN randomly generates a dataset size and the number of
feature dimensions to perform predictions. MS sorts a list of
numbers ranging from 10,000 to 1,000,000.

6.2 Simulation at Scale

We first trains Freyrt and evaluate Freyr™ in the serverless
computing simulator using SIM-train and SIM-test work-
loads from Table 2, respectively. We summarize the speedup
and resource allocation of function invocations of the testing
workload in Figure 6. In each subgraph, each point (i.e.,
e, +, —, and Xx) indicates a function invocation. The y-
axis indicates the speedup values of function invocations,
and the x-axis shows the CPU and memory allocation of
function invocations relative to their user configurations.
The negative CPU and memory values indicates that RMs
harvest corresponding resources from those invocations,
and the positive means that those invocations are provided
with additional resources.

Overall performance. Freyr™ outperforms baseline RMs
with the best overall performance. For processing the same
workload, Freyr™ achieves a highest average speedup of
0.24, whereas Default RM, Greedy RM, ENSURE are 0, 0.10,
and 0.13, respectively. Recall in Section 4.1, a higher speedup
indicates a faster function response. Compared to the de-
fault RM in OpenWhisk, Freyr™ provides an average of
24% faster function executions and 73% lower P99 response
latency for the workload. Freyr® harvests idle resources
from 42% of function invocations and accelerates 45% of
invocations.

Harvesting and acceleration. Figure 6 shows the per-
formance of 85,470 individual invocations processed by
four RMs. Default RM has no resource adjustment dur-
ing its workload processing. Greedy harvests an average
of 2.2 cores and 284 MB from harvested invocations and
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Fig. 7: The CDF of function response latency (left) and
speedup (right) in simulation, respectively.

accelerates under-provisioned functions with an average
of 2.0 cores and 318 MB. ENSURE’s policy also harvests
and accelerates invocations with CPU cores but makes
no changes to memory resources. ENSURE harvests an
average of 1.9 cores from over-provisioned functions and
accelerates under-provisioned functions with an average of
2.3 cores. Freyr™ harvests an average of 2.5 cores and 324
MB from over-provisioned functions and accelerates under-
provisioned functions with an average of 3.7 cores and
523 MB. Freyr™ re-assign harvested resources to accelerate
under-provisioned invocations, which speeds up for under-
provisioned function invocations up to 99%.

Undeserved performance degradation. Figure 6 shows
that both Greedy RM and ENSURE severely degrade func-
tion execution performance since there are function invoca-



tions with large negative speedup values. Default RM has
no performance degradation as it performs no harvesting
or acceleration. Greedy RM degrades the performance of
some harvested invocations over 5x. ENSURE degrades the
performance of some harvested invocations over 3.5x when
harvesting CPU cores. Compared to Greedy RM and EN-
SURE, Freyr™ harvests idle resources perfectly from under-
provisioned invocations without any performance degrada-
tion. When harvesting idle resources, Freyr' calls safeguard
for 16.2% of invocations to avoid potential performance
degradation due to usage spike.

P99 latency. Freyr™ outperforms three baselines regard-
ing both function response latency and speedup. Figure 7(a)
shows the CDF of function response latency of the testing
workload. Freyrt has a P99 function response latency of 32
seconds, whereas Default RM, Greedy RM and ENSURE
are 121, 81, and 69 seconds, respectively. Figure 7(b) shows
the CDF of the speedup of the testing workload. Freyr
maintains P99 speedups below 0 (i.e., no undeserved per-
formance degradation) for all invocations, whereas Greedy
RM and ENSURE are -5.0 and -3.5, respectively. As the
Default RM adjusts no resources, the speedup stays 0 for
all percentile.

6.3 Evaluation on the OpenWhisk Testbed

We then trains and evaluate Freyr™ in a distributed Open-
Whisk cluster using OW-train and OW-test from Table 2,
respectively. Same to the simulation, we also report the
speedup and resource allocation of function invocations of
the testing workload in Figure 8.

Overall performance. Aligned with the simulative re-
sults, Freyrt outperforms other baselines with the best over-
all performance. For processing the same workload, Freyr™
achieves a highest average speedup of 0.21, whereas Default
RM, Greedy RM, ENSURE are 0, 0.10, and 0.06, respectively.
Compared to the default RM in OpenWhisk, Freyrt pro-
vides an average of 21% faster function executions and 27%
lower P99 response latency for the same workload. Freyr™
harvests idle resources from 38% of function invocations
and accelerates 39% of invocations.

