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Cold-start in Serverless
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Why is Cold-start Hard to Handle
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Detailed references in our paper: 
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Limitations of Existing Works
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Design Goals
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Function startup goes through three layers:
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Characterization of Three Layers
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We evaluate 20 
realistic functions from 
three serverless 
benchmark suites

Copik, Marcin, et al. “SeBS: A Serverless Benchmark Suite for Function-as-a-Service Computing.” Middleware’21

Cordingly, Robert, et al. "Implications of Programming Language Selection for Serverless Data Processing Pipelines.” CBDCom’20

Shahrad, Mohammad, et al. "Architectural Implications of Function-as-a-Service Computing." MICRO’19
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can be observed for all 
functions
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2) wasted resource of a container refers to the resources oc-
cupied during the idle phase without serving invocations.
We consider each metric as a cost that the platform takes to
serve a workload.

Let⇠ (:)
BC0ACD? and⇠ (:)

<4<>A~ denote the total startup cost and
total resource waste cost for handling all invocations of a
function at type : 2 {b, l, u}, respectively. Across all three
types of layers, the total startup cost⇠BC0ACD? and total mem-
ory waste cost ⇠<4<>A~ are summed by

⇠BC0ACD? :=
’

:2{b,l,u}
⇠ (:)
BC0ACD? , ⇠<4<>A~ :=

’
:2{b,l,u}

⇠ (:)
<4<>A~ .

Thus, the uni�ed cost ⇠ consisting of the startup cost and
the resource waste cost is given by

⇠ := U ⇥⇠BC0ACD? + (1 � U) ⇥⇠<4<>A~, (1)
where parameter U 2 (0, 1) serves as a tunable knob that the
platform can trade o� between two types of costs.

4.3 Objective and Complexity
To serve future function invocations, the platform keeps a
certain number of containers by pre-warming and keep-alive
for each type : 2 {b, l, u}. In real-time, we make two kinds
of decisions for each type : 2 {b, l, u}: pre-warming and
keeping containers alive. The objective is to minimize the
uni�ed cost in Eq. 1 over the total time span of a workload,
where �nding the optimal set of decisions can be naturally
formulated as an Integer Linear Programming (ILP) problem
with NP-completeness. However, searching for the optimum
in large-scale serverless platforms with sub-second latency
requirements and online invocation arrivals is extremely
challenging. Therefore, we opt for an e�cient event-driven
design of RainbowCake to enable �ne-grained layer-wise
pre-warming and keep-alive decisions.

5 RainbowCake Design
5.1 Sharing-aware Invocation Modeling
We leverage invocation history to model the sharing-aware
arrival distributions of hits on each container type.
Function-speci�c modeling. To capture the latest invo-
cation patterns, we �rst �t the invocation distribution of
function 5 using a sliding window on the latest = invoca-
tions (e.g., six invocations). We record the arrival timestamp
9 0 of the stalest invocation in the window to calculate the
rate parameter of the distribution _5 = =

9�9 0 , where 9 is the
current timestamp. For each function, we model a Poisson
distribution with random variable -5 ⇠ %>8BB>=(_5 ). Pois-
son distribution is commonly applied to describe request
arrival patterns [22, 26, 34, 56].
Sharing-aware estimation. We employ compound Pois-
son distribution for the sharing-aware invocation modeling.
Given the invocation history of a set of functions � , each
function 5 2 � is modeled by a function-speci�c Poisson
distribution with a random variable -5 ⇠ %>8BB>=(_5 ). Let

Algorithm 1: RainbowCake’s Pre-warming
1 async def SchedulePrewarm(function_id, IAT):
2 Sleep(IAT) /* Wait until next request */

3 if Available(function_id) is False then
/* Pre-warm if no warm ones */

4 PrewarmContainer(function_id, type=User)
5 else

/* Skip if warm containers exist */

6 pass
7 return
8 while function invocation arrives do
9 function_id function.get_id()

10 next_IAT Poisson(function_id, type=User)
/* Asynchronous execution */

11 SchedulePrewarm(function_id, next_IAT)

� (:) denote the set of functions equipping with :-type layer
within � , where : 2 {b, l, u}. For each container type : , we
compound the corresponding function-speci�c distributions
to be a Poisson distribution . (:) :

