
1

SIREN+: Robust Federated Learning with
Proactive Alarming and Differential Privacy

Hanxi Guo, Hao Wang, Tao Song, Member, IEEE,
Yang Hua, Ruhui Ma, Xiulang Jin, Zhengui Xue, and Haibing Guan, Member, IEEE

Abstract—Federated learning (FL), an emerging machine learning paradigm that trains a global model across distributed clients
without violating data privacy, has recently attracted significant attention. However, FL’s distributed nature and iterative training
extensively increase the attacking surface for Byzantine and inference attacks. Existing FL defense methods can hardly protect FL from
both Byzantine and inference attacks due to their fundamental conflicts. The noise injected to defend against inference attacks
interferes with model weights and training data, obscuring model analysis that Byzantine-robust methods utilize to detect attacks.
Besides, the practicability of existing Byzantine-robust methods is limited since they heavily rely on model analysis.
In this paper, we present SIREN+, a new robust FL system that defends against a wide spectrum of Byzantine attacks and inference
attacks by jointly utilizing a proactive alarming mechanism and local differential privacy (LDP). The proactive alarming mechanism
orchestrates clients and the FL server to collaboratively detect attacks using distributed alarms, which are free from the noise
interference injected by LDP. Compared with the state-of-the-art defense methods, SIREN+ can protect FL from Byzantine and
inference attacks from a higher proportion of malicious clients in the system while keeping the global model performing normally.
Extensive experiments with diverse settings and attacks on real-world datasets show that SIREN+ outperforms existing defense
methods when attacked by Byzantine and inference attacks.

Index Terms—Federated Learning, Byzantine-robust, Attack-agnostic Defense System, Differential Privacy

✦

1 INTRODUCTION

DATA security and privacy are gaining increasing atten-
tion with the prevalence of machine learning. Many

countries enacted laws [2] to regularize the data collection
of companies and organizations, leading to "data silos". To
adapt to such circumstances, federated learning (FL) [3, 4] is
proposed. Unlike traditional machine learning that central-
izes data to a cluster of servers for training [5, 6, 7], FL trains
the model via iteratively aggregating the models or model
updates that are uploaded by a swarm of loosely connected
devices. Since it does not directly utilize the raw data, the
data security and privacy of the participants are guaranteed.
With such merit, FL has an extensive range of applica-
tions [8, 9], including training language models [10], health
tracking [11, 12], and fintech [13] with privacy-sensitive data
such as user keystrokes, photos, and geo-locations.

However, due to its distributed and iterative nature,
FL is vulnerable to various attacks from compromised
clients [14]. It is hardly possible to determine the concrete
number of malicious clients since the unpredictable be-

• Preliminary results have been presented in ACM SoCC’21 [1]
• H. Guo, T. Song (the corresponding author), R. Ma and H. Guan are

with the Shanghai Key Laboratory of Scalable Computing and Systems,
School of Electronic Information and Electrical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China (Email: {hanxiguo, songt333,
ruhuima, hbguan}@sjtu.edu.cn)

• H. Wang is with the Computer Science & Engineering, Louisiana
State University, Baton Rouge, LA 70803-2804, USA (Email:
haowang@lsu.edu)

• Y. Hua and Z. Xue are with the EEECS/ECIT and School of Mathematics
and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK (Email:
{Y.Hua, z.xue}@qub.ac.uk)

• X. Jin is with Huawei Technologies Co., Ltd, Hangzhou 310000, China
(Email: jinxiulang@huawei.com)

haviors of attackers. Besides, the local data on clients are
typically non-independent and identically distributed (non-
IID). Such data skews across participating devices aggravate
the divergence between local models, further obfuscating
the boundary between malicious clients and benign ones.

As a consequence, FL’s intrinsic vulnerabilities have
induced a rich literature of studies on attacking methodolo-
gies, e.g., Byzantine attacks [15] and inference attacks [16,
17]. Byzantine attacks attempt to corrupt the federated
model by smuggling malicious model updates through
compromised or fake clients [18, 19, 20, 21, 22, 23, 24, 25].
Inference attacks aim to extract sensitive information of
clients’ private data from local updates and global weights
in FL [16, 17, 26, 27, 28].

To defend against Byzantine attacks, researchers have
developed various Byzantine-robust FL frameworks using
model analysis. Some of them [29, 30, 31, 32, 33, 34, 35, 36, 37]
detect malicious clients by analyzing model gradients and
measuring the difference between clients’ model updates on
the server. While others [38, 39] try to alleviate the attacks
through benign client efforts. To defend against inference
attacks, differential privacy (DP) [40] is used to protect
FL by carefully injecting noise to model updates. Several
studies [10, 40, 41, 42, 43, 44, 45, 46, 47] have already
attempted to add elaborately crafted noise to FL’s different
stages and achieved impressive privacy guarantees while
keeping acceptable model performance.

Limitations of existing defenses. Existing studies rarely
provide a comprehensive solution to defend against multi-
ple types of attacks while minimizing the potential risks.
They leave the following critical concerns unaddressed:
First, current defenses can hardly defend against both

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

2

Byzantine and inference attacks due to the fundamental
conflicts between existing defense methodologies against
Byzantine and inference attacks. The training data and
model updates transformed by defensive methods for in-
ference attacks, such as DP, extensively confuse exist-
ing Byzantine-robust FL methods, which analyze model
weights (or gradients) to detect attacks. Second, current de-
fensive methods cannot effectively handle more challenging
and realistic scenarios. For example, non-IID data ampli-
fies the divergence in model weights trained by different
clients [48], triggering existing methods to drop model
updates from benign clients. Common defensive methods
also regard benign clients as malicious clients easily when
the malicious clients become the majority. Finally, exist-
ing methods only rely on the detection mechanism either
on the FL server or on the clients [38, 39], while benign
clients have to passively accept the corrupted global model
without any resistance once the global model has been
successfully affected by malicious clients. The robustness
and self-repairing capability of existing Byzantine-robust
aggregation rules are worrying. Though existing work [49]
illustrates the limitation of current poisoning attacks, such
critical concerns should still be considered from a defender’s
perspective.

Thus, in this paper, we present SIREN+, a new robust FL
system that defends against a wide spectrum of Byzantine
attacks and inference attacks by jointly utilizing a proactive
alarming mechanism and local DP (LDP). Specifically, the
alarming mechanism is proactive and distributed, which
enables clients to collaborate with the FL server on attack
detection via model accuracy analysis. SIREN+ clients re-
serve a small partition of the local dataset to test the global
model accuracy and trigger alarms if needed, and the FL
server jointly analyzes clients’ alarms and model testing
accuracy to detect attacks. Unlike existing Byzantine-robust
methods that only rely on model analysis, the accuracy-
based alarming mechanism used by SIREN+ is compatible
with LDP. Based on this distributed alarming system, we
carefully craft a decision process that detects the intentions
of malicious clients and sanitizes the model aggregation
effectively.

Extensive experimental results of training a CNN model
with the Fashion-MNIST dataset [50] and a ResNet-18
model with the CIFAR-10 dataset [51] under a system of
up to 200 clients show that SIREN+ can effectively defend
against both untargeted and targeted Byzantine attacks
as well as both trained and untrained inference attacks.
SIREN+ outperforms current Byzantine-robust aggregation
rules (e.g., multi-Krum, FLTrust, Coordinate-wise Median)
when facing Byzantine attacks under typical (40% malicious
client), extreme (80% malicious client), and real-world (si-
multaneously multiple attacks) scenarios over both IID and
non-IID data distribution. When facing inference attacks,
SIREN+ reduces the area under the curve (AUC) of attacker
models from ∼70% to ∼50%.

Our contributions. To the best of our knowledge, we
are the first to propose a comprehensively robust FL system
against both Byzantine attacks and inference attacks via
orchestrating both the defenses on the FL server and clients.
The main contributions of this paper are summarized as
follows:

Detecting
Process

Training
Process

Alarm
Process

…

Client 1

Client 2

Client K

FL Server

Training
Process

Alarm
Process

Training
Process

Alarm
Process

Aggregating
Process

<latexit sha1_base64="k+/8a6Q4hCSd8XK6vQppe+3M+28=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZcFNy4r2Ae0w5DJZNrQTDIkmUIZ+iduXCji1j9x59+YtrPQ1gMhh3PuJScnyjjTxvO+ncrG5tb2TnW3trd/cHjkHp90tMwVoW0iuVS9CGvKmaBtwwynvUxRnEacdqPx/dzvTqjSTIonM81okOKhYAkj2FgpdN1BJHmsp6m9iuEsNKFb9xreAmid+CWpQ4lW6H4NYknylApDONa673uZCQqsDCOczmqDXNMMkzEe0r6lAqdUB8Ui+QxdWCVGiVT2CIMW6u+NAqd6Hs5OptiM9Ko3F//z+rlJ7oKCiSw3VJDlQ0nOkZFoXgOKmaLE8KklmChmsyIywgoTY8uq2RL81S+vk85Vw79peI/X9aZX1lGFMziHS/DhFprwAC1oA4EJPMMrvDmF8+K8Ox/L0YpT7pzCHzifP0OylAM=</latexit>gt

<latexit sha1_base64="k+/8a6Q4hCSd8XK6vQppe+3M+28=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZcFNy4r2Ae0w5DJZNrQTDIkmUIZ+iduXCji1j9x59+YtrPQ1gMhh3PuJScnyjjTxvO+ncrG5tb2TnW3trd/cHjkHp90tMwVoW0iuVS9CGvKmaBtwwynvUxRnEacdqPx/dzvTqjSTIonM81okOKhYAkj2FgpdN1BJHmsp6m9iuEsNKFb9xreAmid+CWpQ4lW6H4NYknylApDONa673uZCQqsDCOczmqDXNMMkzEe0r6lAqdUB8Ui+QxdWCVGiVT2CIMW6u+NAqd6Hs5OptiM9Ko3F//z+rlJ7oKCiSw3VJDlQ0nOkZFoXgOKmaLE8KklmChmsyIywgoTY8uq2RL81S+vk85Vw79peI/X9aZX1lGFMziHS/DhFprwAC1oA4EJPMMrvDmF8+K8Ox/L0YpT7pzCHzifP0OylAM=</latexit>gt

<latexit sha1_base64="k+/8a6Q4hCSd8XK6vQppe+3M+28=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZcFNy4r2Ae0w5DJZNrQTDIkmUIZ+iduXCji1j9x59+YtrPQ1gMhh3PuJScnyjjTxvO+ncrG5tb2TnW3trd/cHjkHp90tMwVoW0iuVS9CGvKmaBtwwynvUxRnEacdqPx/dzvTqjSTIonM81okOKhYAkj2FgpdN1BJHmsp6m9iuEsNKFb9xreAmid+CWpQ4lW6H4NYknylApDONa673uZCQqsDCOczmqDXNMMkzEe0r6lAqdUB8Ui+QxdWCVGiVT2CIMW6u+NAqd6Hs5OptiM9Ko3F//z+rlJ7oKCiSw3VJDlQ0nOkZFoXgOKmaLE8KklmChmsyIywgoTY8uq2RL81S+vk85Vw79peI/X9aZX1lGFMziHS/DhFprwAC1oA4EJPMMrvDmF8+K8Ox/L0YpT7pzCHzifP0OylAM=</latexit>gt

<latexit sha1_base64="GnvAqpDxpj6EDpNbzlE09otv3Tc=">AAACSnicdVBNSwMxFMzWqrV+rXr0EixCC1J2S/HjVtCD4EXB2kK3lmw2raHZzZK8FcrS3+fFkzd/hBcPingx21ZQsQMhw8w88jJ+LLgGx3m2cgv5xaXlwkpxdW19Y9Pe2r7RMlGUNakUUrV9opngEWsCB8HasWIk9AVr+cPTzG/dM6W5jK5hFLNuSAYR73NKwEg9m5S9MyaAeL4UgR6F5koH49u07FbGPTiYY9ampufRQIKel7rIUpWeXXKqJxPgKTmqz8iJi92qM0EJzXDZs5+8QNIkZBFQQbTuuE4M3ZQo4FSwcdFLNIsJHZIB6xgakZDpbjqpYoz3jRLgvlTmRIAn6s+JlIQ629EkQwJ3+q+Xif95nQT6x92UR3ECLKLTh/qJwCBx1isOuGIUxMgQQhU3u2J6RxShYNovmhK+f4rnk5ta1T2sOlf1UsOZ1VFAu2gPlZGLjlADnaNL1EQUPaAX9IberUfr1fqwPqfRnDWb2UG/kMt/ASq4tMY=</latexit>

(�g
(1)
t ,�g

(2)
t ,

· · · ,�g
(K)
t)

<latexit sha1_base64="Tg54B4gMcoym+yB9dmeiu00Bz6A=">AAACEHicdZDLSgMxFIYzXmu9VV26CRaxggyZ6c3uKm4ENxWsCm0tmTStwcyF5IxQhj6CG1/FjQtF3Lp059uYqRVU9IfAz3fO4eT8XiSFBkLeranpmdm5+cxCdnFpeWU1t7Z+psNYMd5koQzVhUc1lyLgTRAg+UWkOPU9yc+968O0fn7DlRZhcArDiHd8OghEXzAKBnVzO4WDy6Tg7I66sIdT645tm/VC0HspOE7BbjeXJ3bNLZWrLia2Wy0Xq8SYYq1YqjjYsclYeTRRo5t7a/dCFvs8ACap1i2HRNBJqALBJB9l27HmEWXXdMBbxgbU57qTjA8a4W1DergfKvMCwGP6fSKhvtZD3zOdPoUr/buWwr9qrRj6+51EBFEMPGCfi/qxxBDiNB3cE4ozkENjKFPC/BWzK6ooA5Nh1oTwdSn+35y5tlOxyUkpXyeTODJoE22hAnJQFdXREWqgJmLoFt2jR/Rk3VkP1rP18tk6ZU1mNtAPWa8fIISawA==</latexit>

(A
(1)
t , A

(2)
t , · · · , A

(K)
t)

DP
Module

DP
Module

DP
Module

Fig. 1: The architecture of FL. The gray blocks belong to
the default FL paradigm, and the red blocks with dotted
borders are SIREN+’s components.