Harvesting and acceleration. Figure 8 shows the per-
formance of 268 individual invocations processed by four
RMs. Default RM has no resource adjustment during its
workload processing. Greedy harvests an average of 2.7
cores and 368 MB from harvested invocations and acceler-
ates under-provisioned functions with an average of 3 cores
and 392 MB. ENSURE’s policy also harvests and accelerates
invocations with CPU cores but makes no changes to mem-
ory resources. ENSURE harvests an average of 2.4 cores
from over-provisioned functions and accelerates under-
provisioned functions with an average of 2.9 cores. Freyr™
harvests an average of 3.1 cores and 480 MB from over-
provisioned functions and accelerates under-provisioned
functions with an average of 3.6 cores and 364 MB. Freyr™ re-
assign harvested resources to accelerate under-provisioned
invocations, which speeds up for under-provisioned func-
tion invocations up to 98%.

Undeserved performance degradation. Figure 8 shows
that both Greedy RM and ENSURE severely degrade func-
tion execution performance as some function invocations
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Fig. 8: Performance of individual invocations processed
by six RMs in OpenWhisk evaluation.

have large negative speedup values. Default RM has no
degradation as it performs no harvesting or acceleration.
Greedy RM degrades the performance of some harvested
invocations over 2.6x. ENSURE degrades the performance
of some harvested invocations over 2.8x when harvesting
CPU cores. Compared to Greedy RM and ENSURE, Freyr™
rationally harvests idle resources from under-provisioned
invocations, as the performance degradation of harvested
invocations is limited within 3%. When harvesting idle
resources, Freyr+ calls safeguard for 21.8% of invocations
to avoid potential performance degradation.

P99 latency. Figure 9(a) shows the CDF of function
response latency of the testing workload. Freyr™ has a P99
function response latency in less than 28 seconds, whereas
Default RM, Greedy RM and ENSURE are 38, 34, and
36 seconds, respectively. Figure 9(b) shows the CDF of
the speedup of the same workload. Freyrt maintains P99
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learned by Freyr™ through 300-episode training.

speedups below 0.03 for all invocations, whereas Greedy
RM and ENSURE are 2.0 and 2.4, respectively. As the
Default RM adjusts no resources, the speedup stays 0.

6.4 Ablation Study

We perform an ablation study to examine the effectiveness
of two key components, attention and safeguard, in Freyr.
We compare Freyr™ with two variants, FreyrT-NA (No At-
tention) and Freyrt-NS (No Safeguard), by evaluating the
OW-test workload from Table 2 on our OpenWhisk testbed.

Response latency. Figure 9(a) shows the CDF of function
response latency of three Freyr+ variants. Freyr+ outper-
forms the other two variants due to being fully equipped
with attention and safeguard mechanism. Freyr™ reduces
the 99th percentile of the same workload by 15% and 34%
compared to Freyr*-NA and Freyr™-NS, respectively.

Speedup and undeserved performance degradation.
Figure 9(b) shows the CDF of execution speedup of three
variants. Freyr™ outperforms the other two variants by pro-
viding faster function invocation executions without signif-
icantly degrading the performance of harvested functions.
Freyr™ and Freyrt-NA degrade execution performance 2.4%
and 6.3% at worst regarding response latency. Compared
to Freyr™ and Freyr™-NA, Freyr™-NS suffers at worst 92%
performance degradation.

Harvesting and acceleration. Figure 8 shows the perfor-
mance of all invocations processed by four variants. Freyr™
and Freyrt-NS provides more precise harvesting and faster
execution acceleration (higher speedups) with attention-
enhanced predictions, whereas Freyrt-NA accelerates func-
tion invocations less (lower speedups). Freyr™ and Freyr™-
NA have some invocations protected by the safeguard
daemon, resulting in limited performance degradation. In
contrast, invocations handled by Freyr™-NS can experience
serious performance degradation without safeguarding.