. (:) ⇠ %>8BB>=(_ (:) ) =
’

5 2� (: )

-5 , (2)

where _ (:) =
Õ

5 2� (: ) _5 . The compounded summand in Eq. 2
can be transformed to an equivalent exponential distribution
with the following cumulative distribution function (CDF):

⇠⇡� (G ; _ (:) ) =
(
1 � 4_ (: )G G � 0,
0 G < 0,

(3)

Using the CDF in Eq. 3, we can estimate the probability
of a given inter-arrival time (IAT) of the distribution, where
IAT is de�ned as the time interval between two consecutive
invocation arrivals. Inversely, given a quantile ? , the IAT of
type : can be derived from the quantile function of ⇢G? (_ (:) ):

��) (:, ?) = ⇠⇡��1 (?; _ (:) ) = �;=(1 � ?)
_ (:) , 0  ? < 1. (4)

Thus, by specifying ? , we can estimate an invocation ar-
riving in at most ��) (:, ?) time. Intuitively, the quantile ?
represents the con�dence of predicting future invocations—
the higher ? , the longer RainbowCake tends to keep partial
containers alive. RainbowCake further uses the estimated
IATs to determine pre-warming and keep-alive Time-to-Live
(TTL) decisions.

5.2 Layer-wise Pre-warming and Keep-alive
RainbowCake enforces TTL-based pre-warming and keep-
alive strategies when provisioning �ne-grained containers
layer-wise. However, pre-warming and keep-alive decisions

Asynchronous pre-warming 
event scheduling
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2) wasted resource of a container refers to the resources oc-
cupied during the idle phase without serving invocations.
We consider each metric as a cost that the platform takes to
serve a workload.

Let⇠ (:)
BC0ACD? and⇠ (:)

<4<>A~ denote the total startup cost and
total resource waste cost for handling all invocations of a
function at type : 2 {b, l, u}, respectively. Across all three
types of layers, the total startup cost⇠BC0ACD? and total mem-
ory waste cost ⇠<4<>A~ are summed by

⇠BC0ACD? :=
’

:2{b,l,u}
⇠ (:)
BC0ACD? , ⇠<4<>A~ :=

’
:2{b,l,u}

⇠ (:)
<4<>A~ .

Thus, the uni�ed cost ⇠ consisting of the startup cost and
the resource waste cost is given by

⇠ := U ⇥⇠BC0ACD? + (1 � U) ⇥⇠<4<>A~, (1)
where parameter U 2 (0, 1) serves as a tunable knob that the
platform can trade o� between two types of costs.

4.3 Objective and Complexity
To serve future function invocations, the platform keeps a
certain number of containers by pre-warming and keep-alive
for each type : 2 {b, l, u}. In real-time, we make two kinds
of decisions for each type : 2 {b, l, u}: pre-warming and
keeping containers alive. The objective is to minimize the
uni�ed cost in Eq. 1 over the total time span of a workload,
where �nding the optimal set of decisions can be naturally
formulated as an Integer Linear Programming (ILP) problem
with NP-completeness. However, searching for the optimum
in large-scale serverless platforms with sub-second latency
requirements and online invocation arrivals is extremely
challenging. Therefore, we opt for an e�cient event-driven
design of RainbowCake to enable �ne-grained layer-wise
pre-warming and keep-alive decisions.

5 RainbowCake Design
5.1 Sharing-aware Invocation Modeling
We leverage invocation history to model the sharing-aware
arrival distributions of hits on each container type.
Function-speci�c modeling. To capture the latest invo-
cation patterns, we �rst �t the invocation distribution of
function 5 using a sliding window on the latest = invoca-
tions (e.g., six invocations). We record the arrival timestamp
9 0 of the stalest invocation in the window to calculate the
rate parameter of the distribution _5 = =

9�9 0 , where 9 is the
current timestamp. For each function, we model a Poisson
distribution with random variable -5 ⇠ %>8BB>=(_5 ). Pois-
son distribution is commonly applied to describe request
arrival patterns [22, 26, 34, 56].
Sharing-aware estimation. We employ compound Pois-
son distribution for the sharing-aware invocation modeling.
Given the invocation history of a set of functions � , each
function 5 2 � is modeled by a function-speci�c Poisson
distribution with a random variable -5 ⇠ %>8BB>=(_5 ). Let