TABLE 1: Notations.
Symbol Meaning

t the FL communication round index
K the set of participating clients
Sa the set of clients with activated alarms
Ss the set of clients with no alarms, Sa ∪ Ss = K
Sb the set of benign clients, Sb ⊆ K

gt the global model at round t

g
(i)
t Client i’s local model at round t

∆g
(i)
t the local model update of client i

ωt the global model’s testing accuracy at round t

ω
(i)
t the local model’s testing accuracy of client i

A
(i)
t the alarm on client i at round t

D(i) the local training dataset of client i
D0 the root test dataset of the FL server

D
(i)
0 the local test dataset of client i

α(i) the aggregation weight of client i

Cc a user-defined threshold for clients
Cs a user-defined threshold for the FL server

• We design SIREN+, a comprehensively attack-agnostic
defense system that can defend against both Byzantine
and inference attacks by jointly utilizing the proactive
alarming and LDP mechanisms.

• We enable a collaborative defense mode involving both
the FL server end (the decision process) and the client
end (the LDP-compatible alarming process) to provide
more efficient defense while minimizing the potential
damages of various attacks. Our client-triggered design
improves the self-protection capability of clients, in turn
enhancing the self-repairing ability of the whole FL
system.

• We thoroughly evaluate SIREN+ under typical, ex-
treme, and real-world scenarios over both IID and non-
IID data distribution under various Byzantine attacks
and inference attacks. Experimental results show that
SIREN+ can effectively defend against such attacks
while achieving SOTA model performance compared
with prevailing defensive methods.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

3

2 BACKGROUND

2.1 Federated Learning

Federated Learning (FL) iteratively aggregates model up-
dates from multiple client devices to train a shared global
model without violating clients’ data privacy. As shown
in Fig. 1, in a communication round t, a remote FL server
first pushes a global model gt to client devices and collects
model updates {∆g

(i)
t |i ∈ K} from a set of |K| randomly

selected client devices to update the global model from gt

to gt+1. The updated global model gt+1 is then pushed to
client devices for the next round [3, 4]. Clients’ local datasets
may follow different distributions and are inaccessible to the
FL server or other clients. The meanings of all the symbols
used in this paper are presented in Table 1.

Specifically, we select |K| client devices to participate
in FL every round, and each client device i has a local
dataset D(i), i ∈ K . Each participating client trains a local
model g(i)

t using its own data with an objective to jointly
solve the following optimization problem—minimizing the
expected empirical loss F (g) on the training data across
client devices:

min
g

F (g) := min
g

|K|∑
i=1

ED(i)∼X (i) [f(D(i), g)], (1)

where g is the global model, D(i) is a set of local training
data samples following an unknown distribution X (i) on
client i, and f denotes the local loss function.

The FL server orchestrates participating client de-
vices to jointly solve this optimization problem. In the
t-th communication round, each client i initializes its
local model with the global model gt and trains the
model locally with gradient descent algorithms: g

(i)
t+1 :=

argming ED(i)∼X (i) [f(D(i), g)]. When the local training
completes, the client i calculates and pushes the local model
update ∆g

(i)
t+1 := g

(i)
t+1 − gt to the FL server. Typically,

the FL server updates the global model using the federated
averaging (FEDAVG) algorithm [4]:

gt+1 ← gt + η

|K|∑
i=1

|D(i)|
|D| ∆g

(i)
t+1, (2)

where η is the learning rate, and D :=
∑|K|

i=1 D
(i) denotes

the total data samples of the |K| client devices. Then, the
FL server sends the new global model gt+1 to client devices
and starts the next communication round.

2.2 Attack Taxonomy

Due to its distributed and iterative nature, existing FL
systems are vulnerable to various types of Byzantine attacks
and inference attacks [14].

Byzantine attacks: Byzantine attacks can be divided into
three categories: model poisoning attack, data poisoning
attack, and the compound of the previous two categories
of attacks. In this paper, we use two types of model poison-
ing attacks, one data poisoning attack, and one compound
attack. Sign-flipping Attack [18] is the first type of model
poisoning attack, where malicious clients train the model

as what benign clients do and obtain normal gradients1 but
multiplying the normal gradients by a negative constant
when uploading. Adaptive Attack [19] is the second type
of model poisoning attack, aiming to drive the changing
direction of the global model to the reverse of the normal
direction through customized optimization. Label-flipping
Attack [1, 19] is the data poisoning attack that lets the
malicious client train with normal images but with flipped
labels. These three attacks are all untargeted attacks. Targeted
Model Poisoning [22] is a compound and targeted attack that
aims to extensively degrade model accuracy at specific data
categories but perform as a normal model at other categories
by manipulating the model parameters.

Inference attacks: Generally, inference attacks can be di-
vided into mainly four types [14], which are Class Rep-
resentative Inference Attack [26], Membership Inference Attack
(MIA) [16, 27, 52], Property Inference Attack [16], and In-
put&Label Inference Attack [17, 28]. Among all the categories,
MIA is the most widely used type. MIA trains various
attacker models to determine whether a specific sample is
used to train the target model. It can violate clients’ data
privacy under both white-box and black-box settings in FL.
Thus, in this paper, we use two types of MIAs - threshold
MIA (untrained) and logistic regression MIA (trained) to
evaluate the LDP part of SIREN+. Such two MIAs follow the
design of the original MIA [52] with modifications based on
the findings of ML-Leaks [53] to improve the efficiency.

2.3 Common Defenses

This section introduces three prevailing types of defense
methods used as the baseline defense schemes in the fol-
lowing experiments for comparison.

Krum [29]. In Krum, the FL server computes the score s
(i)
t

of each weight update in each communication round, where
s
(i)
t =

∑
i→j ||∆g

(i)
t − ∆g

(j)
t ||2. Krum uses i → j(i ̸= j)

to select the indexes j of the K − f − 2 nearest neighbors
of ∆g

(i)
t , measured by Euclidean distances, where f is the

number of malicious clients selected for the aggregation
in the system. After computing all the scores of all the
weight updates, the FL server uses the weight update with
the smallest score to do the aggregation. Meanwhile, other
weight updates are dropped.

Coordinate-wise Median (Coomed) [30]. In Coomed, the
FL server picks the medians of each coordinate from all
the weight updates to build the global weights. Given
a set of weight updates {∆g

(i)
t }Ki=1 at a communication

round t, the FL server uses the Coomed to do the ag-
gregation, which is ∆gCoomed

t = Coomed{{∆g
(i)
t }Ki=1} with

∆gCoomed
t being a vector with its jth coordinate ∆gCoomed

t (j) =

med{{∆g
(i)
t (j)}Ki=1}.

FLTrust [54]. In FLTrust, the server collects a root dataset and
uses this root dataset to train an auxiliary server model in
each communication round. Then, when receiving weight
update g

(i)
t from a client i, the server calculates a trust

score TSi of the client i, where TSi = ReLU(ci) and ci

1. In this paper, gradients and weight updates are used interchange-
ably.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

4

is the cosine similarity between g
(i)
t and the update of the

server model. After calculating all the trust scores, the server
updates the global model gt =

1
TS1+···+TSK

(TS1·g(1)
t +· · ·+

TSK ·g(K)
t), where g

(i)
t is the normalized weight updates of

the client i.

2.4 Differential Privacy
Current studies show that gradients can reveal the infor-
mation of the data easily if without proper protection. For
example, inference attacks [16] can infer the properties of
the data, and deep leakage [17] can reconstruct the data
only using the gradients. In FL, if the FL server is somehow
compromised or the communication channels between the
FL server and clients are monitored, attackers could steal
the data information of the clients using such techniques.
Thus, from the perspective of clients, preventing the privacy
leakage of the gradients becomes a vital problem, though the
FL server is regarded as benign in most cases.

A widely used method to protect data privacy is differ-
ential privacy [55], which sets up a standard to measure the
privacy guarantee of a randomized algorithm.

Definition 1. A randomized mechanism M : D→R with
domain D and range R satisfies (ε, δ)-differential privacy if for
any two adjacent datasets d ∈ D and d′ ∈ D (differ by one
sample), and for any subset of mechanism outputs r ∈ R, it holds
that

Pr[M(d) ∈ r] ≤ eε · Pr[M(d′) ∈ r] + δ, (3)

where ε is the privacy budget that measures the privacy
level and utility of the randomized algorithm M, and δ
indicates the possibility of how likely the privacy is broken.

In FL, since the system consists of the server and several
clients, differential privacy can be added on the server or
clients [44]. Such difference divides either the methods that
implement DP in FL into mainly two categories—local DP
(LDP) and central DP (CDP). LDP methods usually add
noises to the gradients during the training [42, 47] or add
noises to the model updates directly [41, 43], while CDP
methods [10, 46] tend to perturb the aggregation functions
on the server.

3 PROBLEM STATEMENT

3.1 Threat Model
We adopt a more unrestricted threat model than those ap-
plied in previous defenses [1, 19, 22, 54]. The attacker com-
promises several malicious clients, having complete control
over them. For example, the attacker has full access to the
local data, and full knowledge related to the local training,
including all the training hyper-parameters and model set-
tings. To ensure that the server has valid information for
the aggregation, there at least exists one benign client in the
system. As assumed in previous approaches, the attacker
cannot compromise the FL server. This is because once the
attacker can directly manipulate the FL server, the FL train-
ing can be easily destroyed due to the dominance capability
of the FL server, and the FL training would be meaningless.
The attacker can only influence the server indirectly by
uploading malicious weight updates using compromised
clients. It does not know the data on other benign clients

or the aggregation rules on the server. While in order to
implement the inference attacks, the attacker may obtain
the client updates by eavesdropping on the communication
channels between clients and the FL server. Additionally,
the attacker can flexibly adjust the attack strategy in order
to improve the attacking success rate and camouflage itself.
For instance, the attacker can deploy various attacks on
different malicious clients and it may not enable the attacks
in every communication round.

3.2 Defense Setting

In previous approaches, the defense is considered to be
deployed either on the FL server [29, 30, 54] or on the
clients [38, 39] by default. While in SIREN+, we perform
the defense on both the FL server and clients. Due to the
restriction of FL, the server only knows the global model
and the weight updates that the clients upload, while it does
not have access to the client’s data. Besides, in SIREN+, the
server also has the capability to collect and keep a small
root test dataset that the attacker cannot poison (similar
to FLTrust [54]). On each client, compared with existing
defenses, SIREN+ enables an additional alarming process to
help each client check the integrity of the global model. This
alarming process runs locally on each client, guaranteeing
that no knowledge of clients will be leaked to the server
through this process. This alarming process only uses the
local test data, the global models distributed by the server,
and the local models derived by the client in each communi-
cation round. It only transmits the alarm status to the server
through the secure tunnel, without any violation to FL.

4 METHODOLOGY

4.1 Overview of SIREN+

Considering that the attacker can only poison the global
model via uploading malicious updates [56, 57], existing
defenses [32, 58, 59] always implement the detection on the
server end. Relying on the single server node makes the FL
system vulnerable. Besides, the strict weight analysis used
by current Byzantine-robust aggregation rules makes it hard
to enable differential private training at the same time. In
this case, existing methods can hardly defend against both
Byzantine attacks and inference attacks.

