
 RainbowCake:
Mitigating Cold-starts in Serverless with
Layer-wise Container Caching and Sharing

Hanfei Yu1, Rohan Basu Roy2, Christian Fontenot1, Devesh Tiwari2, Jian Li3,
Hong Zhang4, Hao Wang1, Seung-Jong Park5

Louisiana State University1, Northeastern University2, Stony Brook University3, University of Waterloo4,

Missouri University of Science and Technology5

IntelliSys Lab

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

2

ServerlessCloud
A

B

From A Serverless Vision for Cloud Computing
by Prof. Ana Klimovic

A

B

Car rental Cruise (Self-driving Taxi)

IaaS Cloud vs. Serverless

3

IaaS

Request A

Execute

Request B

ExecuteIdle Idle

Request C

Execute Idle

Time
Serverless

Function A
Invocation

Execute

Function B
Invocation

ExecuteRelease Release

Function C
Invocation

Execute Release

Time

VM

Function

Cold-start in Serverless

4

Function A
Invocation

Execute

Time

Cold Start
Keep Alive

Function A
Invocation

Execute

Warm Start

Function A
Invocation

Execute

Function B
Invocation

Time

Cold Start
Keep Alive

Cold Start

Execute

Keep Alive

Keep Alive

Warm Start

Cold Start Up to hundreds of milliseconds!
Same order-of-magnitude with execution!

Why is Cold-start Hard to Handle

5

Highly volatile

50% functions

have varying

invocation patterns

Hard-to-predict

80% functions

frequently experience

 cold startups

Bursty workloads

Workload arrives

45% once per hour

81% once per minute

Shahrad, Mohammad, et al. “Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a
Large Cloud Provider.” ATC’20

Design Space

6

Cold-start Mitigation

New Container Techniques
(Firecracker [1], gVisor [27])

Container
Caching

Checkpoint
(Catalyzer [21],

Prebaking [55])

Full Caching
(FaaSCache [25],

IceBreaker [48])

Partial Caching
(SEUSS [13],

FlashCube [39])

Memory
Optimization
(Medes [49])

Container
Sharing

(SOCK [43],

Pagurus [37])

Detailed references in our paper:

Yu, Hanfei, et al. “RainbowCake: Mitigating Cold-starts in Serverless with Layer-wise Container Caching and Sharing.” ASPLOS’24

Existing Works

7

Function A
Invocation Execute

Time

Cold Start
Keep Alive

Execute

Cold Start

Container Caching

Container Sharing

Bare layer Lang layer User layer (Function A)
User layer (Function B) User layer (Function C)

Function B
Invocation

Keep Alive

Cold Start

Function C
Invocation

Keep Alive

Execute

Function A
Invocation Execute

Time

Cold Start
Keep Alive

Execute
Function B
Invocation

Keep Alive
Cold Start

Function C
Invocation

Keep Alive

Execute

Warm
Start

Limitations of Existing Works

8

(Partial) container caching

- Pro: low memory waste

- Con: insufficient startup
latency reduction

Container sharing

- Pro: less cold-starts

- Con: high memory waste

Histogram
Pagurus

SEUSS
RainbowCake

M
em

. w
as

te
 (G

B)

0K

5K

10K

E2
E

la
te

nc
y

(s
)

10K

100K

Timeline (min)
0 100 200 300 400

Can we achieve less cold-starts and
low memory waste at the same time?

Cold-start Mitigation

New Container Techniques
(Firecracker [1], gVisor [27])

Container
Caching

Checkpoint
(Catalyzer [21],

Prebaking [55])

Full Caching
(FaaSCache [25],

IceBreaker [48])

Partial Caching
(SEUSS [13],

FlashCube [39])

Memory
Optimization
(Medes [49])

Container
Sharing

(SOCK [43],

Pagurus [37])

RainbowCake

9

RainbowCake

Design Goals

10

Lightweight and high
scalability

Tolerance to burstiness
and mispredictions

Sharing-aware layer pre-warming
and keep-alive

Generic layer design for
compatibility

Mitigate cold-starts with
minimal resource waste

Fine-grained
layer-wise breakdown

11

Function startup goes through three layers:

Layered Container Structure

Infrastructure

Language
runtime

User code/libInitializing

Bare container

Lang container

User container

Memory Latency Compatibility

High

Medium

Low

Low

Medium Medium

Low

High High

- Bare layer: infrastructure, environment, and utility preparation

- Lang layer: language runtime creation

- User layer: load user code and any necessary libraries

Characterization of Three Layers

12

Setup env.
Init. lang.
Load lib/code
Execution

Fu
nc

tio
n

DT-Java
DL-Java
DQ-Java
DS-Java
DG-Java

MD-Py
FC-Py
VP-Py
IR-Py

SA-Py
GP-Py
GM-Py
GB-Py
DV-Py
OI-Js
TN-Js
UL-Js
DH-Js
IS-Js

AC-Js

(a) Latency (ms)
0 10,000

Fu
nc

tio
n

DT-Java
DL-Java
DQ-Java
DS-Java
DG-Java

MD-Py
FC-Py
VP-Py
IR-Py

SA-Py
GP-Py
GM-Py
GB-Py
DV-Py
OI-Js
TN-Js
UL-Js
DH-Js
IS-Js

AC-Js

(b) Memory footprint (MB)
0 200 400

We evaluate 20
realistic functions from
three serverless
benchmark suites

Copik, Marcin, et al. “SeBS: A Serverless Benchmark Suite for Function-as-a-Service Computing.” Middleware’21

Cordingly, Robert, et al. "Implications of Programming Language Selection for Serverless Data Processing Pipelines.” CBDCom’20

Shahrad, Mohammad, et al. "Architectural Implications of Function-as-a-Service Computing." MICRO’19

Layered structures
can be observed for all
functions

Partial
Warm
Start

RainbowCake Workflow

13

RainbowCake
Bare layer Lang layer (Python)
User layer (Function A) User layer (Function B) User layer (Function C)

Function A
Invocation Execute

Time

Cold Start
Keep Alive

Execute
Function B
Invocation

Keep Alive

Function C
Invocation

Keep Alive

Execute

Partial
Keep Alive Partial

Warm
Start

Lang layer (Node.js)

Time

Keep Alive Partial
Keep Alive

Partial
Keep Alive

History
Recorder Determine

keep-alive time

Load User Layer: Function B

Load Lang Layer: Node.js + User Layer: Function C

RainbowCake Pre-warming

14

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA H. Yu, R. Basu Roy, C. Fontenot, D. Tiwari, J. Li, H. Zhang, H. Wang, and S. Park

2) wasted resource of a container refers to the resources oc-
cupied during the idle phase without serving invocations.
We consider each metric as a cost that the platform takes to
serve a workload.

Let⇠ (:)
BC0ACD? and⇠ (:)

<4<>A~ denote the total startup cost and
total resource waste cost for handling all invocations of a
function at type : 2 {b, l, u}, respectively. Across all three
types of layers, the total startup cost⇠BC0ACD? and total mem-
ory waste cost ⇠<4<>A~ are summed by

⇠BC0ACD? :=
’

:2{b,l,u}
⇠ (:)
BC0ACD? , ⇠<4<>A~ :=

’
:2{b,l,u}

⇠ (:)
<4<>A~ .