Algorithm 1: RainbowCake’s Pre-warming
1 async def SchedulePrewarm(function_id, IAT):
2 Sleep(IAT) /* Wait until next request */

3 if Available(function_id) is False then
/* Pre-warm if no warm ones */

4 PrewarmContainer(function_id, type=User)
5 else

/* Skip if warm containers exist */

6 pass
7 return
8 while function invocation arrives do
9 function_id function.get_id()

10 next_IAT Poisson(function_id, type=User)
/* Asynchronous execution */

11 SchedulePrewarm(function_id, next_IAT)

� (:) denote the set of functions equipping with :-type layer
within � , where : 2 {b, l, u}. For each container type : , we
compound the corresponding function-speci�c distributions
to be a Poisson distribution . (:) :

. (:) ⇠ %>8BB>=(_ (:) ) =
’

5 2� (: )

-5 , (2)

where _ (:) =
Õ

5 2� (: ) _5 . The compounded summand in Eq. 2
can be transformed to an equivalent exponential distribution
with the following cumulative distribution function (CDF):

⇠⇡� (G ; _ (:) ) =
(
1 � 4_ (: )G G � 0,
0 G < 0,

(3)

Using the CDF in Eq. 3, we can estimate the probability
of a given inter-arrival time (IAT) of the distribution, where
IAT is de�ned as the time interval between two consecutive
invocation arrivals. Inversely, given a quantile ? , the IAT of
type : can be derived from the quantile function of ⇢G? (_ (:) ):

��) (:, ?) = ⇠⇡��1 (?; _ (:) ) = �;=(1 � ?)
_ (:) , 0  ? < 1. (4)

Thus, by specifying ? , we can estimate an invocation ar-
riving in at most ��) (:, ?) time. Intuitively, the quantile ?
represents the con�dence of predicting future invocations—
the higher ? , the longer RainbowCake tends to keep partial
containers alive. RainbowCake further uses the estimated
IATs to determine pre-warming and keep-alive Time-to-Live
(TTL) decisions.

5.2 Layer-wise Pre-warming and Keep-alive
RainbowCake enforces TTL-based pre-warming and keep-
alive strategies when provisioning �ne-grained containers
layer-wise. However, pre-warming and keep-alive decisions

Asynchronous pre-warming 
event scheduling

Pre-warm a User container if no 
warm ones
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2) wasted resource of a container refers to the resources oc-
cupied during the idle phase without serving invocations.
We consider each metric as a cost that the platform takes to
serve a workload.

Let⇠ (:)
BC0ACD? and⇠ (:)

<4<>A~ denote the total startup cost and
total resource waste cost for handling all invocations of a
function at type : 2 {b, l, u}, respectively. Across all three
types of layers, the total startup cost⇠BC0ACD? and total mem-
ory waste cost ⇠<4<>A~ are summed by

⇠BC0ACD? :=
’

:2{b,l,u}
⇠ (:)
BC0ACD? , ⇠<4<>A~ :=

’
:2{b,l,u}

⇠ (:)
<4<>A~ .

Thus, the uni�ed cost ⇠ consisting of the startup cost and
the resource waste cost is given by

⇠ := U ⇥⇠BC0ACD? + (1 � U) ⇥⇠<4<>A~, (1)
where parameter U 2 (0, 1) serves as a tunable knob that the
platform can trade o� between two types of costs.

4.3 Objective and Complexity
To serve future function invocations, the platform keeps a
certain number of containers by pre-warming and keep-alive
for each type : 2 {b, l, u}. In real-time, we make two kinds
of decisions for each type : 2 {b, l, u}: pre-warming and
keeping containers alive. The objective is to minimize the
uni�ed cost in Eq. 1 over the total time span of a workload,
where �nding the optimal set of decisions can be naturally
formulated as an Integer Linear Programming (ILP) problem
with NP-completeness. However, searching for the optimum
in large-scale serverless platforms with sub-second latency
requirements and online invocation arrivals is extremely
challenging. Therefore, we opt for an e�cient event-driven
design of RainbowCake to enable �ne-grained layer-wise
pre-warming and keep-alive decisions.