To overcome these shortcomings, we propose a new
proactive attack-agnostic and differentially private defense
system for FL, named SIREN+. Fig. 1 presents the structure
of SIREN+ that consists of the design on the FL server end
and client end. SIREN+ implements two processes on the
client end—the training process and the alarming process.
SIREN+ preserves a small partition of the local dataset as
local test data on each client. When not enabling LDP, the
local training process in SIREN+ is the same as that in
the standard FL, responsible for the local training using
local data shard. To prevent the client’s privacy leakage
that may be caused by inference attacks, we deploy LDP
on SIREN+ client, injecting appropriate noise during the
local training according to the privacy demand of each
participant. The alarming process is responsible for testing
the global weights. In each communication round, the alarm
process on each client checks the global weights by using

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

5

Client
<latexit sha1_base64="3W1SFXVyQCGuxpGjra6N9WqxEhM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6pereo2ryt1N4+jCGdwDpfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/LuYzg</latexit>

i
<latexit sha1_base64="3W1SFXVyQCGuxpGjra6N9WqxEhM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6pereo2ryt1N4+jCGdwDpfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/LuYzg</latexit>

i

FL Server

<latexit sha1_base64="6JThYJo/QnOSMZ+whEyvW+rd9bc=">AAAB8HicdVDLSgMxFM3UV62vqks3wSLUzZDpa+yu4sZlBdsq7VgyaaYNTWaGJCOUoV/hxoUibv0cd/6N6UNQ0QMXDufcy733+DFnSiP0YWVWVtfWN7Kbua3tnd29/P5BW0WJJLRFIh7JGx8ryllIW5ppTm9iSbHwOe3444uZ37mnUrEovNaTmHoCD0MWMIK1kW7P79IiO532dT9fQHa9VKm6JYjsklstu8iQcr1cqTnQsdEcBbBEs59/7w0ikggaasKxUl0HxdpLsdSMcDrN9RJFY0zGeEi7hoZYUOWl84On8MQoAxhE0lSo4Vz9PpFiodRE+KZTYD1Sv72Z+JfXTXRw5qUsjBNNQ7JYFCQc6gjOvocDJinRfGIIJpKZWyEZYYmJNhnlTAhfn8L/SbtkOzUbXVUKDbSMIwuOwDEoAge4oAEuQRO0AAECPIAn8GxJ69F6sV4XrRlrOXMIfsB6+wSVHJA6</latexit>

A
(i)
t

Aggregation AggregationDetecting

<latexit sha1_base64="XHfO8nVMExm8tktAbE30OdThjDA=">AAACBXicbVDLSsNAFJ3UV62vqEtdBItQNyURUZcFXbisYB/QxDCZTNqhkwczN0IJ2bjxV9y4UMSt/+DOv3HSZqGtB4Y5nHMv997jJZxJMM1vrbK0vLK6Vl2vbWxube/ou3tdGaeC0A6JeSz6HpaUs4h2gAGn/URQHHqc9rzxVeH3HqiQLI7uYJJQJ8TDiAWMYFCSqx/a15QDtr2Y+3ISqi8b5vdZg53kLrh63WyaUxiLxCpJHZVou/qX7cckDWkEhGMpB5aZgJNhAYxwmtfsVNIEkzEe0oGiEQ6pdLLpFblxrBTfCGKhXgTGVP3dkeFQFiuqyhDDSM57hfifN0ghuHQyFiUp0IjMBgUpNyA2ikgMnwlKgE8UwUQwtatBRlhgAiq4mgrBmj95kXRPm9Z507w9q7fMMo4qOkBHqIEsdIFa6Aa1UQcR9Iie0St60560F+1d+5iVVrSyZx/9gfb5A/jumNE=</latexit>

�g
(i)
t

<latexit sha1_base64="k+/8a6Q4hCSd8XK6vQppe+3M+28=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRUZcFNy4r2Ae0w5DJZNrQTDIkmUIZ+iduXCji1j9x59+YtrPQ1gMhh3PuJScnyjjTxvO+ncrG5tb2TnW3trd/cHjkHp90tMwVoW0iuVS9CGvKmaBtwwynvUxRnEacdqPx/dzvTqjSTIonM81okOKhYAkj2FgpdN1BJHmsp6m9iuEsNKFb9xreAmid+CWpQ4lW6H4NYknylApDONa673uZCQqsDCOczmqDXNMMkzEe0r6lAqdUB8Ui+QxdWCVGiVT2CIMW6u+NAqd6Hs5OptiM9Ko3F//z+rlJ7oKCiSw3VJDlQ0nOkZFoXgOKmaLE8KklmChmsyIywgoTY8uq2RL81S+vk85Vw79peI/X9aZX1lGFMziHS/DhFprwAC1oA4EJPMMrvDmF8+K8Ox/L0YpT7pzCHzifP0OylAM=</latexit>gt

<latexit sha1_base64="HYbu3HAyYcCTRIqkhJcJzF23re8=">AAACCXicbVDLSsNAFJ3UV62vqks3g0WoCCURUZcFXbisYB/QxDCZTNqhkwczN0IJ2brxV9y4UMStf+DOv3HaZqGtB4Y5nHMv997jJYIrMM1vo7S0vLK6Vl6vbGxube9Ud/c6Kk4lZW0ai1j2PKKY4BFrAwfBeolkJPQE63qjq4nffWBS8Ti6g3HCnJAMIh5wSkBLbhXb10wAsb1Y+Goc6i8b5PdZnR/nbgYnVu5Wa2bDnAIvEqsgNVSg5Va/bD+macgioIIo1bfMBJyMSOBUsLxip4olhI7IgPU1jUjIlJNNL8nxkVZ8HMRSvwjwVP3dkZFQTdbUlSGBoZr3JuJ/Xj+F4NLJeJSkwCI6GxSkAkOMJ7Fgn0tGQYw1IVRyvSumQyIJBR1eRYdgzZ+8SDqnDeu8Yd6e1ZpmEUcZHaBDVEcWukBNdINaqI0oekTP6BW9GU/Gi/FufMxKS0bRs4/+wPj8Ab/Gmk0=</latexit>

�g
(i)
t+1

Round t
<latexit sha1_base64="NVGLSrmGHK55L0e/+6xD5ymGAPU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgxWML9gPaUDbbSbt2swm7E6GU/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvTKUw5HnfTmFjc2t7p7hb2ts/ODwqH5+0TJJpjk2eyER3QmZQCoVNEiSxk2pkcSixHY7v5n77CbURiXqgSYpBzIZKRIIzslKD+uWKV/UWcNeJn5MK5Kj3y1+9QcKzGBVxyYzp+l5KwZRpElzirNTLDKaMj9kQu5YqFqMJpotDZ+6FVQZulGhbityF+ntiymJjJnFoO2NGI7PqzcX/vG5G0W0wFSrNCBVfLooy6VLizr92B0IjJzmxhHEt7K0uHzHNONlsSjYEf/XlddK6qvpe1W9cV2peHkcRzuAcLsGHG6jBPdShCRwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDav4zm</latexit><latexit sha1_base64="NVGLSrmGHK55L0e/+6xD5ymGAPU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgxWML9gPaUDbbSbt2swm7E6GU/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvTKUw5HnfTmFjc2t7p7hb2ts/ODwqH5+0TJJpjk2eyER3QmZQCoVNEiSxk2pkcSixHY7v5n77CbURiXqgSYpBzIZKRIIzslKD+uWKV/UWcNeJn5MK5Kj3y1+9QcKzGBVxyYzp+l5KwZRpElzirNTLDKaMj9kQu5YqFqMJpotDZ+6FVQZulGhbityF+ntiymJjJnFoO2NGI7PqzcX/vG5G0W0wFSrNCBVfLooy6VLizr92B0IjJzmxhHEt7K0uHzHNONlsSjYEf/XlddK6qvpe1W9cV2peHkcRzuAcLsGHG6jBPdShCRwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDav4zm</latexit><latexit sha1_base64="NVGLSrmGHK55L0e/+6xD5ymGAPU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgxWML9gPaUDbbSbt2swm7E6GU/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvTKUw5HnfTmFjc2t7p7hb2ts/ODwqH5+0TJJpjk2eyER3QmZQCoVNEiSxk2pkcSixHY7v5n77CbURiXqgSYpBzIZKRIIzslKD+uWKV/UWcNeJn5MK5Kj3y1+9QcKzGBVxyYzp+l5KwZRpElzirNTLDKaMj9kQu5YqFqMJpotDZ+6FVQZulGhbityF+ntiymJjJnFoO2NGI7PqzcX/vG5G0W0wFSrNCBVfLooy6VLizr92B0IjJzmxhHEt7K0uHzHNONlsSjYEf/XlddK6qvpe1W9cV2peHkcRzuAcLsGHG6jBPdShCRwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDav4zm</latexit><latexit sha1_base64="NVGLSrmGHK55L0e/+6xD5ymGAPU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHgxWML9gPaUDbbSbt2swm7E6GU/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvTKUw5HnfTmFjc2t7p7hb2ts/ODwqH5+0TJJpjk2eyER3QmZQCoVNEiSxk2pkcSixHY7v5n77CbURiXqgSYpBzIZKRIIzslKD+uWKV/UWcNeJn5MK5Kj3y1+9QcKzGBVxyYzp+l5KwZRpElzirNTLDKaMj9kQu5YqFqMJpotDZ+6FVQZulGhbityF+ntiymJjJnFoO2NGI7PqzcX/vG5G0W0wFSrNCBVfLooy6VLizr92B0IjJzmxhHEt7K0uHzHNONlsSjYEf/XlddK6qvpe1W9cV2peHkcRzuAcLsGHG6jBPdShCRwQnuEV3pxH58V5dz6WrQUnnzmFP3A+fwDav4zm</latexit>

Alarm
Round t + 1

<latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit><latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit><latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit><latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit>

t + 1
<latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit><latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit><latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit><latexit sha1_base64="dNwfY1LWHa6xqcXM6gaLNsqsflU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zQHbX0w8Hhvhpl5QSKFQdf9dkpr6xubW+Xtys7u3v5B9fCobeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHvDCG1Rrbt3NQVaJV5AaFGgOql/9YczSiCtkkhrT89wE/YxqFEzyWaWfGp5QNqEj3rNU0YgbP8tPnZEzqwxJGGtbCkmu/p7IaGTMNApsZ0RxbJa9ufif10sxvPEzoZIUuWKLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNOp2BC85ZdXSfuy7rl17/6q1nCLOMpwAqdwDh5cQwPuoAktYDCCZ3iFN0c6L86787FoLTnFzDH8gfP5A7EbjVY=</latexit>

Training

LDP

Fig. 2: Workflow of SIREN+ in one communication round.

local weights and the local test dataset. If a client regards
the global weight as a poisoned weight, it will alarm the
FL server, and the FL server will start the detecting process
to exclude the malicious weight updates according to the
alarm status of each client. To fully utilize the alarm sent
from the clients, we design a decision process to let the FL
server detect malicious clients via analyzing both the alarms
and weight updates from clients. This client-triggered de-
cision process helps the FL server maintain better model
precision and computational efficiency.

4.2 SIREN+ Client’s Workflow
Fig. 2 presents SIREN+’s client-end workflow that a client
executes an alarming process to verify whether the global
model gt is poisoned, and uploads an alarm status A

(i)
t

and a model weight update ∆g
(i)
t to the FL server in each

communication round. SIREN+ requires each client to keep
a local test dataset that could be derived directly from the
local training data and a copy of the local model weights
generated in the previous round.

The alarming process compares the accuracy between
the local model and the global model over the local test
dataset to justify whether the global model is trustworthy so
that the client can use it for the next round of local training.
For simplicity, we use the client i to represent a general par-
ticipating client, which could be either malicious or benign.
Algorithm 1 presents the pseudo-code of the SIREN+ client-
end alarming and training processes. A detailed description
of the client-end procedure is as follows:
Step 1 (Line 10): When the (t+1)-th communication round
begins, the client i receives the global model weight gt

aggregated by the FL server in the previous (i.e., the t-th)
communication round.
Step 2 (Line 2-3,11): The client i launches the alarming pro-
cess (Alarm()) to evaluate the global model gt with the
help of the local model g(i)

t trained in the previous commu-
nication round. The global model gt’s accuracy is ωt, and
the local model g(i)

t ’s accuracy is ω(i)
t .

Step 3 (Line 4-7,12-15): To justify whether the global model
gt is poisoned, the alarm process further compares the
accuracy ωt and ω

(i)
t . If the global model gt is more accurate

than the local model g(i)
t , i.e., ωt ≥ ω

(i)
t ·(1−Cc), where Cc is

a pre-defined positive threshold, the client i initializes the lo-
cal model g(i) with gt in the (t+1)-th communication round
training (Line 12-13). Besides, the client i sets the alarm
status A(i)

t as 0 (Line 4-5). In contrast, if ωt < ω
(i)
t · (1−Cc),

then client i initializes the local model g(i) with g
(i)
t instead

of gt, due to the global model’s abnormal performance (Line

Algorithm 1: Alarming and Training on SIREN+

clients.
// alarming process

1 function Alarm(gt,g
(i)
t)

2 ωt ← testing gt on the local test dataset D(i)
0 ;

3 ω
(i)
t ← testing g

(i)
t on the local test dataset D(i)

0 ;
4 if ωt ≥ ω

(i)
t · (1− Cc) then

// the global model is normal

5 A
(i)
t ← 0;

6 else
// the global model is abnormal

7 A
(i)
t ← 1;

8 send A
(i)
t in a secure tunnel to the FL server;

9 return A
(i)
t ;

// training process
10 function ClientUpdate(i,gt)

11 A
(i)
t ← Alarm(gt, g

(i)
t);

12 if A
(i)
t is 0 then

13 g(i) ← gt;

14 else

15 g(i) ← g
(i)
t ;

16 for each epoch e = 1, · · · , E do
17 if not use DP then

// normal local training
18 train the model g(i) with optimizer on the

local dataset D(i), and obtain g
(i)
t+1;

19 else
// local training with DP

20 train the model g(i) with LDP on the local
dataset D(i), and obtain g

(i)
t+1;

// calculate model updates

21 ∆g
(i)
t+1 ← g

(i)
t+1 − gt;

22 return ∆g
(i)
t+1;

14-15). Correspondingly, the client i sets the alarm status
A

(i)
t to 1 (Line 6-7).

Step 4 (Line 8): The client i sends the alarm status A
(i)
t to

the FL server in a secure tunnel (e.g., an IPsec tunnel based
on the Diffie-Hellman algorithm [60]), which prevents the
alarm status from being tampered in network transmission,
even when the client i is malicious and generates a false
alarm.
The client i obtains a new model g(i)

t+1 by training the model
g(i) on its local data with either a normal optimizer or
an LDP optimizer (Sec. 4.3), where the alarm status A

(i)
t

determines g(i) to be either g
(i)
t or gt in Step 3. Then,

the client i calculates and sends the local weight update
∆g

(i)
t+1 = g

(i)
t+1 − gt to the FL server and stores the local

model g(i)
t+1 for the next round.