Thus, the uni�ed cost ⇠ consisting of the startup cost and
the resource waste cost is given by

⇠ := U ⇥⇠BC0ACD? + (1 � U) ⇥⇠<4<>A~, (1)
where parameter U 2 (0, 1) serves as a tunable knob that the
platform can trade o� between two types of costs.

4.3 Objective and Complexity
To serve future function invocations, the platform keeps a
certain number of containers by pre-warming and keep-alive
for each type : 2 {b, l, u}. In real-time, we make two kinds
of decisions for each type : 2 {b, l, u}: pre-warming and
keeping containers alive. The objective is to minimize the
uni�ed cost in Eq. 1 over the total time span of a workload,
where �nding the optimal set of decisions can be naturally
formulated as an Integer Linear Programming (ILP) problem
with NP-completeness. However, searching for the optimum
in large-scale serverless platforms with sub-second latency
requirements and online invocation arrivals is extremely
challenging. Therefore, we opt for an e�cient event-driven
design of RainbowCake to enable �ne-grained layer-wise
pre-warming and keep-alive decisions.

5 RainbowCake Design
5.1 Sharing-aware Invocation Modeling
We leverage invocation history to model the sharing-aware
arrival distributions of hits on each container type.
Function-speci�c modeling. To capture the latest invo-
cation patterns, we �rst �t the invocation distribution of
function 5 using a sliding window on the latest = invoca-
tions (e.g., six invocations). We record the arrival timestamp
9 0 of the stalest invocation in the window to calculate the
rate parameter of the distribution _5 = =

9�9 0 , where 9 is the
current timestamp. For each function, we model a Poisson
distribution with random variable -5 ⇠ %>8BB>=(_5). Pois-
son distribution is commonly applied to describe request
arrival patterns [22, 26, 34, 56].
Sharing-aware estimation. We employ compound Pois-
son distribution for the sharing-aware invocation modeling.
Given the invocation history of a set of functions � , each
function 5 2 � is modeled by a function-speci�c Poisson
distribution with a random variable -5 ⇠ %>8BB>=(_5). Let

Algorithm 1: RainbowCake’s Pre-warming
1 async def SchedulePrewarm(function_id, IAT):
2 Sleep(IAT) /* Wait until next request */

3 if Available(function_id) is False then
/* Pre-warm if no warm ones */

4 PrewarmContainer(function_id, type=User)
5 else

/* Skip if warm containers exist */

6 pass
7 return
8 while function invocation arrives do
9 function_id function.get_id()

10 next_IAT Poisson(function_id, type=User)
/* Asynchronous execution */

11 SchedulePrewarm(function_id, next_IAT)

� (:) denote the set of functions equipping with :-type layer
within � , where : 2 {b, l, u}. For each container type : , we
compound the corresponding function-speci�c distributions
to be a Poisson distribution . (:) :

. (:) ⇠ %>8BB>=(_ (:)) =
’

5 2� (:)

-5 , (2)

where _ (:) =
Õ

5 2� (:) _5 . The compounded summand in Eq. 2
can be transformed to an equivalent exponential distribution
with the following cumulative distribution function (CDF):

⇠⇡� (G ; _ (:)) =
(
1 � 4_ (:)G G � 0,
0 G < 0,

(3)

Using the CDF in Eq. 3, we can estimate the probability
of a given inter-arrival time (IAT) of the distribution, where
IAT is de�ned as the time interval between two consecutive
invocation arrivals. Inversely, given a quantile ? , the IAT of
type : can be derived from the quantile function of ⇢G? (_ (:)):

��) (:, ?) = ⇠⇡��1 (?; _ (:)) = �;=(1 � ?)
_ (:) , 0  ? < 1. (4)

Thus, by specifying ? , we can estimate an invocation ar-
riving in at most ��) (:, ?) time. Intuitively, the quantile ?
represents the con�dence of predicting future invocations—
the higher ? , the longer RainbowCake tends to keep partial
containers alive. RainbowCake further uses the estimated
IATs to determine pre-warming and keep-alive Time-to-Live
(TTL) decisions.

5.2 Layer-wise Pre-warming and Keep-alive
RainbowCake enforces TTL-based pre-warming and keep-
alive strategies when provisioning �ne-grained containers
layer-wise. However, pre-warming and keep-alive decisions

Asynchronous pre-warming
event scheduling

RainbowCake Pre-warming

15

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA H. Yu, R. Basu Roy, C. Fontenot, D. Tiwari, J. Li, H. Zhang, H. Wang, and S. Park

2) wasted resource of a container refers to the resources oc-
cupied during the idle phase without serving invocations.
We consider each metric as a cost that the platform takes to
serve a workload.

Let⇠ (:)
BC0ACD? and⇠ (:)

<4<>A~ denote the total startup cost and
total resource waste cost for handling all invocations of a
function at type : 2 {b, l, u}, respectively. Across all three
types of layers, the total startup cost⇠BC0ACD? and total mem-
ory waste cost ⇠<4<>A~ are summed by

⇠BC0ACD? :=
’

:2{b,l,u}
⇠ (:)
BC0ACD? , ⇠<4<>A~ :=

’
:2{b,l,u}

⇠ (:)
<4<>A~ .

Thus, the uni�ed cost ⇠ consisting of the startup cost and
the resource waste cost is given by

⇠ := U ⇥⇠BC0ACD? + (1 � U) ⇥⇠<4<>A~, (1)
where parameter U 2 (0, 1) serves as a tunable knob that the
platform can trade o� between two types of costs.

4.3 Objective and Complexity
To serve future function invocations, the platform keeps a
certain number of containers by pre-warming and keep-alive
for each type : 2 {b, l, u}. In real-time, we make two kinds
of decisions for each type : 2 {b, l, u}: pre-warming and
keeping containers alive. The objective is to minimize the
uni�ed cost in Eq. 1 over the total time span of a workload,
where �nding the optimal set of decisions can be naturally
formulated as an Integer Linear Programming (ILP) problem
with NP-completeness. However, searching for the optimum
in large-scale serverless platforms with sub-second latency
requirements and online invocation arrivals is extremely
challenging. Therefore, we opt for an e�cient event-driven
design of RainbowCake to enable �ne-grained layer-wise
pre-warming and keep-alive decisions.