5 RainbowCake Design
5.1 Sharing-aware Invocation Modeling
We leverage invocation history to model the sharing-aware
arrival distributions of hits on each container type.
Function-speci�c modeling. To capture the latest invo-
cation patterns, we �rst �t the invocation distribution of
function 5 using a sliding window on the latest = invoca-
tions (e.g., six invocations). We record the arrival timestamp
9 0 of the stalest invocation in the window to calculate the
rate parameter of the distribution _5 = =

9�9 0 , where 9 is the
current timestamp. For each function, we model a Poisson
distribution with random variable -5 ⇠ %>8BB>=(_5 ). Pois-
son distribution is commonly applied to describe request
arrival patterns [22, 26, 34, 56].
Sharing-aware estimation. We employ compound Pois-
son distribution for the sharing-aware invocation modeling.
Given the invocation history of a set of functions � , each
function 5 2 � is modeled by a function-speci�c Poisson
distribution with a random variable -5 ⇠ %>8BB>=(_5 ). Let

Algorithm 1: RainbowCake’s Pre-warming
1 async def SchedulePrewarm(function_id, IAT):
2 Sleep(IAT) /* Wait until next request */

3 if Available(function_id) is False then
/* Pre-warm if no warm ones */

4 PrewarmContainer(function_id, type=User)
5 else

/* Skip if warm containers exist */

6 pass
7 return
8 while function invocation arrives do
9 function_id function.get_id()

10 next_IAT Poisson(function_id, type=User)
/* Asynchronous execution */

11 SchedulePrewarm(function_id, next_IAT)

� (:) denote the set of functions equipping with :-type layer
within � , where : 2 {b, l, u}. For each container type : , we
compound the corresponding function-speci�c distributions
to be a Poisson distribution . (:) :

. (:) ⇠ %>8BB>=(_ (:) ) =
’

5 2� (: )

-5 , (2)

where _ (:) =
Õ

5 2� (: ) _5 . The compounded summand in Eq. 2
can be transformed to an equivalent exponential distribution
with the following cumulative distribution function (CDF):

⇠⇡� (G ; _ (:) ) =
(
1 � 4_ (: )G G � 0,
0 G < 0,

(3)

Using the CDF in Eq. 3, we can estimate the probability
of a given inter-arrival time (IAT) of the distribution, where
IAT is de�ned as the time interval between two consecutive
invocation arrivals. Inversely, given a quantile ? , the IAT of
type : can be derived from the quantile function of ⇢G? (_ (:) ):

��) (:, ?) = ⇠⇡��1 (?; _ (:) ) = �;=(1 � ?)
_ (:) , 0  ? < 1. (4)

Thus, by specifying ? , we can estimate an invocation ar-
riving in at most ��) (:, ?) time. Intuitively, the quantile ?
represents the con�dence of predicting future invocations—
the higher ? , the longer RainbowCake tends to keep partial
containers alive. RainbowCake further uses the estimated
IATs to determine pre-warming and keep-alive Time-to-Live
(TTL) decisions.

5.2 Layer-wise Pre-warming and Keep-alive
RainbowCake enforces TTL-based pre-warming and keep-
alive strategies when provisioning �ne-grained containers
layer-wise. However, pre-warming and keep-alive decisions

Asynchronously schedules pre-
warming events

Pre-warm a User container if no 
warm ones

Otherwise, skip this pre-warming 
event
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2) wasted resource of a container refers to the resources oc-
cupied during the idle phase without serving invocations.
We consider each metric as a cost that the platform takes to
serve a workload.

Let⇠ (:)
BC0ACD? and⇠ (:)

<4<>A~ denote the total startup cost and
total resource waste cost for handling all invocations of a
function at type : 2 {b, l, u}, respectively. Across all three
types of layers, the total startup cost⇠BC0ACD? and total mem-
ory waste cost ⇠<4<>A~ are summed by

⇠BC0ACD? :=
’

:2{b,l,u}
⇠ (:)
BC0ACD? , ⇠<4<>A~ :=

’
:2{b,l,u}

⇠ (:)
<4<>A~ .