This client-end alarming mechanism guarantees that a
poisoned global model always triggers benign clients to alarm. It
should also be noted that malicious clients can deliberately

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

6

send fake alarms to delude the FL server even when the
model is not poisoned. SIREN+ recognizes such delusive
alarms from malicious clients at the FL server end. This
additional defense makes clients isolated promptly to save
the training results of the without-attack rounds once the
global model is poisoned, granting SIREN+ a unique feature
that can restore the training process even though the server
has already been compromised.

4.3 Local Differential Privacy on SIREN+ Clients
Since FL systems may face various types of attacks, the orga-
nizer/user may expect to deploy multiple defense methods
simultaneously in order to achieve a higher security level.
In SIREN+, we enable the LDP technique to provide a
convincing defense against inference attacks that could also
occur according to the threat model.

The LDP training process implemented in SIREN+ con-
tains mainly four steps. For an arbitrary client i, for each
local batch B

(i)
j ∈ D(i), it firstly calculates the gradient ∂g(i)

using the local loss function f and model weight g(i):

∂g(i) = ∇f(B(i)
j , g(i)). (4)

Secondly, the gradient ∂g(i) is clipped by the clipping norm
C(i):

∂ḡ(i) = ∂g(i)/max(1,
||∂g(i)||2
C(i)

). (5)

Thirdly, client i injects the Gaussian noise to the clipped gra-
dient ∂ḡ(i) with the noise multiplier σ(i) and the clipping
norm C(i):

∂g̃(i) = ∂ḡ(i) +N (0,σ(i)2C(i)2I). (6)

At last, client i updates g(i) with ∂g̃(i). After the above
local training process over the whole local data D(i), client i
obtains g

(i)
t+1 (suppose in communication round t) which is

then uploaded to the FL server.

4.4 SIREN+ FL Server’s Workflow
The FL server trusts neither local model updates nor alarms
from any participating clients due to the inherent vulnera-
bility of FL. Before aggregating local model updates and up-
dating the global model as the standard FL does, SIREN+’s
FL server first launches a detecting process that analyzes the
alarm statuses and evaluates local model weights to identify
potential attacks.

In a communication round t, the FL server performs
a two-phase detection: 1) Examining whether the global
model generated in the previous round aggregation (i.e.,
gt) is poisoned. 2) Testing whether the client model up-
dates collected in the current round (i.e., {∆g

(i)
t+1|i ∈

K}) are poisoned. Algorithm 2 presents the pseudo-
code of the detecting (ServerDetect()) and aggregating
(Aggregation()) processes at the FL server. The weight
analysis (WeightCheck()) used in Algorithm 2 is intro-
duced in Sec. 4.6. The following steps illustrate the two-
phase detection process of the FL server in each communi-
cation round:
Step 1 (Line 18-20): In the t-th communication round, the
FL server retrieves alarm status A

(i)
t from all participating

Algorithm 2: Detection and aggregation on the
SIREN+ FL server.
1 function ServerDetect(param)

2 t,K, {A(i)
t }, {∆g

(i)
t+1}, gt, gt−1 ← param;

3 if ∀i ∈ K,A
(i)
t = 0 then

// no alarms: Case 1⃝ 2⃝
4 gt+1 ← gt +

∑
i∈K α(i)∆g

(i)
t+1;

5 return gt+1;

6 if ∀i ∈ Sa, max{ω(i)
t |i ∈ Sa} · (1− Cs) < ω

(i)
t

and WeightCheck(ω(i)
t) then

// similar accuracies: Case 3⃝
7 if max{ω(i)

t |i ∈ Sa} · (1− Cs) ≤
max{ω(i)

t |i ∈ Ss} then
// false alarms

8 Sb ← detect and add benign silent clients;
9 gt+1 ← gt +

∑
i∈Sb

α(i)∆g
(i)
t+1;

10 else
11 Sb ← all the alarming clients;
12 gt+1 ← gt−1 +

∑
i∈Sb

α(i)∆g
(i)
t+1;

13 else
// divergent accuracies: Case 4⃝

14 Sb ← detect and add benign alarming clients;
15 gt+1 ← gt−1 +

∑
i∈Sb

α(i)∆g
(i)
t+1;

16 return gt+1;

17 function Aggregation(t,K, gt, gt−1)
18 for each client i ∈ K in parallel do

19 A
(i)
t ← sent back by Alarm(gt, g

(i)
t);

20 ∆g
(i)
t+1 ← ClientUpdate(i, gt);

21 param← {t,K, {A(i)
t }, {∆g

(i)
t+1}, gt, gt−1};

22 gt+1 ← ServerDetect(param);
23 return gt+1;

24 function FLTraining(T,K, g)
25 g0, g1 ← model initialization;
26 for t = 1, 2, · · · , T do
27 gt+1 ← Aggregation(t,K, gt, gt−1);

28 return gT+1;

clients through secure tunnels and collects client model
weight updates ∆g

(i)
t+1, where i ∈ K .

Step 2 (Line 1-16): The FL server analyzes all client alarms
following the decision process illustrated in Fig. 3 and
Sec. 4.5. If there are no client alarms, the FL server would
directly aggregate model weight updates from clients and
updates the global model without Step 3. However, if there
is any alarm, the FL server would further evaluate the model
updates {∆g

(i)
t+1|i ∈ Sa} from the clients with activated

alarms A(i)
t = 1, where Sa ⊆ K and Sa is the set of alarming

clients.
Step 3 (Line 21-22): The FL server filters out the client
model updates identified as poisonous when aggregating
model weight updates to update the global model gt−1

from the (t-1)-th communication round, rather than gt, since

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

7

Alarms

FL server at
the t-th round

Test updates from
alarming clients

<latexit sha1_base64="cteyqTOOBS2dKWrs25Rr2xhlaVk=">AAACBnicbVBNS8NAEN3Ur1q/oh5FWCxCBSmJiHoRKl4ELxXsBzS1bLbbdulmE3YnYgk9efGvePGgiFd/gzf/jds2B219MPB4b4aZeX4kuAbH+bYyc/MLi0vZ5dzK6tr6hr25VdVhrCir0FCEqu4TzQSXrAIcBKtHipHAF6zm9y9Hfu2eKc1DeQuDiDUD0pW8wykBI7XsXY89mC0ac49LfH2IL+6SAj8YtgCfY7dl552iMwaeJW5K8ihFuWV/ee2QxgGTQAXRuuE6ETQTooBTwYY5L9YsIrRPuqxhqCQB081k/MYQ7xuljTuhMiUBj9XfEwkJtB4EvukMCPT0tDcS//MaMXTOmgmXUQxM0smiTiwwhHiUCW5zxSiIgSGEKm5uxbRHFKFgksuZENzpl2dJ9ajonhSdm+N8yUnjyKIdtIcKyEWnqISuUBlVEEWP6Bm9ojfryXqx3q2PSWvGSme20R9Ynz9HypcB</latexit>

9i 2 K, A
(i)
t = 1

Similar
accuracies

Divergent
accuracies

No alarms
<latexit sha1_base64="zJxcTxJBkfddlIxEvQQ+CLGN9kA=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQQcpERN0IFTeCmwr2AU0Mk+mkHTqZhJmJUEJXbvwVNy4Uces3uPNvnLZZaPXAhcM593LvPUHCmdIIfVmFufmFxaXicmlldW19w97caqo4lYQ2SMxj2Q6wopwJ2tBMc9pOJMVRwGkrGFyO/dY9lYrF4lYPE+pFuCdYyAjWRvLtXTeMJeYcMpcJeH0IL+6yCjsY+RqeQ+TbZVRFE8C/xMlJGeSo+/an241JGlGhCcdKdRyUaC/DUjPC6ajkpoommAxwj3YMFTiiyssmb4zgvlG60NxjSmg4UX9OZDhSahgFpjPCuq9mvbH4n9dJdXjmZUwkqaaCTBeFKYc6huNMYJdJSjQfGoKJZOZWSPpYYqJNciUTgjP78l/SPKo6J1V0c1yuoTyOItgBe6ACHHAKauAK1EEDEPAAnsALeLUerWfrzXqfthasfGYb/IL18Q0S1pbg</latexit>

8i 2 K, A
(i)
t = 0

No attacks

Attacks
Go to aggregation

Identify malicious clients,

Test updates from silent clients

1

2

3

4

No attacks

Attacks

Detect it in next round

<latexit sha1_base64="Yvz4ZZcnat9GuK5nzzhMIGY+ubQ=">AAACHHicdVDLSgMxFM34rPVVdekmWAQ3Dpk+7a7gxqWC1UJbSiZN29DMZEjuKGWYD3Hjr7hxoYgbF4J/Y1or+LwQcjjnXO69x4+kMEDImzM3v7C4tJxZya6urW9s5ra2L4yKNeMNpqTSTZ8aLkXIGyBA8makOQ18yS/90fFEv7zi2ggVnsM44p2ADkLRF4yCpbq5YttXsmfGgf2SQdpN4NBLcVuLwRCo1uoa/zKk3VyeuLVCqVwtYOIWquVilVhQrBVLFQ97LplWHs3qtJt7afcUiwMeApPUmJZHIugkVINgkqfZdmx4RNmIDnjLwpAG3HSS6XEp3rdMD/eVti8EPGW/diQ0MJP1rDOgMDQ/tQn5l9aKoX/USUQYxcBD9jGoH0sMCk+Swj2hOQM5toAyLeyumA2ppgxsnlkbwuel+H9wUXC9ikvOSvk6mcWRQbtoDx0gD1VRHZ2gU9RADN2gO/SAHp1b5955cp4/rHPOrGcHfSvn9R3I56Oo</latexit>

gt�1 ! gt

Case

Case

Case

Case

Fig. 3: The FL server’s decision process. The decisions made by the FL server are highlighted in red and italic.

which is identified as poisoned. Therefore, the global model
is updated as gt+1 = gt−1 +

∑
i∈Sb

α(i)∆g
(i)
t+1, where Sb

is the set of clients identified as benign. The FL server
also maintains a black list (Sec. 4.7) to exclude the clients
identified as malicious for certain times from participating
in training.

4.5 Decision Process and Security Analysis

We further analyze the detailed decisions made by the FL
server and present the corresponding reasoning. If the FL
server receives zero activated alarms at t-th round, there
are two possible cases as shown in Fig. 3: Case 1⃝ (Line
3-5) gt is not poisoned, and {∆g

(i)
t+1|i ∈ K} are all benign

updates. Case 2⃝ (Line 3-5) gt−1 is not poisoned, but there
are poisoned model updates in {∆g

(i)
t+1|i ∈ K}. If gt is

poisoned, the client-end alarming mechanism can guarantee
to activate alarms as long as one benign client exists. Be-
sides, Case 2⃝ only happens when malicious clients poison
the global model g1 at the first attacked communication
round. Benign clients will detect such poisoned updates
by comparing accuracy of the global model and the local
model in the upcoming communication round (Sec. 4.2 Step
3). Thus, the FL server chooses to directly aggregate model
updates when there is no alarm.

However, when there are activated alarms, the FL server
first tests the accuracy of the models from the clients with
activated alarms (i.e., i ∈ Sa) and looks for the maximum
accuracy max{ω(i)

t |i ∈ Sa} among these clients. We use
a user-defined threshold Cs to measure the difference be-
tween the maximum accuracy and each alarming client’s
accuracy. The alarming clients either share a similar accu-
racy as the Case 3⃝ (Line 6-12) that ∀i ∈ Sa, max{ω(i)

t |i ∈
Sa} · (1 − Cs) < ω

(i)
t , or have divergent accuracies that

∃i ∈ Sa, max{ω(i)
t |i ∈ Sa} · (1 − Cs) ≥ ω

(i)
t as the Case 4⃝

(Line 13-15).
For Case 3⃝, if there is no attack—neither the global

model gt−1 nor client updates {∆g
(i)
t |i ∈ K} are not poi-

soned, the activated alarms must be false alarms deliberately
generated by malicious clients. If there are attacks and the
alarming clients’ model updates have similar accuracies,
then we should test the silent clients’ model updates to
further verify whether the alarming clients’ model updates
are all poisoned or all benign. Thus, for Case 3⃝ we
should always test all the silent clients’ model updates
{∆g

(i)
t |i ∈ Ss}, where Ss is the set of silent clients. If the

silent clients’ highest accuracy is close to or even better than
the alarming clients’ highest accuracy:

max{ω(i)
t |i ∈ Sa} · (1− Cs) ≤ max{ω(i)

t |i ∈ Ss}, (7)

the FL server can assure that the benign clients are silent,
and thus, all alarming clients’ updates are poisoned. If the
accuracy of a silent client’s updates is close to the maximum
accuracy of all silent clients, we believe this client is benign.
So we add a silent client to the benign client set Sb, when
its accuracy matches max{ω(i)

t |i ∈ Ss} · (1 − Cs) < ω
(i)
t ,

where i ∈ Ss. Since all benign clients are silent, the alarms
are generated by malicious clients as false alarms, and the
global model from the last round gt is not poisoned.

Contrarily, for Case 3⃝, if the maximum accuracy of
silent clients is lower than the maximum accuracy of the
alarming clients: max{ω(i)

t |i ∈ Sa}·(1−Cs) > max{ω(i)
t |i ∈

Ss}, then all silent client’s model updates are poisoned,
and all alarming clients are benign due to their similar
accuracies.

For Case 4⃝, the divergent accuracies of the alarming
clients indicate that both benign and malicious clients are
alarming. Again, we use the maximum accuracy of all
alarming clients to filter out the alarming malicious clients.
If an alarming client’s accuracy satisfies max{ω(i)

t |i ∈ Sa} ·
(1 − Cs) < ω

(i)
t , then we add it to the benign client set

Sb. Since benign clients always alarm when detecting a
poisonous gt, there are no benign clients among the silent
clients. Thus, we ignore all silent clients in this case.