5 RainbowCake Design
5.1 Sharing-aware Invocation Modeling
We leverage invocation history to model the sharing-aware
arrival distributions of hits on each container type.
Function-speci�c modeling. To capture the latest invo-
cation patterns, we �rst �t the invocation distribution of
function 5 using a sliding window on the latest = invoca-
tions (e.g., six invocations). We record the arrival timestamp
9 0 of the stalest invocation in the window to calculate the
rate parameter of the distribution _5 = =

9�9 0 , where 9 is the
current timestamp. For each function, we model a Poisson
distribution with random variable -5 ⇠ %>8BB>=(_5). Pois-
son distribution is commonly applied to describe request
arrival patterns [22, 26, 34, 56].
Sharing-aware estimation. We employ compound Pois-
son distribution for the sharing-aware invocation modeling.
Given the invocation history of a set of functions � , each
function 5 2 � is modeled by a function-speci�c Poisson
distribution with a random variable -5 ⇠ %>8BB>=(_5). Let

Algorithm 1: RainbowCake’s Pre-warming
1 async def SchedulePrewarm(function_id, IAT):
2 Sleep(IAT) /* Wait until next request */

3 if Available(function_id) is False then
/* Pre-warm if no warm ones */

4 PrewarmContainer(function_id, type=User)
5 else

/* Skip if warm containers exist */

6 pass
7 return
8 while function invocation arrives do
9 function_id function.get_id()

10 next_IAT Poisson(function_id, type=User)
/* Asynchronous execution */

11 SchedulePrewarm(function_id, next_IAT)

� (:) denote the set of functions equipping with :-type layer
within � , where : 2 {b, l, u}. For each container type : , we
compound the corresponding function-speci�c distributions
to be a Poisson distribution . (:) :

. (:) ⇠ %>8BB>=(_ (:)) =
’

5 2� (:)

-5 , (2)

where _ (:) =
Õ

5 2� (:) _5 . The compounded summand in Eq. 2
can be transformed to an equivalent exponential distribution
with the following cumulative distribution function (CDF):

⇠⇡� (G ; _ (:)) =
(
1 � 4_ (:)G G � 0,
0 G < 0,

(3)

Using the CDF in Eq. 3, we can estimate the probability
of a given inter-arrival time (IAT) of the distribution, where
IAT is de�ned as the time interval between two consecutive
invocation arrivals. Inversely, given a quantile ? , the IAT of
type : can be derived from the quantile function of ⇢G? (_ (:)):

��) (:, ?) = ⇠⇡��1 (?; _ (:)) = �;=(1 � ?)
_ (:) , 0  ? < 1. (4)

Thus, by specifying ? , we can estimate an invocation ar-
riving in at most ��) (:, ?) time. Intuitively, the quantile ?
represents the con�dence of predicting future invocations—
the higher ? , the longer RainbowCake tends to keep partial
containers alive. RainbowCake further uses the estimated
IATs to determine pre-warming and keep-alive Time-to-Live
(TTL) decisions.

5.2 Layer-wise Pre-warming and Keep-alive
RainbowCake enforces TTL-based pre-warming and keep-
alive strategies when provisioning �ne-grained containers
layer-wise. However, pre-warming and keep-alive decisions

Asynchronous pre-warming
event scheduling

Pre-warm a User container if no
warm ones

RainbowCake Pre-warming

16

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA H. Yu, R. Basu Roy, C. Fontenot, D. Tiwari, J. Li, H. Zhang, H. Wang, and S. Park

2) wasted resource of a container refers to the resources oc-
cupied during the idle phase without serving invocations.
We consider each metric as a cost that the platform takes to
serve a workload.

Let⇠ (:)
BC0ACD? and⇠ (:)

<4<>A~ denote the total startup cost and
total resource waste cost for handling all invocations of a
function at type : 2 {b, l, u}, respectively. Across all three
types of layers, the total startup cost⇠BC0ACD? and total mem-
ory waste cost ⇠<4<>A~ are summed by

⇠BC0ACD? :=
’

:2{b,l,u}
⇠ (:)
BC0ACD? , ⇠<4<>A~ :=

’
:2{b,l,u}

⇠ (:)
<4<>A~ .

Thus, the uni�ed cost ⇠ consisting of the startup cost and
the resource waste cost is given by

⇠ := U ⇥⇠BC0ACD? + (1 � U) ⇥⇠<4<>A~, (1)
where parameter U 2 (0, 1) serves as a tunable knob that the
platform can trade o� between two types of costs.

4.3 Objective and Complexity
To serve future function invocations, the platform keeps a
certain number of containers by pre-warming and keep-alive
for each type : 2 {b, l, u}. In real-time, we make two kinds
of decisions for each type : 2 {b, l, u}: pre-warming and
keeping containers alive. The objective is to minimize the
uni�ed cost in Eq. 1 over the total time span of a workload,
where �nding the optimal set of decisions can be naturally
formulated as an Integer Linear Programming (ILP) problem
with NP-completeness. However, searching for the optimum
in large-scale serverless platforms with sub-second latency
requirements and online invocation arrivals is extremely
challenging. Therefore, we opt for an e�cient event-driven
design of RainbowCake to enable �ne-grained layer-wise
pre-warming and keep-alive decisions.

5 RainbowCake Design
5.1 Sharing-aware Invocation Modeling
We leverage invocation history to model the sharing-aware
arrival distributions of hits on each container type.
Function-speci�c modeling. To capture the latest invo-
cation patterns, we �rst �t the invocation distribution of
function 5 using a sliding window on the latest = invoca-
tions (e.g., six invocations). We record the arrival timestamp
9 0 of the stalest invocation in the window to calculate the
rate parameter of the distribution _5 = =

9�9 0 , where 9 is the
current timestamp. For each function, we model a Poisson
distribution with random variable -5 ⇠ %>8BB>=(_5). Pois-
son distribution is commonly applied to describe request
arrival patterns [22, 26, 34, 56].
Sharing-aware estimation. We employ compound Pois-
son distribution for the sharing-aware invocation modeling.
Given the invocation history of a set of functions � , each
function 5 2 � is modeled by a function-speci�c Poisson
distribution with a random variable -5 ⇠ %>8BB>=(_5). Let

Algorithm 1: RainbowCake’s Pre-warming
1 async def SchedulePrewarm(function_id, IAT):
2 Sleep(IAT) /* Wait until next request */

3 if Available(function_id) is False then
/* Pre-warm if no warm ones */

4 PrewarmContainer(function_id, type=User)
5 else

/* Skip if warm containers exist */

6 pass
7 return
8 while function invocation arrives do
9 function_id function.get_id()

10 next_IAT Poisson(function_id, type=User)
/* Asynchronous execution */

11 SchedulePrewarm(function_id, next_IAT)

� (:) denote the set of functions equipping with :-type layer
within � , where : 2 {b, l, u}. For each container type : , we
compound the corresponding function-speci�c distributions
to be a Poisson distribution . (:) :

. (:) ⇠ %>8BB>=(_ (:)) =
’

5 2� (:)

-5 , (2)

where _ (:) =
Õ

5 2� (:) _5 . The compounded summand in Eq. 2
can be transformed to an equivalent exponential distribution
with the following cumulative distribution function (CDF):

⇠⇡� (G ; _ (:)) =
(
1 � 4_ (:)G G � 0,
0 G < 0,

(3)

Using the CDF in Eq. 3, we can estimate the probability
of a given inter-arrival time (IAT) of the distribution, where
IAT is de�ned as the time interval between two consecutive
invocation arrivals. Inversely, given a quantile ? , the IAT of
type : can be derived from the quantile function of ⇢G? (_ (:)):

��) (:, ?) = ⇠⇡��1 (?; _ (:)) = �;=(1 � ?)
_ (:) , 0  ? < 1. (4)

Thus, by specifying ? , we can estimate an invocation ar-
riving in at most ��) (:, ?) time. Intuitively, the quantile ?
represents the con�dence of predicting future invocations—
the higher ? , the longer RainbowCake tends to keep partial
containers alive. RainbowCake further uses the estimated
IATs to determine pre-warming and keep-alive Time-to-Live
(TTL) decisions.