Thus, the uni�ed cost ⇠ consisting of the startup cost and
the resource waste cost is given by

⇠ := U ⇥⇠BC0ACD? + (1 � U) ⇥⇠<4<>A~, (1)
where parameter U 2 (0, 1) serves as a tunable knob that the
platform can trade o� between two types of costs.

4.3 Objective and Complexity
To serve future function invocations, the platform keeps a
certain number of containers by pre-warming and keep-alive
for each type : 2 {b, l, u}. In real-time, we make two kinds
of decisions for each type : 2 {b, l, u}: pre-warming and
keeping containers alive. The objective is to minimize the
uni�ed cost in Eq. 1 over the total time span of a workload,
where �nding the optimal set of decisions can be naturally
formulated as an Integer Linear Programming (ILP) problem
with NP-completeness. However, searching for the optimum
in large-scale serverless platforms with sub-second latency
requirements and online invocation arrivals is extremely
challenging. Therefore, we opt for an e�cient event-driven
design of RainbowCake to enable �ne-grained layer-wise
pre-warming and keep-alive decisions.

5 RainbowCake Design
5.1 Sharing-aware Invocation Modeling
We leverage invocation history to model the sharing-aware
arrival distributions of hits on each container type.
Function-speci�c modeling. To capture the latest invo-
cation patterns, we �rst �t the invocation distribution of
function 5 using a sliding window on the latest = invoca-
tions (e.g., six invocations). We record the arrival timestamp
9 0 of the stalest invocation in the window to calculate the
rate parameter of the distribution _5 = =

9�9 0 , where 9 is the
current timestamp. For each function, we model a Poisson
distribution with random variable -5 ⇠ %>8BB>=(_5 ). Pois-
son distribution is commonly applied to describe request
arrival patterns [22, 26, 34, 56].
Sharing-aware estimation. We employ compound Pois-
son distribution for the sharing-aware invocation modeling.
Given the invocation history of a set of functions � , each
function 5 2 � is modeled by a function-speci�c Poisson
distribution with a random variable -5 ⇠ %>8BB>=(_5 ). Let

Algorithm 1: RainbowCake’s Pre-warming
1 async def SchedulePrewarm(function_id, IAT):
2 Sleep(IAT) /* Wait until next request */

3 if Available(function_id) is False then
/* Pre-warm if no warm ones */

4 PrewarmContainer(function_id, type=User)
5 else

/* Skip if warm containers exist */

6 pass
7 return
8 while function invocation arrives do
9 function_id function.get_id()

10 next_IAT Poisson(function_id, type=User)
/* Asynchronous execution */

11 SchedulePrewarm(function_id, next_IAT)

� (:) denote the set of functions equipping with :-type layer
within � , where : 2 {b, l, u}. For each container type : , we
compound the corresponding function-speci�c distributions
to be a Poisson distribution . (:) :

. (:) ⇠ %>8BB>=(_ (:) ) =
’

5 2� (: )

-5 , (2)

where _ (:) =
Õ

5 2� (: ) _5 . The compounded summand in Eq. 2
can be transformed to an equivalent exponential distribution
with the following cumulative distribution function (CDF):

⇠⇡� (G ; _ (:) ) =
(
1 � 4_ (: )G G � 0,
0 G < 0,

(3)

Using the CDF in Eq. 3, we can estimate the probability
of a given inter-arrival time (IAT) of the distribution, where
IAT is de�ned as the time interval between two consecutive
invocation arrivals. Inversely, given a quantile ? , the IAT of
type : can be derived from the quantile function of ⇢G? (_ (:) ):

��) (:, ?) = ⇠⇡��1 (?; _ (:) ) = �;=(1 � ?)
_ (:) , 0  ? < 1. (4)

Thus, by specifying ? , we can estimate an invocation ar-
riving in at most ��) (:, ?) time. Intuitively, the quantile ?
represents the con�dence of predicting future invocations—
the higher ? , the longer RainbowCake tends to keep partial
containers alive. RainbowCake further uses the estimated
IATs to determine pre-warming and keep-alive Time-to-Live
(TTL) decisions.