Besides, we jointly apply accuracy checking and weight
analysis to recognize malicious clients and achieve better
detection in Sec. 4.6. To analyze the security level of SIREN+,
we can transfer the conclusion of FLTrust. Since there exists
at least one client in the SIREN+’s FL system is benign, we
can regard such client’s model update as the server model
update in FLTrust. Both SIREN+ and FLTrust use cosine
similarity as the criterion, and SIREN+ also uses accuracy,
which is more direct and strict, as the additional criterion.
Thus, the security level of SIREN+ is no less than FLTrust.

4.6 Weight Analysis
Since most of the attacks aim to generate malicious weight
updates, which can have reverse impacts on the global
model compared with benign weight updates, these ma-
licious weight updates usually represent reverse changing
directions of the model compared with benign updates.
With this intuition, similar to FLTrust [54], weight analysis
is added into SIREN+ (WeightCheck()). However, SIREN+

only uses the information from clients while executing
the weight analysis. Such attribute is essentially different
from FLTrust, which has a predefined expectation of the
global model via using an auxiliary model trained by the
data on the server to evaluate client weight updates. With
weight analysis in SIREN+, the server not only compares
the accuracy between the update with max accuracy and

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

8

other updates but also compares the angles between these
updates. If the angle between an update ωi and the update
with max accuracy max{ω(i)

t |i ∈ Sa} is greater than π/2,
then ωi would be regarded as a malicious update by the
server. Otherwise, ωi is regarded as a benign update and can
be calculated into the global model. Via weight analysis, the
server can check the updates from clients through another
perspective while keeping its objectivity.

4.7 Penalty and Award Mechanisms
To further improve the capability of SIREN+, some auxiliary
mechanisms are also applied to SIREN+’s architecture that is
introduced in Sec. 4.2 and Sec. 4.4. All these auxiliary mech-
anisms are used only by the server so that clients do not
have any extra computational burdens. The server can flex-
ibly determine whether to use these auxiliary mechanisms
according to the computational resources on the server as
well as the demand for better security and performance.

Penalty Mechanism: We design a penalty mechanism to
improve the stability of SIREN+. Since malicious clients
can attack the server consistently and the corresponding
consistent checks waste a huge amount of computational
resources. With the penalty mechanism, the server records
the number of instances in which each client is regarded
as malicious. If a client’s count exceeds a threshold Cp, the
server will no longer accept updates from this client with-
out checks, considering it malicious by default. With this
method, the server can effectively save the computational
overheads and improve the stability of the system.

Award Mechanism: The penalty mechanism may misjudge
benign clients to be malicious clients because of the variance
of the data on each client. Thus, the server exploits an award
mechanism to rejoin a banned client into the training with a
probability. In a communication round, if a banned client
is regarded as a benign client by the server, the penalty
count of this client would reduce Ca, according to the award
mechanism. If the penalty count of this banned client is less
than Cp, then this client could participate in the training
process again. With this mechanism, the server can alleviate
the side effects of the penalty mechanism.

5 EVALUATION

We implement an FL prototype of SIREN+ based on Ten-
sorFlow [61] and use the multiprocessing library to
launch multiple processes to simulate multiple clients in
the system. We implement the LDP part using TensorFlow
Privacy [62], a Python library including several customized
TensorFlow optimizers/models that could train neural net-
works with differential privacy. We use the DPAdamOp-
timizer with QuantileAdaptiveClipSumQuery to dynamically
adjust the hyper-parameters C(i) during the local training.
Their design patterns follow DP-SGD [63] and adaptive
clipping [64]. We have open-sourced SIREN+ at GitHub2.

For Byzantine attacks, we evaluate SIREN+ with four
distinctive attacking methods: sign-flipping attack, label-
flipping attack, adaptive attack, and targeted model poi-

2. https://github.com/AISIGSJTU/Siren-Plus

TABLE 2: Default settings of main parameters.

Description IID Non-IID

B Local batch-size 64 64
T Communication rounds 40 40
E Local training epochs 5 5
p Non-IID degree 0 0.5
Cc Client identification threshold 4% 4%
Cs Server identification threshold 10% 10%
Cp Penalty mechanism threshold 0.45 · T 0.45 · T
Ca Award mechanism parameter 0.5 0.5

TABLE 3: The architecture of the CNN model used for
Fashion-MNIST under the non-DP setting.

Layer Type Size

Input 28× 28× 1
Convolution + ReLU 5× 5× 64

Convolution + ReLU + Dropout 5× 5× 64
Fully Connected + ReLU + Dropout 128

Softmax 10

soning attack, and compare SIREN+ with three prevail-
ing Byzantine-robust aggregation methods—multi-Krum,
Coomed, and FLTrust. For inference attacks, we evaluate
SIREN+ with two types of MIAs: threshold MIA and LR
MIA. Our evaluation experiments run on an NVIDIA Tesla
V100 GPU and two NVIDIA 2080Ti GPUs.

5.1 Experimental Setup

Table 2 summarizes the main parameters of SIREN+ for
the image classification task on the Fashion-MNIST dataset.
For the CIFAR-10 dataset, we reuse most of the parameters
while changing Cs to 15% (for both IID and non-IID data)
and changing Cc to 6% (only for non-IID data). We also
extend T to 100 for the CIFAR-10 dataset to train the
ResNet-18.

Datasets: We evaluate SIREN+ on two mainstream computer
vision datasets: Fashion-MNIST and CIFAR10. Fashion-
MNIST consists of 60K training gray-scale images and 10K
testing gray-scale images from 10 classes. CIFAR-10 contains
50K training color images and 10K testing color images.

Models: We train SIREN+ using two types of CNN mod-
els and ResNet-18 [65] on Fashion-MNIST and CIFAR-10
datasets, respectively. For the Fashion-MNIST dataset, we
use a computationally complex CNN model for the non-DP
setting (shown in Table 3) and a simple CNN model for DP
setting (shown in Table 4). For the CIFAR-10 dataset, we
use ResNet-18 to verify the effectiveness of SIREN+ using a
larger model.

IID and Non-IID Data: For IID training data, we randomly
split the whole training data into |K| shards and allocate
these data shards to |K| clients directly. For non-IID training
data, we follow the non-IID pattern in the paper of adaptive
attack [19] to generate non-IID data for clients using the
non-IID degree p. By using p, training data with label l is
distributed into lth group of clients with possibility p. In
this case, a higher p indicates a higher degree of non-IID.
We set p = 0.5 in all the experiments over non-IID training
data.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

https://github.com/AISIGSJTU/Siren-Plus

9

Average accuracy
Sign-flipping
Lable-flipping
Targeted model poisoning

Ac
cu

ra
cy

 (%
)

75

80

85

90

95

Cs

0.
02

0.
04

0.
06

0.
08 0.
1

0.
12

0.
14

0.
16

0.
18 0.
2

(a) Cs on the server.
Ac

cu
ra

cy
 (%

)

0

20

40

60

80

100

Cs

0
0.

02
0.

04
0.

06
0.

08 0.
1

0.
12

0.
14

0.
16

0.
18 0.
2

(b) Cc on clients.

Ac
cu

ra
cy

 (%
)

70

75

80

85

90

95

Cp

0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

(c) Cp on the FL server with
only the penalty mechanism.

Ac
cu

ra
cy

 (%
)

60

70

80

90

100

Cp

0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

(d) Cp on the FL server with
both the penalty and award
mechanisms.

Ac
cu

ra
cy

 (%
)

60

70

80

90

100

Root test dataset size
10 20 5010

0
20

0
30

0
40

0
50

0

(e) Root dataset
size on the FL
server.

Fig. 4: Searching the configuration of important hyper-parameters.

FL Baseline
Attack

Coomed
FLTrust

Siren
multi-Krum

Siren+

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, 40% malicious clients

(b) IID, 80% malicious clients

(c) Non-IID, 40% malicious clients

(d) Non-IID, 80% malicious clients

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Fig. 5: Training efficiency under sign-
flipping attack when |K| = 10.

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, 40% malicious clients

(b) IID, 80% malicious clients

(c) Non-IID, 40% malicious clients

(d) Non-IID, 80% malicious clients

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Fig. 6: Training efficiency under label-
flipping attack when |K| = 10.

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, 40% malicious clients

(b) IID, 80% malicious clients

(c) Non-IID, 40% malicious clients

(d) Non-IID, 80% malicious clients

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Fig. 7: Training efficiency under adap-
tive attack when |K| = 10.

TABLE 4: The architecture of the CNN model used for
Fashion-MNIST under DP setting.

Layer Type Size

Input 28× 28× 1
Convolution + ReLU 8× 8× 16

Max Pooling 2× 1
Convolution + ReLU 4× 4× 32

Max Pooling 2× 1
Fully Connected + ReLU 32

Softmax 10

Evaluation Metrics: We compare SIREN+ with several pre-
vailing Byzantine-robust aggregation methods mainly from
model performance, system robustness, and training effi-
ciency. To compare the model performance, we use accuracy
as the metric. To compare the system’s robustness, we test

each method under various malicious settings to observe
the trend of the training process. To compare the training
efficiency, we use the convergence speed as the criteria. We
also use the AUC of the inference attacker model under
SIREN+ and original SIREN to demonstrate the effectiveness
of SIREN+. Besides, we define a metric—malicious index—
to indicate how frequently a client is recognized to be
malicious by the server in SIREN+, representing the server’s
recognition accuracy to malicious clients.

The root test dataset on the server: SIREN+ uses a root
test dataset on the server to recognize potentially malicious
clients. We randomly pick out 100 samples (Sec. 5.2) from
the training dataset, then distribute the remaining data
to each client, as the server’s root test dataset should be
collected by the server itself instead of being derived from
clients. This small root test dataset shares the same data

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

10

FL Baseline
Attack

Coomed
FLTrust

Siren
multi-Krum

Siren+

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, 40% malicious clients

(b) IID, 80% malicious clients

(c) Non-IID, 40% malicious clients

(d) Non-IID, 80% malicious clients

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Fig. 8: Training efficiency under sign-
flipping attack when |K| = 50.

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, 40% malicious clients

(b) IID, 80% malicious clients

(c) Non-IID, 40% malicious clients

(d) Non-IID, 80% malicious clients

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Fig. 9: Training efficiency under label-
flipping attack when |K| = 50.

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, 40% malicious clients

(b) IID, 80% malicious clients

(c) Non-IID, 40% malicious clients

(d) Non-IID, 80% malicious clients

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Fig. 10: Training efficiency under
adaptive attack when |K| = 50.

FL w/o attack
Siren+ 40% sign-flipping
Siren+ 80% sign-flipping
Siren+ 40% label-flippingAc

cu
ra

cy
 (%

)

0

50

100

Communication Round
0 10 20 30 40 50

Siren+ 80% label-flipping
Siren+ targeted MP
Siren average

Ac
cu

ra
cy

 (%
)

0

50

100

Communication Round
0 10 20 30 40 50

(a) IID data

(b) Non-IID data

Fig. 11: Training efficiency of SIREN+ when |K| = 200.

distribution with the data on each client when using the IID
data setting, and the root test dataset shares a different data
distribution with the data on each client when using the
non-IID data setting. Our experiments test both scenarios.

5.2 Parameter Selection
Since SIREN+ has more user-customized parameters com-
pared with other prevailing Byzantine-robust aggregation
methods, we implement an ablation study of SIREN+’s
optimal main parameters for both the FL server and clients.
The exploration results are presented in Figure 4.

Figure 4(b) and Figure 4(a) show the impacts of Cs and
Cc on the global model’s accuracy, respectively. For both Cc

and Cs, a larger value represents a higher tolerance for the
various data distribution on clients, while such tolerance can
offer attackers more operable space. Besides, SIREN+ is non-
sensitive to Cs while sensitive to Cc because clients trigger
the detecting process in SIREN+.

Figure 4(c) and Figure 4(d) show the exploration results
of Cp with penalty mechanism only, and with both penalty
mechanism and award mechanism, respectively. When only
using the penalty mechanism, the accuracy fluctuates with
the increase of Cp. However, SIREN+ is more indepen-
dent from Cp when using both penalty and award mecha-
nism, representing that the award mechanism can make the
penalty mechanism more stable and complete. With both
penalty and award mechanisms, various penalty schemes
could be designed for different purposes.

Figure 4(e) shows the sensitivity of the root dataset size
in SIREN+. Compared with FLTrust, SIREN+ only uses the
server’s data for testing. Even when the size of the root test
dataset equals 10, SIREN+ is still effective. Our experiments
choose 100 as the root test dataset size, with which the global
model achieves the highest accuracy.

5.3 Defending against Untargeted Byzantine Attacks

This section evaluates SIREN+ with multi-Krum, Coomed,
and FLTrust under three types of prevailing untargeted
Byzantine attacks, i.e., sign-flipping attack, label-flipping at-
tack, and adaptive Krum attack. To demonstrate the robust-
ness of SIREN+, we set the proportion of malicious clients
to 40% (typical condition) and 80% (extreme condition)

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

11

FL Baseline
Attack

Coomed
FLTrust

Siren
multi-Krum

Siren+

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, training efficiency

(b) IID, misclassification confidence

(c) Non-IID, training efficiency

(d) Non-IID, misclassification confidence

C
on

fid
en

ce
Ac

cu
ra

cy
 (%

)
C

on
fid

en
ce

Ac
cu

ra
cy

 (%
)

Fig. 12: Training efficiency and mis-
classification confidence under tar-
geted model poisoning, |K| = 10.