5.2 Layer-wise Pre-warming and Keep-alive
RainbowCake enforces TTL-based pre-warming and keep-
alive strategies when provisioning �ne-grained containers
layer-wise. However, pre-warming and keep-alive decisions

Asynchronously schedules pre-
warming events

Pre-warm a User container if no
warm ones

Otherwise, skip this pre-warming
event

RainbowCake Pre-warming

17

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA H. Yu, R. Basu Roy, C. Fontenot, D. Tiwari, J. Li, H. Zhang, H. Wang, and S. Park

2) wasted resource of a container refers to the resources oc-
cupied during the idle phase without serving invocations.
We consider each metric as a cost that the platform takes to
serve a workload.

Let⇠ (:)
BC0ACD? and⇠ (:)

<4<>A~ denote the total startup cost and
total resource waste cost for handling all invocations of a
function at type : 2 {b, l, u}, respectively. Across all three
types of layers, the total startup cost⇠BC0ACD? and total mem-
ory waste cost ⇠<4<>A~ are summed by

⇠BC0ACD? :=
’

:2{b,l,u}
⇠ (:)
BC0ACD? , ⇠<4<>A~ :=

’
:2{b,l,u}

⇠ (:)
<4<>A~ .

Thus, the uni�ed cost ⇠ consisting of the startup cost and
the resource waste cost is given by

⇠ := U ⇥⇠BC0ACD? + (1 � U) ⇥⇠<4<>A~, (1)
where parameter U 2 (0, 1) serves as a tunable knob that the
platform can trade o� between two types of costs.

4.3 Objective and Complexity
To serve future function invocations, the platform keeps a
certain number of containers by pre-warming and keep-alive
for each type : 2 {b, l, u}. In real-time, we make two kinds
of decisions for each type : 2 {b, l, u}: pre-warming and
keeping containers alive. The objective is to minimize the
uni�ed cost in Eq. 1 over the total time span of a workload,
where �nding the optimal set of decisions can be naturally
formulated as an Integer Linear Programming (ILP) problem
with NP-completeness. However, searching for the optimum
in large-scale serverless platforms with sub-second latency
requirements and online invocation arrivals is extremely
challenging. Therefore, we opt for an e�cient event-driven
design of RainbowCake to enable �ne-grained layer-wise
pre-warming and keep-alive decisions.

5 RainbowCake Design
5.1 Sharing-aware Invocation Modeling
We leverage invocation history to model the sharing-aware
arrival distributions of hits on each container type.
Function-speci�c modeling. To capture the latest invo-
cation patterns, we �rst �t the invocation distribution of
function 5 using a sliding window on the latest = invoca-
tions (e.g., six invocations). We record the arrival timestamp
9 0 of the stalest invocation in the window to calculate the
rate parameter of the distribution _5 = =

9�9 0 , where 9 is the
current timestamp. For each function, we model a Poisson
distribution with random variable -5 ⇠ %>8BB>=(_5). Pois-
son distribution is commonly applied to describe request
arrival patterns [22, 26, 34, 56].
Sharing-aware estimation. We employ compound Pois-
son distribution for the sharing-aware invocation modeling.
Given the invocation history of a set of functions � , each
function 5 2 � is modeled by a function-speci�c Poisson
distribution with a random variable -5 ⇠ %>8BB>=(_5). Let

Algorithm 1: RainbowCake’s Pre-warming
1 async def SchedulePrewarm(function_id, IAT):
2 Sleep(IAT) /* Wait until next request */

3 if Available(function_id) is False then
/* Pre-warm if no warm ones */

4 PrewarmContainer(function_id, type=User)
5 else

/* Skip if warm containers exist */

6 pass
7 return
8 while function invocation arrives do
9 function_id function.get_id()

10 next_IAT Poisson(function_id, type=User)
/* Asynchronous execution */

11 SchedulePrewarm(function_id, next_IAT)

� (:) denote the set of functions equipping with :-type layer
within � , where : 2 {b, l, u}. For each container type : , we
compound the corresponding function-speci�c distributions
to be a Poisson distribution . (:) :

. (:) ⇠ %>8BB>=(_ (:)) =
’

5 2� (:)

-5 , (2)

where _ (:) =
Õ

5 2� (:) _5 . The compounded summand in Eq. 2
can be transformed to an equivalent exponential distribution
with the following cumulative distribution function (CDF):

⇠⇡� (G ; _ (:)) =
(
1 � 4_ (:)G G � 0,
0 G < 0,

(3)

Using the CDF in Eq. 3, we can estimate the probability
of a given inter-arrival time (IAT) of the distribution, where
IAT is de�ned as the time interval between two consecutive
invocation arrivals. Inversely, given a quantile ? , the IAT of
type : can be derived from the quantile function of ⇢G? (_ (:)):

��) (:, ?) = ⇠⇡��1 (?; _ (:)) = �;=(1 � ?)
_ (:) , 0  ? < 1. (4)

Thus, by specifying ? , we can estimate an invocation ar-
riving in at most ��) (:, ?) time. Intuitively, the quantile ?
represents the con�dence of predicting future invocations—
the higher ? , the longer RainbowCake tends to keep partial
containers alive. RainbowCake further uses the estimated
IATs to determine pre-warming and keep-alive Time-to-Live
(TTL) decisions.

5.2 Layer-wise Pre-warming and Keep-alive
RainbowCake enforces TTL-based pre-warming and keep-
alive strategies when provisioning �ne-grained containers
layer-wise. However, pre-warming and keep-alive decisions

Asynchronous pre-warming
event scheduling

Pre-warm a User container if no
warm ones

Otherwise, skip this pre-warming
event

Whenever an invocation arrives

RainbowCake Pre-warming

18

Asynchronous pre-warming
event scheduling

Pre-warm a User container if no
warm ones

Otherwise, skip this pre-warming
event

Fit Poisson distribution to predict
next Inter-arrival time (IAT)

Whenever an invocation arrives

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA H. Yu, R. Basu Roy, C. Fontenot, D. Tiwari, J. Li, H. Zhang, H. Wang, and S. Park

2) wasted resource of a container refers to the resources oc-
cupied during the idle phase without serving invocations.
We consider each metric as a cost that the platform takes to
serve a workload.

Let⇠ (:)
BC0ACD? and⇠ (:)

<4<>A~ denote the total startup cost and
total resource waste cost for handling all invocations of a
function at type : 2 {b, l, u}, respectively. Across all three
types of layers, the total startup cost⇠BC0ACD? and total mem-
ory waste cost ⇠<4<>A~ are summed by

⇠BC0ACD? :=
’

:2{b,l,u}
⇠ (:)
BC0ACD? , ⇠<4<>A~ :=

’
:2{b,l,u}

⇠ (:)
<4<>A~ .