5.2 Layer-wise Pre-warming and Keep-alive
RainbowCake enforces TTL-based pre-warming and keep-
alive strategies when provisioning �ne-grained containers
layer-wise. However, pre-warming and keep-alive decisions

Asynchronous pre-warming 
event scheduling

Pre-warm a User container if no 
warm ones

Otherwise, skip this pre-warming 
event

Whenever an invocation arrives
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2) wasted resource of a container refers to the resources oc-
cupied during the idle phase without serving invocations.
We consider each metric as a cost that the platform takes to
serve a workload.

Let⇠ (:)
BC0ACD? and⇠ (:)

<4<>A~ denote the total startup cost and
total resource waste cost for handling all invocations of a
function at type : 2 {b, l, u}, respectively. Across all three
types of layers, the total startup cost⇠BC0ACD? and total mem-
ory waste cost ⇠<4<>A~ are summed by

⇠BC0ACD? :=
’

:2{b,l,u}
⇠ (:)
BC0ACD? , ⇠<4<>A~ :=

’
:2{b,l,u}

⇠ (:)
<4<>A~ .

Thus, the uni�ed cost ⇠ consisting of the startup cost and
the resource waste cost is given by

⇠ := U ⇥⇠BC0ACD? + (1 � U) ⇥⇠<4<>A~, (1)
where parameter U 2 (0, 1) serves as a tunable knob that the
platform can trade o� between two types of costs.

4.3 Objective and Complexity
To serve future function invocations, the platform keeps a
certain number of containers by pre-warming and keep-alive
for each type : 2 {b, l, u}. In real-time, we make two kinds
of decisions for each type : 2 {b, l, u}: pre-warming and
keeping containers alive. The objective is to minimize the
uni�ed cost in Eq. 1 over the total time span of a workload,
where �nding the optimal set of decisions can be naturally
formulated as an Integer Linear Programming (ILP) problem
with NP-completeness. However, searching for the optimum
in large-scale serverless platforms with sub-second latency
requirements and online invocation arrivals is extremely
challenging. Therefore, we opt for an e�cient event-driven
design of RainbowCake to enable �ne-grained layer-wise
pre-warming and keep-alive decisions.

5 RainbowCake Design
5.1 Sharing-aware Invocation Modeling
We leverage invocation history to model the sharing-aware
arrival distributions of hits on each container type.
Function-speci�c modeling. To capture the latest invo-
cation patterns, we �rst �t the invocation distribution of
function 5 using a sliding window on the latest = invoca-
tions (e.g., six invocations). We record the arrival timestamp
9 0 of the stalest invocation in the window to calculate the
rate parameter of the distribution _5 = =

9�9 0 , where 9 is the
current timestamp. For each function, we model a Poisson
distribution with random variable -5 ⇠ %>8BB>=(_5 ). Pois-
son distribution is commonly applied to describe request
arrival patterns [22, 26, 34, 56].
Sharing-aware estimation. We employ compound Pois-
son distribution for the sharing-aware invocation modeling.
Given the invocation history of a set of functions � , each
function 5 2 � is modeled by a function-speci�c Poisson
distribution with a random variable -5 ⇠ %>8BB>=(_5 ). Let

Algorithm 1: RainbowCake’s Pre-warming
1 async def SchedulePrewarm(function_id, IAT):
2 Sleep(IAT) /* Wait until next request */

3 if Available(function_id) is False then
/* Pre-warm if no warm ones */

4 PrewarmContainer(function_id, type=User)
5 else

/* Skip if warm containers exist */

6 pass
7 return
8 while function invocation arrives do
9 function_id function.get_id()

10 next_IAT Poisson(function_id, type=User)
/* Asynchronous execution */

11 SchedulePrewarm(function_id, next_IAT)

� (:) denote the set of functions equipping with :-type layer
within � , where : 2 {b, l, u}. For each container type : , we
compound the corresponding function-speci�c distributions
to be a Poisson distribution . (:) :

. (:) ⇠ %>8BB>=(_ (:) ) =
’

5 2� (: )

-5 , (2)

where _ (:) =
Õ

5 2� (: ) _5 . The compounded summand in Eq. 2
can be transformed to an equivalent exponential distribution
with the following cumulative distribution function (CDF):