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, training efficiency

(b) IID, misclassification confidence

(c) Non-IID, training efficiency

(d) Non-IID, misclassification confidence

C
on

fid
en

ce
Ac

cu
ra

cy
 (%

)
C

on
fid

en
ce

Ac
cu

ra
cy

 (%
)

Fig. 13: Training efficiency under si-
multaneously multiple attacks (10%
for each attack, 40% total) attack when
|K| = 10.

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, training efficiency

(b) IID, misclassification confidence

(c) Non-IID, training efficiency

(d) Non-IID, misclassification confidence

C
on

fid
en

ce
Ac

cu
ra

cy
 (%

)
C

on
fid

en
ce

Ac
cu

ra
cy

 (%
)

Fig. 14: Training efficiency under si-
multaneously multiple attacks (20%
for each attack, 80% total) attack when
|K| = 10.

over IID and non-IID data, respectively. To demonstrate
the scalability of SIREN+, we conduct experiments in the
10-client system, the 50-client system, and the 200-client
system.

10-client system: The training processes of SIREN+ and
other three types of Byzantine-robust aggregation meth-
ods under sign-flipping attack are illustrated in Fig. 5.
When the malicious client proportion is 40%, both multi-
Krum, FLTrust, and SIREN+ successfully defend against
the attack over IID and non-IID data, while Coomed fails,
shown in Fig. 5(a) and Fig. 5(c). SIREN+ outperforms multi-
Krum, while SIREN+ and FLTrust tie, both reaching a near-
baseline performance. When the malicious client proportion
is 80%, both multi-Krum (cannot be initialized properly)
and Coomed fail to protect the system, while SIREN+ and
FLTrust can still defend against the attack, shown in Fig. 5(b)
and Fig. 5(d). Due to the high malicious client proportion in
the system that only the updates from two benign clients can
be used during the aggregation, the global models trained
by SIREN+ and FLTrust both have noticeable accuracy
drops, which are more than 3%. However, such reductions
in the accuracy are quite small and acceptable considering
the extreme condition.

Fig. 6 shows the performance of SIREN+, multi-Krum,
Coomed, and FLTrust under label-flipping attack with both
40% and 80% malicious client proportion over IID and non-
IID data, respectively. The training process under label-
flipping attack is similar to the training process under sign-

flipping attack, while multi-Krum can not even defend
against label-flipping attack when 40% of the clients in the
system are malicious over both IID and non-IID data at this
time. Only SIREN+ and FLTrust can always offer reliable
protection, within 2% accuracy drops over IID data and 4%
accuracy drops over non-IID data.

Fig. 7 shows the performance of SIREN+, multi-Krum,
Coomed, and FLTrust under adaptive attack with both 40%
and 80% malicious client proportion over IID and non-IID
data individually. Only SIREN+ and FLTrust can protect the
system as before. Multi-Krum and Coomed both obtain very
poor model accuracy, which is less than 50%, while the
baseline accuracy is more than 90%. The accuracy decrease
of the global model trained by SIREN+ is smaller than 2%
over IID data and 3% over non-IID data, which outperforms
FLTrust in most cases.

50-client system: Fig. 8, Fig. 9, and Fig. 10 show the training
processes of SIREN+, multi-Krum, Coomed, and FLTrust un-
der sign-flipping attack, label-flipping attack, and adaptive
attack, respectively. Due to the increasing number of benign
clients in the system, the multi-Krum and Coomed methods
obtain more accurate models in the 50-client system than
in the 10-client one. However, since the same increasing
number of malicious clients in the 50-client system, the
training process trends of multi-Krum and Coomed are
similar to their trends in the 10-client system. Both multi-
Krum and Coomed experience severe accuracy fluctuations,
such as more than 20% accuracy degradation. SIREN+ and

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

12

FL Baseline
Attack

Coomed
FLTrust

Siren
multi-Krum

Siren+

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, training efficiency

(b) IID, misclassification confidence

(c) Non-IID, training efficiency

(d) Non-IID, misclassification confidence

C
on

fid
en

ce
Ac

cu
ra

cy
 (%

)
C

on
fid

en
ce

Ac
cu

ra
cy

 (%
)

Fig. 15: Training efficiency and mis-
classification confidence under tar-
geted model poisoning, |K| = 50.

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, training efficiency

(b) IID, misclassification confidence

(c) Non-IID, training efficiency

(d) Non-IID, misclassification confidence

C
on

fid
en

ce
Ac

cu
ra

cy
 (%

)
C

on
fid

en
ce

Ac
cu

ra
cy

 (%
)

Fig. 16: Training efficiency under si-
multaneously multiple attacks (10%
for each attack, 40% total) attack when
|K| = 50.

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

0

50

100

Communication Round
0 5 10 15 20 25 30 35 40

0

0.5

1.0

Communication Round
0 5 10 15 20 25 30 35 40

(a) IID, training efficiency

(b) IID, misclassification confidence

(c) Non-IID, training efficiency

(d) Non-IID, misclassification confidence

C
on

fid
en

ce
Ac

cu
ra

cy
 (%

)
C

on
fid

en
ce

Ac
cu

ra
cy

 (%
)

Fig. 17: Training efficiency under si-
multaneously multiple attacks (20%
for each attack, 80% total) attack when
|K| = 50.

Siren
Siren+ 0.8
Siren+ 0.9

(a) Threshold MIA

TP
R

0

0.5

1.0

FPR
0 0.5 1.0

Siren+ 1.0
Siren+ 1.1

(b) LR MIA

0

0.5

1.0

FPR
0 0.5 1.0

Fig. 18: ROC curve when SIREN+ under MIA with and
without LDP at the final round (the black dot line indi-
cates a random classifier).

Siren
Siren+ σ = 0.8
Siren+ σ = 0.9

Siren+ σ = 1.0
Siren+ σ = 1.1

AU
C

0.5

0.6

0.7

Communication Round
0 5 10 15 20 25 30 35 40

Fig. 19: AUC curve when SIREN+ under threshold MIA
with and without LDP.

FLTrust tie in the 50-client system setting, both of which can
still defend against all the three types of untargeted attacks
while achieving more than 85% accuracy in most cases.

200-client system: Fig. 11(a) shows the training curves of
SIREN+ and SIREN in the 200-client system under sign-
flipping attack, label-flipping attack with both 40% and

Siren
Siren+ σ = 0.8
Siren+ σ = 0.9

Siren+ σ = 1.0
Siren+ σ = 1.1AU

C

0.5

0.6

0.7

0.8

Communication Round
0 5 10 15 20 25 30 35 40

Fig. 20: AUC curve when SIREN+ under logistic regression
MIA with and without LDP.

Centralized Learning
FL w/o Attack
Sign-flipping 40%
Sign-flipping 80%
Label-flipping 40%

Label-flipping 80%
Targeted MP 40%
Targeted MP 80%
Adaptive Attack 40%
Adaptive Attack 80%

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

Communication Round
0 5 10 15 20 25 30 35 40

Fig. 21: Training efficiency of SIREN+ using LDP when
|K| = 10.

80% malicious clients over IID data. Fig. 11(b) shows the
training curves over non-IID data with the same settings.
Both SIREN+ and SIREN successfully defend against the
untargeted Byzantine attacks in both typical and extreme
conditions while achieving near-baseline performance. The

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

13

0

2

4

Client ID
1 2 3 4 5 6 7 8 9 10

0

5

10

Client ID
1 2 3 4 5 6 7 8 9 10

0

2

4

Client ID
1 2 3 4 5 6 7 8 9 10

0

5

10

15

Client ID
1 2 3 4 5 6 7 8 9 10

Benign users Malicious users

IID, 40% malicious clients Non-IID, 40% malicious clients

IID, 80% malicious clients Non-IID, 80% malicious clients

(d)(c)

(b)(a)
M

al
ic

io
us

 in
de

x
M

al
ic

io
us

 in
de

x

Fig. 22: Malicious index of each client on the server under
sign-flipping attack when |K| = 10 using SIREN.

0

1

2

3

Client ID
1 2 3 4 5 6 7 8 9 10

0

5

10

Client ID
1 2 3 4 5 6 7 8 9 10

0

2

4

Client ID
1 2 3 4 5 6 7 8 9 10

0

5

10

Client ID
1 2 3 4 5 6 7 8 9 10

IID, 40% malicious clients Non-IID, 40% malicious clients

IID, 80% malicious clients Non-IID, 80% malicious clients

(d)(c)

(b)(a)

Benign users Malicious users

M
al

ic
io

us
 in

de
x

M
al

ic
io

us
 in

de
x

Fig. 23: Malicious index of each client on the server under
label-flipping attack when |K| = 10 using SIREN.

accuracy drops of SIREN+ over IID and non-IID data are
less than 3% and 5% in most cases, respectively. The overall
performance of SIREN+ is similar to SIREN’s average per-
formance, while SIREN+ reaches higher model accuracy in
some cases. This is similar to the performance of SIREN+

in the 10-client system and 50-client system, indicating that
SIREN+ is capable of providing effective protection against
untargeted Byzantine attacks from small-scale systems to
large-scale systems.

5.4 Defending against Targeted Byzantine Attack
This section evaluates SIREN+ along with multi-Krum,
Coomed, and FLTrust under targeted model poisoning at-
tack. Compared with the previously mentioned untargeted
Byzantine attacks, defending against targeted model poison-
ing attack is a more challenging task since such attack only
twists specific predictions. Besides the training curves, we
also use the misclassification confidence [22] to illustrate the
attacking effect of a targeted Byzantine attack.

10-client system: Fig. 12 shows the training curves and
misclassification confidence of SIREN+ with other defensive
methods under the targeted model poisoning attack from
40% malicious clients. The training curves in Fig. 12(a)

0

10

20

Client ID
1 2 3 4 5 6 7 8 9 10

0

10

20

30

Client ID
1 2 3 4 5 6 7 8 9 10

0

10

20

Client ID
1 2 3 4 5 6 7 8 9 10

0

10

20

Client ID
1 2 3 4 5 6 7 8 9 10

Benign users Malicious users

IID, 40% malicious clients Non-IID, 40% malicious clients

IID, 80% malicious clients Non-IID, 80% malicious clients

(d)(c)

(b)(a)

M
al

ic
io

us
 in

de
x

M
al

ic
io

us
 in

de
x

Fig. 24: Malicious index of each client on the server under
sign-flipping attack when |K| = 10 using SIREN+ (The
green dash line represents Cp).

0

10

20

Client ID
1 2 3 4 5 6 7 8 9 10

0

10

20

30

Client ID
1 2 3 4 5 6 7 8 9 10

0

10

20

Client ID
1 2 3 4 5 6 7 8 9 10

0

10

20

Client ID
1 2 3 4 5 6 7 8 9 10

IID, 40% malicious clients Non-IID, 40% malicious clients

IID, 80% malicious clients Non-IID, 80% malicious clients

(d)
(c)

(b)(a)

Benign users Malicious users

M
al

ic
io

us
 in

de
x

M
al

ic
io

us
 in

de
x

Fig. 25: Malicious index of each client on server under
label-flipping attack when |K| = 10 using SIREN+ (The
green dash line represents Cp).

and Fig. 12(c) show that Coomed, SIREN+, and FLTrust
all perform well, but Krum fails, which is aligned to the
original paper of targeted model poisoning attack [22].
Since the targeted model poisoning attack attacks a global
model while keeping it performing normally, we continue to
analyze the misclassification confidence of the global mod-
els trained by three effective Byzantine-robust aggregation
methods. Fig. 12(b) and Fig. 12(d) show that only SIREN+

can defend against targeted model poisoning attacks since
SIREN+ successfully keeps the global model’s misclassifi-
cation confidence at a low level during the whole training
process. Such an observation is more obvious in the non-
IID setting. The results in Fig. 12 indicate that only SIREN+

can defend against both untargeted and targeted Byzantine
attacks.

50-client system: Fig. 15 illustrates the training curves and
misclassification confidence of SIREN+ along with the other
three defensive methods in the 50-client system. Compared
with the training curves in the 10-client system, the targeted
model poisoning attack is more stealthy in the 50-client
system. Fig. 12(a) and Fig. 12(c) show that all four defensive

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

14

Siren
FLTrust

Siren+

Coomed
multi-Krum
FedAvg

None
(Baseline)

Sign-flipping

Label-flipping

Targeted
model

poisoning

Rounds to Convergent
0 100 200

(a) |K| = 10, IID data.

None
(Baseline)

Sign-flipping

Label-flipping

Targeted
model

poisoning

Rounds to Convergent
0 100 200

(b) |K| = 10, Non-IID data.

None
(Baseline)

Sign-flipping

Label-flipping

Targeted
model

poisoning

Rounds to Convergent
0 100 200

(c) |K| = 50, IID data.

None
(Baseline)

Sign-flipping

Label-flipping

Targeted
model

poisoning

Rounds to Convergent
0 100 200

(d) |K| = 50, Non-IID data.
Fig. 26: Communication rounds needed for being convergent under different scenarios. If the rounds reach 200, it
means that the global model is attacked successfully or cannot achieve an accuracy of 85%.

methods’ training process trends in the 50-client system are
similar to the 10-client system. Fig. 12(b) and Fig. 12(d)
show that only SIREN+ can still defend against the targeted
Byzantine attack with a constant and low misclassification
confidence.

200-client system: Fig. 11 shows the training curves of
SIREN+ under targeted model poisoning attack over both
IID data and non-IID data in the 200-client system. SIREN+

can successfully defend against targeted model poisoning
attacks and achieve relatively high accuracy—less than 2%
lower than the baseline.