Thus, the uni�ed cost ⇠ consisting of the startup cost and
the resource waste cost is given by

⇠ := U ⇥⇠BC0ACD? + (1 � U) ⇥⇠<4<>A~, (1)
where parameter U 2 (0, 1) serves as a tunable knob that the
platform can trade o� between two types of costs.

4.3 Objective and Complexity
To serve future function invocations, the platform keeps a
certain number of containers by pre-warming and keep-alive
for each type : 2 {b, l, u}. In real-time, we make two kinds
of decisions for each type : 2 {b, l, u}: pre-warming and
keeping containers alive. The objective is to minimize the
uni�ed cost in Eq. 1 over the total time span of a workload,
where �nding the optimal set of decisions can be naturally
formulated as an Integer Linear Programming (ILP) problem
with NP-completeness. However, searching for the optimum
in large-scale serverless platforms with sub-second latency
requirements and online invocation arrivals is extremely
challenging. Therefore, we opt for an e�cient event-driven
design of RainbowCake to enable �ne-grained layer-wise
pre-warming and keep-alive decisions.

5 RainbowCake Design
5.1 Sharing-aware Invocation Modeling
We leverage invocation history to model the sharing-aware
arrival distributions of hits on each container type.
Function-speci�c modeling. To capture the latest invo-
cation patterns, we �rst �t the invocation distribution of
function 5 using a sliding window on the latest = invoca-
tions (e.g., six invocations). We record the arrival timestamp
9 0 of the stalest invocation in the window to calculate the
rate parameter of the distribution _5 = =

9�9 0 , where 9 is the
current timestamp. For each function, we model a Poisson
distribution with random variable -5 ⇠ %>8BB>=(_5). Pois-
son distribution is commonly applied to describe request
arrival patterns [22, 26, 34, 56].
Sharing-aware estimation. We employ compound Pois-
son distribution for the sharing-aware invocation modeling.
Given the invocation history of a set of functions � , each
function 5 2 � is modeled by a function-speci�c Poisson
distribution with a random variable -5 ⇠ %>8BB>=(_5). Let

Algorithm 1: RainbowCake’s Pre-warming
1 async def SchedulePrewarm(function_id, IAT):
2 Sleep(IAT) /* Wait until next request */

3 if Available(function_id) is False then
/* Pre-warm if no warm ones */

4 PrewarmContainer(function_id, type=User)
5 else

/* Skip if warm containers exist */

6 pass
7 return
8 while function invocation arrives do
9 function_id function.get_id()

10 next_IAT Poisson(function_id, type=User)
/* Asynchronous execution */

11 SchedulePrewarm(function_id, next_IAT)

� (:) denote the set of functions equipping with :-type layer
within � , where : 2 {b, l, u}. For each container type : , we
compound the corresponding function-speci�c distributions
to be a Poisson distribution . (:) :

. (:) ⇠ %>8BB>=(_ (:)) =
’

5 2� (:)

-5 , (2)

where _ (:) =
Õ

5 2� (:) _5 . The compounded summand in Eq. 2
can be transformed to an equivalent exponential distribution
with the following cumulative distribution function (CDF):

⇠⇡� (G ; _ (:)) =
(
1 � 4_ (:)G G � 0,
0 G < 0,

(3)

Using the CDF in Eq. 3, we can estimate the probability
of a given inter-arrival time (IAT) of the distribution, where
IAT is de�ned as the time interval between two consecutive
invocation arrivals. Inversely, given a quantile ? , the IAT of
type : can be derived from the quantile function of ⇢G? (_ (:)):

��) (:, ?) = ⇠⇡��1 (?; _ (:)) = �;=(1 � ?)
_ (:) , 0  ? < 1. (4)

Thus, by specifying ? , we can estimate an invocation ar-
riving in at most ��) (:, ?) time. Intuitively, the quantile ?
represents the con�dence of predicting future invocations—
the higher ? , the longer RainbowCake tends to keep partial
containers alive. RainbowCake further uses the estimated
IATs to determine pre-warming and keep-alive Time-to-Live
(TTL) decisions.

5.2 Layer-wise Pre-warming and Keep-alive
RainbowCake enforces TTL-based pre-warming and keep-
alive strategies when provisioning �ne-grained containers
layer-wise. However, pre-warming and keep-alive decisions

RainbowCake Keep-alive

19

RainbowCake: Mitigating Cold-starts in Serverless with Layer-wise Container Caching and Sharing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Algorithm 2: RainbowCake’s Keep-alive
1 def ComputeTTL(container, IAT):
2 C container.get_startup_latency()
3 < container.get_memory_footprint()
4 V (U ⇥ C)/((1 � U) ⇥<) /* Equation 6 */

5 return Min(IAT, V)
6 while container timeouts do
7 function_id container.get_function_id()
8 layer container.get_type()
9 if layer is Bare then

/* Bare containers timeout */

10 container.kill()
11 else

/* User or Lang containers timeout */

12 container.downgrade()
13 layer container.get_type()
14 next_IAT Poisson(function_id, layer)
15 TTL ComputeTTL(container, next_IAT)
16 SetContainerTimeout(container, TTL)

are highly correlated with each other. Finding an optimal so-
lution is impractical in serverless platforms with sub-second
latency requirements (§4).

Therefore, we propose an event-driven heuristic algorithm
to dynamically adjust the length of pre-warming and keep-
alive TTLs in real-time. The event-driven design is aligned
with the serverless computing nature, where serverless func-
tion invocations are highly volatile, bursty, and usually trig-
gered by various user events. The algorithm utilizes sharing-
aware distributions modeled from historical invocation infor-
mation to adapt the length of TTLs. RainbowCake’s algorithm
consists of two parts: pre-warming and keep-alive.
Pre-warming. Upon the latest invocation arrives, Rainbow-
Cake’s container pool queries the function history to esti-
mate the IAT in Eq. 4. Then, the pool schedules a pre-warm
event after the IAT time to pre-warm a User container for the
function. When the event is scheduled, the container pool
�rst checks whether any idle User containers of the function
exist. If any, we ignore the pre-warming schedule since an
incoming invocation can directly reuse idle User containers
in the pool. Otherwise, we start pre-warming a User con-
tainer for the function. Pre-warmed containers proceed to
the keep-alive period immediately after startup, which can
further downgrade and be reused by other invocations.
Keep-alive. Every idle container needs to uninstall three
layers sequentially in a keep-alive period: User, Lang, and
Bare. Before transitioning to the next type, a container noti-
�es the container pool that stores the invocation distribution
models. The pool uses the corresponding distribution’s quan-
tile function to estimate the IAT of invocations in the next

type. We de�ne C (:) as the startup latency of installing the
dependencies of the corresponding layer, and de�ne < (:)

as the memory consumption of an idle container in type
: 2 {b, l, u}. The startup cost⇠ (:)

BC0ACD? in Eq. 1 is measured by
accumulating startup latency C (:) . Since CPU allocation can
be adjusted using CPU sharing techniques without terminat-
ing the container (e.g., cpu-shares in Linux cgroups [31]),
we measure the product of memory occupation < (:) and
idle time to account for resource waste cost⇠ (:)