⇠⇡� (G ; _ (:) ) =
(
1 � 4_ (: )G G � 0,
0 G < 0,

(3)

Using the CDF in Eq. 3, we can estimate the probability
of a given inter-arrival time (IAT) of the distribution, where
IAT is de�ned as the time interval between two consecutive
invocation arrivals. Inversely, given a quantile ? , the IAT of
type : can be derived from the quantile function of ⇢G? (_ (:) ):

��) (:, ?) = ⇠⇡��1 (?; _ (:) ) = �;=(1 � ?)
_ (:) , 0  ? < 1. (4)

Thus, by specifying ? , we can estimate an invocation ar-
riving in at most ��) (:, ?) time. Intuitively, the quantile ?
represents the con�dence of predicting future invocations—
the higher ? , the longer RainbowCake tends to keep partial
containers alive. RainbowCake further uses the estimated
IATs to determine pre-warming and keep-alive Time-to-Live
(TTL) decisions.

5.2 Layer-wise Pre-warming and Keep-alive
RainbowCake enforces TTL-based pre-warming and keep-
alive strategies when provisioning �ne-grained containers
layer-wise. However, pre-warming and keep-alive decisions
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Algorithm 2: RainbowCake’s Keep-alive
1 def ComputeTTL(container, IAT):
2 C  container.get_startup_latency()
3 < container.get_memory_footprint()
4 V  (U ⇥ C)/((1 � U) ⇥<) /* Equation 6 */

5 return Min(IAT, V)
6 while container timeouts do
7 function_id container.get_function_id()
8 layer container.get_type()
9 if layer is Bare then

/* Bare containers timeout */

10 container.kill()
11 else

/* User or Lang containers timeout */

12 container.downgrade()
13 layer container.get_type()
14 next_IAT Poisson(function_id, layer)
15 TTL ComputeTTL(container, next_IAT)
16 SetContainerTimeout(container, TTL)

are highly correlated with each other. Finding an optimal so-
lution is impractical in serverless platforms with sub-second
latency requirements (§4).

Therefore, we propose an event-driven heuristic algorithm
to dynamically adjust the length of pre-warming and keep-
alive TTLs in real-time. The event-driven design is aligned
with the serverless computing nature, where serverless func-
tion invocations are highly volatile, bursty, and usually trig-
gered by various user events. The algorithm utilizes sharing-
aware distributions modeled from historical invocation infor-
mation to adapt the length of TTLs. RainbowCake’s algorithm
consists of two parts: pre-warming and keep-alive.
Pre-warming. Upon the latest invocation arrives, Rainbow-
Cake’s container pool queries the function history to esti-
mate the IAT in Eq. 4. Then, the pool schedules a pre-warm
event after the IAT time to pre-warm a User container for the
function. When the event is scheduled, the container pool
�rst checks whether any idle User containers of the function
exist. If any, we ignore the pre-warming schedule since an
incoming invocation can directly reuse idle User containers
in the pool. Otherwise, we start pre-warming a User con-
tainer for the function. Pre-warmed containers proceed to
the keep-alive period immediately after startup, which can
further downgrade and be reused by other invocations.
Keep-alive. Every idle container needs to uninstall three
layers sequentially in a keep-alive period: User, Lang, and
Bare. Before transitioning to the next type, a container noti-
�es the container pool that stores the invocation distribution
models. The pool uses the corresponding distribution’s quan-
tile function to estimate the IAT of invocations in the next

type. We de�ne C (:) as the startup latency of installing the
dependencies of the corresponding layer, and de�ne < (:)

as the memory consumption of an idle container in type
: 2 {b, l, u}. The startup cost⇠ (:)

BC0ACD? in Eq. 1 is measured by
accumulating startup latency C (:) . Since CPU allocation can
be adjusted using CPU sharing techniques without terminat-
ing the container (e.g., cpu-shares in Linux cgroups [31]),
we measure the product of memory occupation < (:) and
idle time to account for resource waste cost⇠ (:)