Convergence and cumulative reward. Figure 5(a) shows
the learning curve of Freyrt and Freyrt-NA through 300
episodes of training, respectively. Freyrt converges faster
than Freyr™-NA with attention-enhanced observations from
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Fig. 11: The learning curve of Freyr™ and Freyr™-NI with
900-episode training on the OpenWhisk testbed, respec-
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Fig. 12: The cumulative reward of Freyr" and Freyr-
NI with 900-episode training on the OpenWhisk testbed,
respectively.

environmental interactions. Figure 5(b) presents the cumula-
tive reward obtained by Freyr™ and Freyr™-NA through 300
episodes of training, respectively. Freyr' achieves maximum
cumulative reward faster and higher final reward than
Freyr™-NA with attention enhancement. Figure 10 depicts
the relative ratio of attention weights of ten state features
assigned by Freyrt. Freyr™ gradually learns the unique
importance of each feature through 300-episode training.

6.5 Effectiveness of Incremental Learning

To evaluate the effectiveness of Freyr™’s incremental learn-
ing and Freyr*’s robustness to environmental changes, we
train Freyrt and a variant of Freyr™ separately—Freyr™-NI
(No Incremental learning)—in a dynamic OpenWhisk envi-
ronment using the ten functions and the OW-test workload
in evaluation. We initially deploy six functions (DH, GD,
MS, ALU, EG, and KNN) on the OpenWhisk cluster. After
300 training episodes, we deploy another two functions
(VP and IP) to the cluster; after 600 training episodes, we
deploy the rest two functions (IR and DV). All functions are
configured in the same settings as in OpenWhisk testbed.
Figure 11 and Figure 12 show the learning curve and the
cumulative reward of Freyr™ and Freyr™-NI through 900-
episode training in the dynamic environment, respectively.
For the first 300 episodes of training, both Freyr™ and
Freyr™-NI converges and achieve the maximal cumulative
reward after 250 episodes. At the 301-st episode, two new
functions are deployed, Freyr™ converges swiftly within a
few episodes, while Freyr*-NI has to retrain with more than
200 episodes to converge. At the 601-st episode, another
two new functions are deployed, Freyr' consistently con-
verge shortly after a few episodes, while Freyrt-NI needs
to retrain again with 200 episodes for convergence. The
results demonstrate that Freyr™ can adapt to environmental
changes promptly with incremental learning, thus avoiding
large retraining overhead. The trained DRL model contains
important prior knowledge about function scheduling so
that it is not useless when dealing with new functions.
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Fig. 13: Sensitivity analysis of safeguard thresholds.

Figure 11 and Figure 12 show that Freyr™ achieves near-
optimal performance (over 96% of optimal rewards) when
first serving unseen new functions with the old trained
model (at episodes 301-st and 601-st) and then quickly
convergences within a few episodes to optimal performance
by continuously updating the model.

To incrementally update the DRL model, we only need
to record the information of function invocations (such
as user-requested resources and resource utilization), and
the update can be offline. The resources for updating the
lightweight DRL model offline only take a CPU core and
one GB of memory. To implement incremental learning in
a real-time environment, we monitor the frequency of trig-
gering Freyr™ ’s safeguard as an indicator. If the frequency
drastically increases above a certain threshold, we deem the
environment has new changes and begin the incremental
learning process.

6.6 Sensitivity Analysis

We set the default threshold value in the safeguard algo-
rithm to be 0.8, which allows Freyr™ to trigger the safeguard
just before detecting a full utilization. The threshold is
tunable—a high threshold may allow Freyr* to presump-
tuously harvest idle resource and deteriorate performance,
while a low threshold may too conservatively restrict
the harvesting and under-utilize resources. We conduct a
threshold analysis on our OpenWhisk testbed using the
workload OW-test from Table 2 to evaluate the sensitivity
of safeguard threshold in Freyr™. We increase Freyr™’s safe-
guard threshold from 0 to 1 with a step of 0.1 and run the
same workload using Freyr™. Figure 13(a) shows the per-
centage of safe invocations (invocations allocated with user-
defined CPU/memory) under each threshold. Figure 13(b)
shows the average speedup and percentage of degraded
invocations under each threshold. When increasing the
threshold, the rate of safe invocation drops down as Freyr™
gradually harvests idle resources wildly. The percentage
of degraded invocations gradually rises because Freyrt’s
harvesting policy becomes more and more unrestricted. For
average speedup of the workload, Freyrt achieves better
and better overall performance until its threshold reaching
0.8. Due to severe performance degradation, Freyr™ yields a
worse performance for thresholds 0.9 and 1.0.