<4<>A~ in Eq. 1
of an idle container. The startup latency and memory foot-
print of an idle container for a function is typically constant,
thus we use the average startup latency C̄ (:) and the average
memory occupation <̄ (:) :

C̄: =

Õ=
8=1 C

(:)
8

=
, <̄: =

Õ=
8=1<

(:)
8

=
, (5)

over the sliding window of = invocations of the function for
type : . We compute an upper bound V (:) for the predicted
IAT of : by assuming U ⇥ C̄ (:) = (1 � U) ⇥ <̄ (:)V (:) in Eq. 1:

V (:) :=
UC̄ (:)

(1 � U)<̄ (:) , : 2 {b, l, u}. (6)

The IAT upper bound V in Eq. 6 dictates the maximum du-
ration for a container to stay idle, thus constraining a con-
tainer’s memory waste cost cannot exceed its startup cost
of the function. The TTL length for function = keep-alive
decisions with quantile ? at : is given by

))!(=,:, ?) = min{��) (:, ?), V (:) }, : 2 {b, l, u}. (7)

Algorithms 1 and 2 summarize RainbowCake’s event-driven
pre-warming and keep-alive strategies. We design Rainbow-
Cake to make layer-wise pre-warming and keep-alive de-
cisions driven by invocations. The event-driven design ef-
�ciently shrinks the decision space, which has immense
exponential complexity analyzed in §4. We make decisions
of pre-warming and keep-alive separately, where invocation
arrivals trigger RainbowCake to make pre-warming decisions
and idle container timeouts trigger keep-alive decisions. Both
pre-warming and keep-alive require RainbowCake to per-
form a constant complexity of operations as described in
§5.2. Hence, RainbowCake’s pre-warming and keep-alive de-
cisions incur negligible operational overhead compared to
the original decision space.

5.3 Security
Container-sharing techniques have been vastly proposed in
recent years to better serve serverless computing [23, 36, 37,
40, 50]. Despite existing works claiming to share containers
among functions securely, one may question RainbowCake
for compromising security by sharing Lang and Bare con-
tainers. In RainbowCake’s design, we strictly follow server-
less computing work�ow and reverse the steps of container
startup to enable safe container sharing. All the functions
are enforced to run on RainbowCake as non-root users of

Compute Time-to-live given a
container and its predicted IAT

RainbowCake Keep-alive

20

RainbowCake: Mitigating Cold-starts in Serverless with Layer-wise Container Caching and Sharing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Algorithm 2: RainbowCake’s Keep-alive
1 def ComputeTTL(container, IAT):
2 C container.get_startup_latency()
3 < container.get_memory_footprint()
4 V (U ⇥ C)/((1 � U) ⇥<) /* Equation 6 */

5 return Min(IAT, V)
6 while container timeouts do
7 function_id container.get_function_id()
8 layer container.get_type()
9 if layer is Bare then

/* Bare containers timeout */

10 container.kill()
11 else

/* User or Lang containers timeout */

12 container.downgrade()
13 layer container.get_type()
14 next_IAT Poisson(function_id, layer)
15 TTL ComputeTTL(container, next_IAT)
16 SetContainerTimeout(container, TTL)

are highly correlated with each other. Finding an optimal so-
lution is impractical in serverless platforms with sub-second
latency requirements (§4).

Therefore, we propose an event-driven heuristic algorithm
to dynamically adjust the length of pre-warming and keep-
alive TTLs in real-time. The event-driven design is aligned
with the serverless computing nature, where serverless func-
tion invocations are highly volatile, bursty, and usually trig-
gered by various user events. The algorithm utilizes sharing-
aware distributions modeled from historical invocation infor-
mation to adapt the length of TTLs. RainbowCake’s algorithm
consists of two parts: pre-warming and keep-alive.
Pre-warming. Upon the latest invocation arrives, Rainbow-
Cake’s container pool queries the function history to esti-
mate the IAT in Eq. 4. Then, the pool schedules a pre-warm
event after the IAT time to pre-warm a User container for the
function. When the event is scheduled, the container pool
�rst checks whether any idle User containers of the function
exist. If any, we ignore the pre-warming schedule since an
incoming invocation can directly reuse idle User containers
in the pool. Otherwise, we start pre-warming a User con-
tainer for the function. Pre-warmed containers proceed to
the keep-alive period immediately after startup, which can
further downgrade and be reused by other invocations.
Keep-alive. Every idle container needs to uninstall three
layers sequentially in a keep-alive period: User, Lang, and
Bare. Before transitioning to the next type, a container noti-
�es the container pool that stores the invocation distribution
models. The pool uses the corresponding distribution’s quan-
tile function to estimate the IAT of invocations in the next

type. We de�ne C (:) as the startup latency of installing the
dependencies of the corresponding layer, and de�ne < (:)

as the memory consumption of an idle container in type
: 2 {b, l, u}. The startup cost⇠ (:)

BC0ACD? in Eq. 1 is measured by
accumulating startup latency C (:) . Since CPU allocation can
be adjusted using CPU sharing techniques without terminat-
ing the container (e.g., cpu-shares in Linux cgroups [31]),
we measure the product of memory occupation < (:) and
idle time to account for resource waste cost⇠ (:)

<4<>A~ in Eq. 1
of an idle container. The startup latency and memory foot-
print of an idle container for a function is typically constant,
thus we use the average startup latency C̄ (:) and the average
memory occupation <̄ (:) :

C̄: =

Õ=
8=1 C

(:)
8

=
, <̄: =

Õ=
8=1<

(:)
8

=
, (5)

over the sliding window of = invocations of the function for
type : . We compute an upper bound V (:) for the predicted
IAT of : by assuming U ⇥ C̄ (:) = (1 � U) ⇥ <̄ (:)V (:) in Eq. 1:

V (:) :=
UC̄ (:)

(1 � U)<̄ (:) , : 2 {b, l, u}. (6)

The IAT upper bound V in Eq. 6 dictates the maximum du-
ration for a container to stay idle, thus constraining a con-
tainer’s memory waste cost cannot exceed its startup cost
of the function. The TTL length for function = keep-alive
decisions with quantile ? at : is given by

))!(=,:, ?) = min{��) (:, ?), V (:) }, : 2 {b, l, u}. (7)

Algorithms 1 and 2 summarize RainbowCake’s event-driven
pre-warming and keep-alive strategies. We design Rainbow-
Cake to make layer-wise pre-warming and keep-alive de-
cisions driven by invocations. The event-driven design ef-
�ciently shrinks the decision space, which has immense
exponential complexity analyzed in §4. We make decisions
of pre-warming and keep-alive separately, where invocation
arrivals trigger RainbowCake to make pre-warming decisions
and idle container timeouts trigger keep-alive decisions. Both
pre-warming and keep-alive require RainbowCake to per-
form a constant complexity of operations as described in
§5.2. Hence, RainbowCake’s pre-warming and keep-alive de-
cisions incur negligible operational overhead compared to
the original decision space.