5.5 Defending against Inference Attacks

We first evaluate SIREN+ under two MIAs—threshold
MIA and logistic regression (LR) MIA—over the CIFAR-
10 dataset. Threshold MIA is an untrained MIA, while LR
MIA is a trained MIA. Fig. 18 presents the ROC curve of
the attacker models at the final communication round. The
black dot line indicates a random binary classifier, and the
red line represents the original SIREN without LDP. The
other lines record SIREN+ using LDP with different privacy
levels. With LDP, SIREN+ can substantially weaken the
discrimination of the attacker model of both two MIAs and
reduce the AUC of the attacker models from∼70% to∼50%,
which approximates the random classifier’s performance.
The effectiveness of SIREN+’s defense against MIAs persists
during the whole training process, as shown in Fig. 19 and
Fig. 20.

Secondly, we test SIREN+ under all the targeted Byzan-
tine attacks and untargeted Byzantine attacks used in the
previous sections with LDP to further ensure that the LDP
part does not contradict SIREN+’s defense against Byzantine
attacks. Since introducing local differential privacy may
cause accuracy drops on benign clients and local updates
may be more divergent, we reuse the main parameters
over non-IID data in this experiment. This experiment tests
SIREN+ over IID data since non-IID data leads to constant
fluctuations in the training process. Besides, to simulate a
more real-world scenario, we only enable LDP on benign
clients and disable it on malicious clients since attackers are
assumed to fully control the whole training process. Fig. 21
presents SIREN+’s training curves under various Byzantine
attacks in the 10-client system, where SIREN+’s accuracy
drops are less than 3% in most of the cases, indicating that
LDP does not interfere SIREN+’s defense against Byzantine
attacks.

5.6 The Auxiliary Mechanisms’ Effectiveness
Fig. 22 and 23 visualize the malicious index of each client
under sign-flipping attack and label-flipping attack with
the basic SIREN, respectively. When the malicious client
proportion equals 40%, the malicious index of a benign
client is close to the malicious index of a malicious client.
Nearly half of the benign clients are incorrectly recognized
to be malicious, indicating that only using the penalty
mechanism in the basic SIREN can cause apparent false
positives. Thus, we introduce the award mechanism and
an adaptive Cp to alleviate such side effects of the penalty
mechanism in SIREN+. Fig. 24 and Fig. 25 illustrate that the
award mechanism and an adaptive Cp can jointly magnify
the difference of the malicious index between benign and
malicious clients to reduce the false positives.

5.7 Compatibility and Generality Analysis

Compatibility: To demonstrate the compatibility of SIREN+,
we train a more complicated model—ResNet-18—on the
CIFAR-10 dataset. Table 5 shows that SIREN+ can achieve
a higher model accuracy under three types of untargeted
Byzantine attacks at different proportions of malicious
clients. Compared with the simple CNN model trained on
the Fashion-MNIST dataset, the accuracy drops are ampli-
fied due to the increasing number of malicious clients. When
the malicious client proportion is 20%, SIREN+ can defend
against all three attacks while achieving ideal model accu-
racy, with less than 4% accuracy drops. When the proportion
reaches 40%, the model accuracy of SIREN+ slightly drops
less than 5.5% accuracy loss. However, when the proportion
reaches 80%, the accuracy drops violently. We argue that it is
because larger models are more sensitive to a decrease in the
volume of benign training data, resulted from the increase
of malicious clients.

Generality: Since attackers may implement various Byzan-
tine attacks at the same time in real-world scenarios, we
also test SIREN+ under multiple attacks simultaneously
to demonstrate its generality. Fig. 13 and Fig. 14 present
the training curves of SIREN+ with other three types of
defensive methods and the misclassification confidence of
targeted model poisoning under 40% multiple Byzantine
attacks (10% for each) and 80% multiple attacks (20% for
each) in the 10-client system respectively. Only SIREN+ is
general enough to defend against all the three types of
untargeted Byzantine attacks and the targeted Byzantine
attack simultaneously, while the other defensive methods

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

15

TABLE 5: Model accuracy over CIFAR-10 using IID data
distribution with ResNet-18 when |K| = 20.

Attack Type Proportion
Malicious Client Accuracy

None 0% 80.23%

Sign-flipping
20% 76.32%
40% 74.4%
80% 63.81%

Label-flipping
20% 76.94%
40% 75.42%
80% 64.53%

Adaptive Attack
20% 78.41%
40% 75.79%
80% 61.57%

FL w/o attack
Coomed

FLTrust
multi-Krum

Siren
Siren+

Ac
cu

ra
cy

 (%
)

0

50

100

Communication Round
5 10 15 20 25 30 35 40 45 50

Fig. 27: Training efficiency under sign-flipping attack
when |K| = 10, 40% malicious clients and the defense
delay is 10 rounds.

fail. Fig. 16 and Fig. 17 illustrate that SIREN+ is also effective
in even larger-scale systems.

5.8 Computational Efficiency Analysis
Compared with FEDAVG, SIREN+ causes extra computa-
tional overheads on each client due to the local testing in
the alarming process. Since the local test dataset is quite
small compared with the local training dataset, the alarming
process does not burden clients too much.

From the space complexity perspective, SIREN+ needs
extra storage on both the FL server and clients to store
the consecutive models. However, compared to the size of
training datasets, the storage space for extra models is fairly
small.

We also compare the convergence speed of SIREN+

with the three defensive methods. Fig. 26 presents that the
extra communication rounds taken by SIREN+ are negli-
gible, compared with multi-Krum, Coomed, and FLTrust.
Compared with existing defensive methods, SIREN+ can
provide near-baseline convergent speed while maintaining
more robust training.

5.9 Recovering Compromised Training
We design an experiment to evaluate how SIREN+ can
recover FL when the server is compromised. In the first
ten rounds, we prevent the server from using any defensive
methods. After the 10th round, the server is recovered and
begins to use defensive methods. As Fig. 27 shows, only
SIREN+ can recover the training process, and finally obtain
a global model performing similarly to the model trained
under no attacks.

6 RELATED WORK

FL was originally motivated by data privacy concerns.
However, due to its distributed nature, FL is rather vul-
nerable and can be attacked by different kinds of attacks.
Many studies on FL’s attacking and defense methodologies
emerged in recent years.

Attacks: Byzantine attacks and inference attacks are two
mainstream attack categories in FL. Byzantine attacks aim
to poison the global model by sending malicious model
updates to the FL server through compromised clients.
According to the attacking scope, existing Byzantine attacks
can be divided into two categories: untargeted Byzantine
attacks and targeted Byzantine attacks. Most existing attack-
ing methodologies focus on degrading the whole perfor-
mance of the global model for testing dataset [18, 19, 25, 58],
referred to as untargeted attack. Another type of Byzantine
attack is known as targeted attack [14, 22, 23, 24, 66], seeking
to poison the global model on some specific data samples (or
labels) in a targeted manner without degrading the global
model’s performance for the rest data. Though the effect
of Byzantine attacks is always related to the number of
compromised clients [49], this genre of attack is the most
common attack in FL. While the goal of inference attacks is
to derive the data characteristics of clients. It can be divided
into mainly four categories, which are Class Representative
Inference Attack [26], Membership Inference Attack [16, 27, 52],
Property Inference Attack [16], and Input&Label Inference At-
tack [17, 28]. Among them, the most widely used inference
attack is Membership Inference Attack.
Defenses: Byzantine-robust FL methods mainly focus on
alleviating the negative effects of Byzantine attacks. Since
the median of local model weights is a robust estimator
to defend against Byzantine attacks, many studies have
adopted and improved this strategy [29, 30, 31, 32, 58, 59].
However, existing Byzantine-robust methods suffer from a
few practical issues, such as false negatives triggered by
non-IID data and vulnerabilities to a large proportion of
malicious clients. Zeno [67] and Zeno++ [68] effectively
address such weaknesses with a stochastic first-order or-
acle that grades each client’s update and only aggregates
updates with high scores, which also falls into the category
of weight analysis-based defense methodology. FLTrust [54]
calculates a trust score for each client model update based
on the cosine similarity between the server’s model updates
and clients’ updates. Then, the FL server uses the trust
score as the weight of clients’ updates when updating
the global model. Sear [36] utilizes encryption to enhance
the security of communication between the FL server and
clients. DPBFL [37] improves the privacy and robustness of
FL via shuffled aggregation. While Flip [38] and Fl-wbc [39]
attempt to alleviate the data poisoning attacks through the
client’s efforts. Unlike existing defensive methods, SIREN+

jointly exploits accuracy checking and weight analysis. Par-
ticularly, SIREN+ crafts a proactive alarming mechanism
that orchestrates all participating clients and the FL server
to effectively detect attacks.
Differential Privacy: FL with differential privacy mainly
focuses on how to add noise to gradients to protect the
data privacy of clients. Some studies use differential privacy
technique only on the client side [40, 41, 42] or the server

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

16

side [10, 46], while other recent studies mainly add such
noise on both the FL-server side and client side [43, 44].
In this paper, since LDP is enough for SIREN+ to defend
against two types of MIAs, we do not inject such noise into
the server’s aggregation.

7 DISCUSSION

Compared with existing robust aggregation rules in FL,
our SIREN+ is the first method that concentrates on the
collaboration between the FL server and clients. With this
feature, SIREN+ can easily defend against attacks from a
large portion of malicious clients, even when malicious
clients simultaneously conduct different types of attacks.
SIREN+’s robustness against such extreme scenarios is a
giant leap compared with previous FL defenses. Future
attackers may design more sophisticated attacks corrupting
fewer parameters in the model update and fewer train-
ing rounds by detecting sensitive parameters and training
rounds, and apply collaborative attack strategies. Existing
defenses, including SIREN+, may be vulnerable under such
attacks. Similarly, more fine-grained and efficient defenses
are needed to handle more stealthy attacks. The modu-
larized defense that can flexibly deal with various genres
of attacks based on different system environments is also
a promising direction for efficient and comprehensive FL
defenses.
8 CONCLUSION

This paper proposes SIREN+, a comprehensively robust
defense system for federated learning that can effectively
defend against both Byzantine attacks and inference attacks.
Instead of using model weight analysis that is incompatible
with DP algorithms, SIREN+ jointly utilizes accuracy check-
ing and LDP to defend against both Byzantine attacks and
inference attacks. SIREN+’s accuracy checking is based on
a distributed alarming mechanism that defends FL from all
types of Byzantine attacks in real-world scenarios, such as,
up to 80% malicious client proportion. Besides, SIREN+ is
resilient to both trained and untrained MIAs by carefully in-
jecting noise to local updates at client ends with LDP. Exten-
sive experiments with different Byzantine attack methods
on IID and non-IID data prove the effectiveness of SIREN+,
compared with other state-of-the-art defense methods, such
as multi-Krum, coordinate-wise median, and FLTrust. The
experiments under two types of MIAs additionally illustrate
that SIREN+ is capable of nullifying the inference attacker
model at the same time.

REFERENCES

[1] H. Guo, H. Wang, T. Song, Y. Hua, Z. Lv, X. Jin, Z. Xue, R. Ma,
and H. Guan, “Siren: Byzantine-robust Federated Learning via
Proactive Alarming,” in Proceedings of the ACM Symposium on
Cloud Computing (SoCC), 2021.

[2] P. Voigt and A. Von dem Bussche, “The eu general data protec-
tion regulation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer
International Publishing, vol. 10, no. 3152676, pp. 10–5555, 2017.

[3] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh et al.,
“Federated Learning: Strategies for Improving Communication
Efficiency,” in NeurIPS Workshop on Private Multi-Party Machine
Learning (NeurIPS Workshop), 2016.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient Learning of Deep Networks
from Decentralized Data,” in International Conference on Artificial
Intelligence and Statistics (AISTATS), 2017.

[5] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding Up Distributed Machine Learning Using Codes,”
IEEE Transactions on Information Theory, vol. 64, no. 3, pp. 1514–
1529, 2017.

[6] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed
et al., “Scaling Distributed Machine Learning with the Parameter
Server,” in USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2014.

[7] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei et al., “Petuum: A New
Platform for Distributed Machine Learning on Big Data,” IEEE
Transactions on Big Data, vol. 1, no. 2, pp. 49–67, 2015.

[8] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated Learning:
Challenges, Methods, and Future Directions,” IEEE Signal Process-
ing Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[9] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated Machine Learn-
ing: Concept and Applications,” ACM Transactions on Intelligent
Systems and Technology, vol. 10, no. 2, pp. 1–19, 2019.

[10] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning
Differentially Private Recurrent Language Models,” in Interna-
tional Conference on Learning Representations (ICLR), 2018.

[11] N. Rieke, J. Hancox, W. Li, F. Milletari, H. R. Roth, S. Albarqouni,
S. Bakas, M. N. Galtier, B. A. Landman, K. Maier-Hein et al.,
“The future of digital health with federated learning,” NPJ digital
medicine, vol. 3, no. 1, pp. 1–7, 2020.

[12] J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang, “Fed-
erated learning for healthcare informatics,” Journal of Healthcare
Informatics Research, vol. 5, no. 1, pp. 1–19, 2021.

[13] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A
survey on federated learning systems: vision, hype and reality for
data privacy and protection,” IEEE Transactions on Knowledge and
Data Engineering, 2021.

[14] L. Lyu, H. Yu, and Q. Yang, “Threats to Federated Learning: A
Survey,” arXiv preprint arXiv:2003.02133, 2020.

[15] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals
Problem,” ACM Transactions on Programming Languages and Sys-
tems, vol. 4, no. 3, pp. 382–401, 1982.