To deploy Freyr™ in a production environment, service
providers can tune the safeguard threshold based on their
own criteria, i.e., tightening the threshold to conservatively
or loosening the threshold to actively harvest idle resources.
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6.7 Latency Breakdown

Figure 14 shows the latency breakdowns of ten functions
used in evaluation. We run the ten functions in the same
setting as on the OpenWhisk testbed. The results are av-
eraged over five times of experiments. Freyr™’s RL agent
incurs negligible overhead (19 ms on average) compared to
the container initialization and function execution time. The
RL inference overhead takes only 0.2% of the total function
time on average.

7 RELATED WORK

Resource harvesting. Research has been conducted on
VM resource management in traditional clouds for years.
SmartHarvest [26] proposes a VM resource harvesting al-
gorithm using online learning. MHVM [48] harvests idle
memory from VMs and extends the techique to Hadoop.
Unlike Freyr*, which uses harvested resources to acceler-
ate function executions, SmartHarvest and MHVM offer
new low-priority VM services using harvested resources.
Directly replacing Freyr™ with SmartHarvest or MHVM is
not feasible as SmartHarvest is not designed for serverless
computing. Zhang et al. [25] proposed to harvest VMs for
serverless computing, while Freyr™ harvests idle resources
of serverless functions directly.

Resource provisioning. Spock [49] proposes a serverless-
based VM scaling system to improve SLOs and reduce costs.
For resource management in serverless, [14] and [15] both
aim to automatically adjust CPU resource when detecting
performance degradation during function executions, which
help mitigate the issue of resource over-provisioning. Unlike
[14] and [15] that only focus on CPU, Freyrt manages
CPU and memory resources independently. Kaffes et al. [16]
propose a centralized scheduler for serverless platforms that
assigns each CPU core of worker servers to CPU cores of
scheduler servers for fine-grained core-to-core management.
Freyr™ focuses on resource allocation rather than scheduling
or scaling. Fifer [10] tackles the resource under-utilization
in serverless computing by packing requests to fewer con-
tainers for function chains. Instead of improving pack-
ing efficiency, Freyr™ directly harvests idle resources from
under-utilized functions. ServerMore [50] improves server
utilization by carefully co-locating serverless and serverful
workloads. Our Freyr™ is orthogonal to ServerMore and can
easily adopt ServerMore as a supplement.

Resource configuration. Recently, many works have been
proposed to optimize serverless function costs by user-side
resource configuration. COSE [13] uses Bayesian Optimiza-
tion to find the optimal function configuration that reduces



cost. Sizeless [51] selects the optimal resource size of func-
tions using offline profiling. GRAF [52] and StepConf [53]
aim to predict the optimal configuration for serverless func-
tion chains. Unlike user-side research, Freyr™ is a provider-
side framework that dynamically harvests over-provisioned
functions and accelerates under-provisioned functions using
harvested resources.

Reinforcement learning. SIREN [8] adopts DRL techniques
to dynamically invoke functions for distributed machine
learning with a serverless architecture. Our work Freyr
leverages DRL to improve the platform itself rather than
serverless applications. Decima [29] leverages DRL to sched-
ule DAG jobs for data processing clusters. Metis [54] pro-
poses a scheduler to schedule long-running applications in
large container clusters. TVW-RL [30] proposes a DRL-based
scheduler for time-varying workloads. George [31] uses
DRL to place long-running containers in large computing
clusters. Differ from the above works, Freyr™ learns resource
management in serverless computing using DRL.

8 CONCLUSION

This paper proposed a new resource manager, Freyr*, which
harvests idle resources from over-provisioned functions and
accelerates under-provisioned functions with supplemen-
tary resources. Given realistic serverless workloads, Freyr™
improved most function invocations while safely harvesting
idle resources using reinforcement learning with attention-
enhanced embedding, incremental learning, and safeguard
mechanism. We evaluate Freyr™ on both large-scale simu-
lation and real-world testbed. Experimental results on the
OpenWhisk cluster demonstrate that Freyr™ outperforms
other baseline RMs. Freyr™ harvests idle resources from 38%
of function invocations and accelerates 39% of invocations.
Compared to the default RM in OpenWhisk, Freyr* reduces
the 99th-percentile function response latency by 26% for the
same testing workload.
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