5.3 Security
Container-sharing techniques have been vastly proposed in
recent years to better serve serverless computing [23, 36, 37,
40, 50]. Despite existing works claiming to share containers
among functions securely, one may question RainbowCake
for compromising security by sharing Lang and Bare con-
tainers. In RainbowCake’s design, we strictly follow server-
less computing work�ow and reverse the steps of container
startup to enable safe container sharing. All the functions
are enforced to run on RainbowCake as non-root users of

Whenever a container ends its
keep-alive period

Compute Time-to-live given a
container and its predicted IAT

RainbowCake Keep-alive

21

RainbowCake: Mitigating Cold-starts in Serverless with Layer-wise Container Caching and Sharing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Algorithm 2: RainbowCake’s Keep-alive
1 def ComputeTTL(container, IAT):
2 C container.get_startup_latency()
3 < container.get_memory_footprint()
4 V (U ⇥ C)/((1 � U) ⇥<) /* Equation 6 */

5 return Min(IAT, V)
6 while container timeouts do
7 function_id container.get_function_id()
8 layer container.get_type()
9 if layer is Bare then

/* Bare containers timeout */

10 container.kill()
11 else

/* User or Lang containers timeout */

12 container.downgrade()
13 layer container.get_type()
14 next_IAT Poisson(function_id, layer)
15 TTL ComputeTTL(container, next_IAT)
16 SetContainerTimeout(container, TTL)

are highly correlated with each other. Finding an optimal so-
lution is impractical in serverless platforms with sub-second
latency requirements (§4).

Therefore, we propose an event-driven heuristic algorithm
to dynamically adjust the length of pre-warming and keep-
alive TTLs in real-time. The event-driven design is aligned
with the serverless computing nature, where serverless func-
tion invocations are highly volatile, bursty, and usually trig-
gered by various user events. The algorithm utilizes sharing-
aware distributions modeled from historical invocation infor-
mation to adapt the length of TTLs. RainbowCake’s algorithm
consists of two parts: pre-warming and keep-alive.
Pre-warming. Upon the latest invocation arrives, Rainbow-
Cake’s container pool queries the function history to esti-
mate the IAT in Eq. 4. Then, the pool schedules a pre-warm
event after the IAT time to pre-warm a User container for the
function. When the event is scheduled, the container pool
�rst checks whether any idle User containers of the function
exist. If any, we ignore the pre-warming schedule since an
incoming invocation can directly reuse idle User containers
in the pool. Otherwise, we start pre-warming a User con-
tainer for the function. Pre-warmed containers proceed to
the keep-alive period immediately after startup, which can
further downgrade and be reused by other invocations.
Keep-alive. Every idle container needs to uninstall three
layers sequentially in a keep-alive period: User, Lang, and
Bare. Before transitioning to the next type, a container noti-
�es the container pool that stores the invocation distribution
models. The pool uses the corresponding distribution’s quan-
tile function to estimate the IAT of invocations in the next

type. We de�ne C (:) as the startup latency of installing the
dependencies of the corresponding layer, and de�ne < (:)

as the memory consumption of an idle container in type
: 2 {b, l, u}. The startup cost⇠ (:)

BC0ACD? in Eq. 1 is measured by
accumulating startup latency C (:) . Since CPU allocation can
be adjusted using CPU sharing techniques without terminat-
ing the container (e.g., cpu-shares in Linux cgroups [31]),
we measure the product of memory occupation < (:) and
idle time to account for resource waste cost⇠ (:)

<4<>A~ in Eq. 1
of an idle container. The startup latency and memory foot-
print of an idle container for a function is typically constant,
thus we use the average startup latency C̄ (:) and the average
memory occupation <̄ (:) :

C̄: =

Õ=
8=1 C

(:)
8

=
, <̄: =

Õ=
8=1<

(:)
8

=
, (5)

over the sliding window of = invocations of the function for
type : . We compute an upper bound V (:) for the predicted
IAT of : by assuming U ⇥ C̄ (:) = (1 � U) ⇥ <̄ (:)V (:) in Eq. 1:

V (:) :=
UC̄ (:)

(1 � U)<̄ (:) , : 2 {b, l, u}. (6)

The IAT upper bound V in Eq. 6 dictates the maximum du-
ration for a container to stay idle, thus constraining a con-
tainer’s memory waste cost cannot exceed its startup cost
of the function. The TTL length for function = keep-alive
decisions with quantile ? at : is given by

))!(=,:, ?) = min{��) (:, ?), V (:) }, : 2 {b, l, u}. (7)

Algorithms 1 and 2 summarize RainbowCake’s event-driven
pre-warming and keep-alive strategies. We design Rainbow-
Cake to make layer-wise pre-warming and keep-alive de-
cisions driven by invocations. The event-driven design ef-
�ciently shrinks the decision space, which has immense
exponential complexity analyzed in §4. We make decisions
of pre-warming and keep-alive separately, where invocation
arrivals trigger RainbowCake to make pre-warming decisions
and idle container timeouts trigger keep-alive decisions. Both
pre-warming and keep-alive require RainbowCake to per-
form a constant complexity of operations as described in
§5.2. Hence, RainbowCake’s pre-warming and keep-alive de-
cisions incur negligible operational overhead compared to
the original decision space.

5.3 Security
Container-sharing techniques have been vastly proposed in
recent years to better serve serverless computing [23, 36, 37,
40, 50]. Despite existing works claiming to share containers
among functions securely, one may question RainbowCake
for compromising security by sharing Lang and Bare con-
tainers. In RainbowCake’s design, we strictly follow server-
less computing work�ow and reverse the steps of container
startup to enable safe container sharing. All the functions
are enforced to run on RainbowCake as non-root users of

Whenever a container ends its
keep-alive period

Compute Time-to-live given a
container and its predicted IAT

Terminate if a Bare container
times out

RainbowCake Keep-alive

22

Whenever a container ends its
keep-alive period

RainbowCake: Mitigating Cold-starts in Serverless with Layer-wise Container Caching and Sharing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Algorithm 2: RainbowCake’s Keep-alive
1 def ComputeTTL(container, IAT):
2 C container.get_startup_latency()
3 < container.get_memory_footprint()
4 V (U ⇥ C)/((1 � U) ⇥<) /* Equation 6 */

5 return Min(IAT, V)
6 while container timeouts do
7 function_id container.get_function_id()
8 layer container.get_type()
9 if layer is Bare then

/* Bare containers timeout */

10 container.kill()
11 else

/* User or Lang containers timeout */

12 container.downgrade()
13 layer container.get_type()
14 next_IAT Poisson(function_id, layer)
15 TTL ComputeTTL(container, next_IAT)
16 SetContainerTimeout(container, TTL)

are highly correlated with each other. Finding an optimal so-
lution is impractical in serverless platforms with sub-second
latency requirements (§4).