[16] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
Unintended Feature Leakage in Collaborative Learning,” in IEEE
Symposium on Security and Privacy (S&P), 2019.

[17] L. Zhu, Z. Liu, and S. Han, “Deep Leakage from Gradients,” in
Advances in Neural Information Processing Systems (NeurIPS), 2019.

[18] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “Rsa:
Byzantine-robust Stochastic Aggregation Methods for Distributed
Learning from Heterogeneous Datasets,” in AAAI Conference on
Artificial Intelligence (AAAI), 2019.

[19] M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local Model Poisoning
Attacks to Byzantine-Robust Federated Learning,” in USENIX
Security Symposium (USENIX Security), 2020.

[20] S. Li, Y. Cheng, W. Wang, Y. Liu, and T. Chen, “Learning to Detect
Malicious Clients for Robust Federated Learning,” arXiv preprint
arXiv:2002.00211, 2020.

[21] C. Xie, O. Koyejo, and I. Gupta, “Fall of Empires: Breaking
Byzantine-tolerant SGD by Inner Product Manipulation,” in Un-
certainty in Artificial Intelligence (UAI), 2020.

[22] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. B. Calo, “Analyzing
Federated Learning through an Adversarial Lens,” in International
Conference on Machine Learning (ICML), 2019.

[23] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to Backdoor Federated Learning,” in International Conference on
Artificial Intelligence and Statistics (AISTATS), 2020.

[24] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “DBA: Distributed
Backdoor Attacks against Federated Learning,” in International
Conference on Learning Representations (ICLR), 2019.

[25] V. Shejwalkar and A. Houmansadr, “Manipulating the byzantine:
Optimizing model poisoning attacks and defenses for federated
learning,” in Network and Distributed System Security (NDSS) Sym-
posium, 2021.

[26] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep Models under the
GAN: Information Leakage from Collaborative Deep Learning,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017.

[27] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive Pri-
vacy Analysis of Deep Learning: Passive and Active White-Box

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

17

Inference Attacks Against Centralized and Federated Learning,”
in IEEE Symposium on Security and Privacy (S&P), 2019.

[28] B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep leakage
from gradients,” arXiv preprint arXiv:2001.02610, 2020.

[29] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer,
“Machine Learning with Adversaries: Byzantine Tolerant Gradient
Descent,” in Advances in Neural Information Processing Systems
(NeurIPS), 2017.

[30] D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett, “Byzantine-
robust Distributed Learning: Towards Optimal Statistical Rates,”
in International Conference on Machine Learning (ICML), 2018.

[31] X. Cao, J. Jia, and N. Z. Gong, “Provably Secure Federated Learn-
ing against Malicious Clients,” in AAAI Conference on Artificial
Intelligence (AAAI), 2021.

[32] Y. Chen, L. Su, and J. Xu, “Distributed Statistical Machine Learning
in Adversarial Settings: Byzantine Gradient Descent,” in Proceed-
ings of the ACM on Measurement and Analysis of Computing Systems
(POMACS), 2017.

[33] E. M. El Mhamdi, R. Guerraoui, and S. Rouault, “The Hidden Vul-
nerability of Distributed Learning in Byzantium,” in International
Conference on Machine Learning (ICML), 2018.

[34] L. Chen, H. Wang, Z. Charles, and D. Papailiopoulos, “DRACO:
Byzantine-resilient Distributed Training via Redundant Gradi-
ents,” in International Conference on Machine Learning (ICML), 2018.

[35] D. Alistarh, Z. Allen-Zhu, and J. Li, “Byzantine Stochastic gradi-
ent descent,” in Advances in Neural Information Processing Systems
(NeurIPS), 2018.

[36] L. Zhao, J. Jiang, B. Feng, Q. Wang, C. Shen, and Q. Li, “Sear:
Secure and efficient aggregation for byzantine-robust federated
learning,” IEEE Transactions on Dependable and Secure Computing
(TDSC), vol. 19, no. 5, pp. 3329–3342, 2021.

[37] X. Ma, X. Sun, Y. Wu, Z. Liu, X. Chen, and C. Dong, “Differentially
private byzantine-robust federated learning,” IEEE Transactions on
Parallel and Distributed Systems (TPDS), vol. 33, no. 12, pp. 3690–
3701, 2022.

[38] K. Zhang, G. Tao, Q. Xu, S. Cheng, S. An, Y. Liu, S. Feng, G. Shen,
P.-Y. Chen, S. Ma et al., “Flip: A provable defense framework
for backdoor mitigation in federated learning,” arXiv preprint
arXiv:2210.12873, 2022.

[39] J. Sun, A. Li, L. DiValentin, A. Hassanzadeh, Y. Chen, and H. Li,
“Fl-wbc: Enhancing robustness against model poisoning attacks in
federated learning from a client perspective,” Advances in Neural
Information Processing Systems (NeurIPS), 2021.

[40] S. Truex, L. Liu, K.-H. Chow, M. E. Gursoy, and W. Wei, “LDP-Fed:
Federated Learning with Local Differential Privacy,” in Proceedings
of the Third ACM International Workshop on Edge Systems, Analytics
and Networking (EdgeSys), 2020.

[41] M. Seif, R. Tandon, and M. Li, “Wireless Federated Learning with
Local Differential Privacy,” in IEEE International Symposium on
Information Theory (ISIT), 2020.

[42] Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, D. Niyato,
and K.-Y. Lam, “Local Differential Privacy-Based Federated Learn-
ing for Internet of Things,” IEEE Internet of Things Journal, vol. 8,
no. 11, pp. 8836–8853, 2020.

[43] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin,
T. Q. Quek, and H. V. Poor, “Federated Learning with Differential
Privacy: Algorithms and Performance Analysis,” IEEE Transactions
on Information Forensics and Security, vol. 15, pp. 3454–3469, 2020.

[44] M. Naseri, J. Hayes, and E. De Cristofaro, “Local and Central
Differential Privacy for Robustness and Privacy in Federated
Learning,” arXiv preprint arXiv:2009.03561, 2020.

[45] H. B. McMahan, G. Andrew, U. Erlingsson, S. Chien, I. Mironov,
N. Papernot, and P. Kairouz, “A General Approach to Adding Dif-
ferential Privacy to Iterative Training Procedures,” arXiv preprint
arXiv:1812.06210, 2018.

[46] R. C. Geyer, T. Klein, and M. Nabi, “Differentially Private
Federated Learning: A Client Level Perspective,” arXiv preprint
arXiv:1712.07557, 2017.

[47] R. Hu, Y. Guo, H. Li, Q. Pei, and Y. Gong, “Personalized Federated
Learning with Differential Privacy,” IEEE Internet of Things Journal,
vol. 7, no. 10, pp. 9530–9539, 2020.

[48] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin et al., “Federated Learning
with Non-IID Data,” arXiv preprint arXiv:1806.00582, 2018.

[49] V. Shejwalkar, A. Houmansadr, P. Kairouz, and D. Ramage, “Back
to the drawing board: A critical evaluation of poisoning attacks on
production federated learning,” in IEEE symposium on security and
privacy (S&P). IEEE, 2022.

[50] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A Novel Image
Dataset for Benchmarking Machine Learning Algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

[51] A. Krizhevsky and G. Hinton, “Learning Multiple Layers of Fea-
tures from Tiny Images,” Tech Report, 2009.

[52] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
Inference Attacks Against Machine Learning Models,” in IEEE
symposium on security and privacy (S&P), 2017.

[53] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and
M. Backes, “ML-Leaks: Model and Data Independent Membership
Inference Attacks and Defenses on Machine Learning Models,”
arXiv preprint arXiv:1806.01246, 2018.

[54] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “FLTrust: Byzantine-
robust Federated Learning via Trust Bootstrapping,” arXiv preprint
arXiv:2012.13995, 2020.

[55] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor,
“Our Data, Ourselves: Privacy via Distributed Noise Generation,”
in Annual International Conference on the Theory and Applications of
Cryptographic Techniques (Eurocrypt), 2006.

[56] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Model
Poisoning Attacks in Federated Learning,” in NeurIPS Workshop
on Security in Machine Learning (SecML), 2018.

[57] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data Poison-
ing Attacks Against Federated Learning Systems,” arXiv preprint
arXiv:2007.08432, 2020.

[58] C. Xie, O. Koyejo, and I. Gupta, “Generalized Byzantine-tolerant
SGD,” arXiv preprint arXiv:1802.10116, 2018.

[59] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Defending Against
Saddle Point Attack in Byzantine-robust Distributed Learning,” in
International Conference on Machine Learning (ICML), 2019.

[60] W. Diffie and M. Hellman, “New directions in cryptography,”
IEEE transactions on Information Theory, vol. 22, no. 6, pp. 644–654,
1976.

[61] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis et al., “Tensor-
Flow: A System for Large-Scale Machine Learning,” in USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2016.

[62] G. et al, “TensorFlow Privacy,” https://github.com/tensorflow/privacy,
2018.

[63] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep Learning with Differential Pri-
vacy,” in Proceedings of the 2016 ACM SIGSAC conference on com-
puter and communications security (CCS), 2016.

[64] G. Andrew, O. Thakkar, B. McMahan, and S. Ramaswamy, “Dif-
ferentially Private Learning with Adaptive Clipping,” Advances in
Neural Information Processing Systems (NeurIPS), 2021.

[65] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[66] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan,
“Can You Really Backdoor Federated Learning?” arXiv preprint
arXiv:1911.07963, 2019.

[67] C. Xie, S. Koyejo, and I. Gupta, “Zeno: Distributed Stochastic
Gradient Descent with Suspicion-based Fault-tolerance,” in Inter-
national Conference on Machine Learning (ICML), 2019.

[68] ——, “Zeno++: Robust Fully Asynchronous SGD,” in International
Conference on Machine Learning (ICML), 2020.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

18

Hanxi Guo is currently a Master’s student
of Computer Science in the School of Elec-
tronic information and Electrical Engineering at
Shanghai Jiao Tong University, Shanghai, China,
where he also received his Bachelor’s degree
in 2020. His research interests center around
the security and application of federated learning
and distributed computing.

Hao Wang is currently an assistant professor in
the CSE Division at Louisiana State University,
Baton Rouge, specializing in distributed comput-
ing and machine learning systems. He received
his Ph.D. degree from the University of Toronto
and his Bachelor’s and Master’s degrees from
Shanghai Jiao Tong University. He is a recipient
of the NSF CRII Award.

Tao Song (Member, IEEE) is currently an as-
sistant professor in the Department of Computer
Science and Engineering at Shanghai Jiao Tong
University. He received his Ph.D. degree in com-
puter science and M.Eng. degree in software
engineering from Shanghai Jiao Tong University.
His research interests include distributed ma-
chine learning, cloud/distributed computing and
system security.

Yang Hua is presently a lecturer at Queens
University Belfast, United Kingdom. He re-
ceived his Ph.D. degree from Université Greno-
ble Alpes/Inria Grenoble RhoneAlpes, France,
funded by Microsoft Research ‘s Inria Joint Cen-
ter. He has won four titles of prestigious interna-
tional competitions in the field of computer vision
and machine learning.

Ruhui Ma is currently an associate professor
in the Department of Computer Science and
Engineering at Shanghai Jiao Tong University.
He received his Ph.D. degree in computer sci-
ence from Shanghai Jiao Tong University. His
research interests include cloud computing sys-
tems, AI systems, and machine learning.

Xiulang Jin is currently a researcher in Huawei
2012 laboratory. He received the B.S. degree
in mathematics and applied mathematics, and
the M.E degree in instruments science and tech-
nology from the Harbin Institute of Technology
in 2017 and 2019, respectively. His current re-
search interests include federated learning, AI
model robustness and model encryption protec-
tion.

Zhengui Xue is currently a postdoctoral re-
searcher at Queens University Belfast, United
Kingdom. She received her Ph.D. degree from
the NUS Graduate School for Integrative Sci-
ences and Engineering, National University of
Singapore in 2013. She held a postdoctoral po-
sition at the Ecole Nationale des Travaux Publics
de l’Etat from 2014 to 2015. Her research in-
terests include adaptive systems, knowledge-
based intelligent control, optimal control and ma-
chine learning.

Haibing Guan (Member, IEEE) is currently a
professor in the Department of Computer Sci-
ence and Engineering at Shanghai Jiao Tong
University, and the director of the Shanghai Key
Laboratory of Scalable Computing and Systems.
He received his Ph.D. degree from Tongji Univer-
sity in 1999. His research interests include com-
puter architecture, cloud/distributed computing,
system security and distributed machine learn-
ing.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3362534

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on June 27,2024 at 14:20:11 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Background
	Federated Learning
	Attack Taxonomy
	Common Defenses
	Differential Privacy

	Problem Statement
	Threat Model
	Defense Setting

	Methodology
	Overview of Siren+
	Siren+ Client's Workflow
	Local Differential Privacy on Siren+ Clients
	Siren+ FL Server's Workflow
	Decision Process and Security Analysis
	Weight Analysis
	Penalty and Award Mechanisms

	Evaluation
	Experimental Setup
	Parameter Selection
	Defending against Untargeted Byzantine Attacks
	Defending against Targeted Byzantine Attack
	Defending against Inference Attacks
	The Auxiliary Mechanisms' Effectiveness
	Compatibility and Generality Analysis
	Computational Efficiency Analysis
	Recovering Compromised Training

	Related Work
	Discussion
	Conclusion
	References
	Biographies
	Hanxi Guo
	Hao Wang
	Tao Song
	Yang Hua
	Ruhui Ma
	Xiulang Jin
	Zhengui Xue
	Haibing Guan