Therefore, we propose an event-driven heuristic algorithm
to dynamically adjust the length of pre-warming and keep-
alive TTLs in real-time. The event-driven design is aligned
with the serverless computing nature, where serverless func-
tion invocations are highly volatile, bursty, and usually trig-
gered by various user events. The algorithm utilizes sharing-
aware distributions modeled from historical invocation infor-
mation to adapt the length of TTLs. RainbowCake’s algorithm
consists of two parts: pre-warming and keep-alive.
Pre-warming. Upon the latest invocation arrives, Rainbow-
Cake’s container pool queries the function history to esti-
mate the IAT in Eq. 4. Then, the pool schedules a pre-warm
event after the IAT time to pre-warm a User container for the
function. When the event is scheduled, the container pool
�rst checks whether any idle User containers of the function
exist. If any, we ignore the pre-warming schedule since an
incoming invocation can directly reuse idle User containers
in the pool. Otherwise, we start pre-warming a User con-
tainer for the function. Pre-warmed containers proceed to
the keep-alive period immediately after startup, which can
further downgrade and be reused by other invocations.
Keep-alive. Every idle container needs to uninstall three
layers sequentially in a keep-alive period: User, Lang, and
Bare. Before transitioning to the next type, a container noti-
�es the container pool that stores the invocation distribution
models. The pool uses the corresponding distribution’s quan-
tile function to estimate the IAT of invocations in the next

type. We de�ne C (:) as the startup latency of installing the
dependencies of the corresponding layer, and de�ne < (:)

as the memory consumption of an idle container in type
: 2 {b, l, u}. The startup cost⇠ (:)

BC0ACD? in Eq. 1 is measured by
accumulating startup latency C (:) . Since CPU allocation can
be adjusted using CPU sharing techniques without terminat-
ing the container (e.g., cpu-shares in Linux cgroups [31]),
we measure the product of memory occupation < (:) and
idle time to account for resource waste cost⇠ (:)

<4<>A~ in Eq. 1
of an idle container. The startup latency and memory foot-
print of an idle container for a function is typically constant,
thus we use the average startup latency C̄ (:) and the average
memory occupation <̄ (:) :

C̄: =

Õ=
8=1 C

(:)
8

=
, <̄: =

Õ=
8=1<

(:)
8

=
, (5)

over the sliding window of = invocations of the function for
type : . We compute an upper bound V (:) for the predicted
IAT of : by assuming U ⇥ C̄ (:) = (1 � U) ⇥ <̄ (:)V (:) in Eq. 1:

V (:) :=
UC̄ (:)

(1 � U)<̄ (:) , : 2 {b, l, u}. (6)

The IAT upper bound V in Eq. 6 dictates the maximum du-
ration for a container to stay idle, thus constraining a con-
tainer’s memory waste cost cannot exceed its startup cost
of the function. The TTL length for function = keep-alive
decisions with quantile ? at : is given by

))!(=,:, ?) = min{��) (:, ?), V (:) }, : 2 {b, l, u}. (7)

Algorithms 1 and 2 summarize RainbowCake’s event-driven
pre-warming and keep-alive strategies. We design Rainbow-
Cake to make layer-wise pre-warming and keep-alive de-
cisions driven by invocations. The event-driven design ef-
�ciently shrinks the decision space, which has immense
exponential complexity analyzed in §4. We make decisions
of pre-warming and keep-alive separately, where invocation
arrivals trigger RainbowCake to make pre-warming decisions
and idle container timeouts trigger keep-alive decisions. Both
pre-warming and keep-alive require RainbowCake to per-
form a constant complexity of operations as described in
§5.2. Hence, RainbowCake’s pre-warming and keep-alive de-
cisions incur negligible operational overhead compared to
the original decision space.

5.3 Security
Container-sharing techniques have been vastly proposed in
recent years to better serve serverless computing [23, 36, 37,
40, 50]. Despite existing works claiming to share containers
among functions securely, one may question RainbowCake
for compromising security by sharing Lang and Bare con-
tainers. In RainbowCake’s design, we strictly follow server-
less computing work�ow and reverse the steps of container
startup to enable safe container sharing. All the functions
are enforced to run on RainbowCake as non-root users of

Compute Time-to-live given a
container and its predicted IAT

Terminate if a Bare container
times out
Otherwise, fit Poisson
distribution to predict next Inter-
Arrival Time (IAT)

Implementation
RainbowCake is prototyped on top of Docker and Apache OpenWhisk

23

Bare Layer

Docker

environment

Lang Layer

OpenWhisk’s

Java/Python/Node.js

runtimes

OpenWhisk’s

Container Proxy

User Layer Pre-warming
 & Keep-alive

OpenWhisk’s

Container Pool

Evaluation

24

Histogram: Shahrad, Mohammad, et al. “Serverless in the Wild: Characterizing and Optimizing the Serverless…” ATC’20

FaaSCache: Fuerst, Alexander, et al. "SeBS: A Serverless Benchmark Suite for Function-as-a-Service Computing." ASPLOS’21

SEUSS: Cadden, James, et al. "SEUSS: Skip Redundant Paths to Make Serverless Fast." EuroSys’20

Pagurus: Li, Zijun, et al. "Help Rather Than Recycle: Alleviating Cold Startup in Serverless Computing…” ACSOS 20

Baselines

OpenWhisk default

Histogram

FaaSCache

SEUSS

Pagurus

Metrics

Function response latency

Memory waste

Traces

Azure Functions traces

8-hour workloads

Testbed

3 nodes

140 AMD EPYC CPU cores

240 GB Memory

E2
E

la
te

nc
y

(s
)

0

20

40

60

Invo. ID (OpenWhisk)
0 20,000

Invo. ID (Histogram)
0 20,000

Invo. ID (FaaSCache)
0 20,000

Invo. ID (SEUSS)
0 20,000

Invo. ID (Pagurus)
0 20,000

Invo. ID (RainbowCake)
0 20,000

End-to-end Latency

25

OpenWhisk Histogram FaaSCache SEUSS Pagurus RainbowCake

St
ar

tu
p

(s
)

10−3

1

E2
E

la
te

nc
y

(s
)

1

102

Function ID
AC DH UL IS TN OI DC GB GM GP IR SA FC MD VP DT DL DQ DS DG

RainbowCake achieves similar or better function
and invocation latency than other baselines

function
invocation

Memory Footprint

26

RainbowCakePagurusSEUSSFaaSCacheHistogramOpenWhisk

M
em

. w
as

te
 (G

B)

0

10

20

30

Timeline (min)
0 200 400

Timeline (min)
0 200 400

Timeline (min)
0 200 400

Timeline (min)
0 200 400

Timeline (min)
0 200 400

Timeline (min)
0 200 400

0

1
50 100 150

RainbowCake significantly reduces memory waste
compared to other baselines

memory waste

27

Combining container
caching and sharing

Layer-wise pre-warming
and keep-alive decisions

Mitigating cold-starts with
minimal memory waste

RainbowCake
68%
Function startup latency reduction

77%
Memory waste reduction

RainbowCake Code Repo:
https://github.com/IntelliSys-Lab/RainbowCake-ASPLOS24

Corresponding Author:
Hanfei Yu <hyu25@lsu.edu>
Hao Wang <haowang@lsu.edu>

IntelliSys Lab

https://github.com/IntelliSys-Lab/Libra-HPDC23
mailto:hyu25@lsu.edu
mailto:haowang@lsu.edu