<4<>A~ in Eq. 1
of an idle container. The startup latency and memory foot-
print of an idle container for a function is typically constant,
thus we use the average startup latency C̄ (:) and the average
memory occupation <̄ (:) :

C̄: =

Õ=
8=1 C

(:)
8

=
, <̄: =

Õ=
8=1<

(:)
8

=
, (5)

over the sliding window of = invocations of the function for
type : . We compute an upper bound V (:) for the predicted
IAT of : by assuming U ⇥ C̄ (:) = (1 � U) ⇥ <̄ (:)V (:) in Eq. 1:

V (:) :=
UC̄ (:)

(1 � U)<̄ (:) , : 2 {b, l, u}. (6)

The IAT upper bound V in Eq. 6 dictates the maximum du-
ration for a container to stay idle, thus constraining a con-
tainer’s memory waste cost cannot exceed its startup cost
of the function. The TTL length for function = keep-alive
decisions with quantile ? at : is given by

))!(=,:, ?) = min{��) (:, ?), V (:) }, : 2 {b, l, u}. (7)

Algorithms 1 and 2 summarize RainbowCake’s event-driven
pre-warming and keep-alive strategies. We design Rainbow-
Cake to make layer-wise pre-warming and keep-alive de-
cisions driven by invocations. The event-driven design ef-
�ciently shrinks the decision space, which has immense
exponential complexity analyzed in §4. We make decisions
of pre-warming and keep-alive separately, where invocation
arrivals trigger RainbowCake to make pre-warming decisions
and idle container timeouts trigger keep-alive decisions. Both
pre-warming and keep-alive require RainbowCake to per-
form a constant complexity of operations as described in
§5.2. Hence, RainbowCake’s pre-warming and keep-alive de-
cisions incur negligible operational overhead compared to
the original decision space.

5.3 Security
Container-sharing techniques have been vastly proposed in
recent years to better serve serverless computing [23, 36, 37,
40, 50]. Despite existing works claiming to share containers
among functions securely, one may question RainbowCake
for compromising security by sharing Lang and Bare con-
tainers. In RainbowCake’s design, we strictly follow server-
less computing work�ow and reverse the steps of container
startup to enable safe container sharing. All the functions
are enforced to run on RainbowCake as non-root users of

Compute Time-to-live given a 
container and its predicted IAT
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Algorithm 2: RainbowCake’s Keep-alive
1 def ComputeTTL(container, IAT):
2 C  container.get_startup_latency()
3 < container.get_memory_footprint()
4 V  (U ⇥ C)/((1 � U) ⇥<) /* Equation 6 */

5 return Min(IAT, V)
6 while container timeouts do
7 function_id container.get_function_id()
8 layer container.get_type()
9 if layer is Bare then

/* Bare containers timeout */

10 container.kill()
11 else

/* User or Lang containers timeout */

12 container.downgrade()
13 layer container.get_type()
14 next_IAT Poisson(function_id, layer)
15 TTL ComputeTTL(container, next_IAT)
16 SetContainerTimeout(container, TTL)

are highly correlated with each other. Finding an optimal so-
lution is impractical in serverless platforms with sub-second
latency requirements (§4).

Therefore, we propose an event-driven heuristic algorithm
to dynamically adjust the length of pre-warming and keep-
alive TTLs in real-time. The event-driven design is aligned
with the serverless computing nature, where serverless func-
tion invocations are highly volatile, bursty, and usually trig-
gered by various user events. The algorithm utilizes sharing-
aware distributions modeled from historical invocation infor-
mation to adapt the length of TTLs. RainbowCake’s algorithm
consists of two parts: pre-warming and keep-alive.
Pre-warming. Upon the latest invocation arrives, Rainbow-
Cake’s container pool queries the function history to esti-
mate the IAT in Eq. 4. Then, the pool schedules a pre-warm
event after the IAT time to pre-warm a User container for the
function. When the event is scheduled, the container pool
�rst checks whether any idle User containers of the function
exist. If any, we ignore the pre-warming schedule since an
incoming invocation can directly reuse idle User containers
in the pool. Otherwise, we start pre-warming a User con-
tainer for the function. Pre-warmed containers proceed to
the keep-alive period immediately after startup, which can
further downgrade and be reused by other invocations.
Keep-alive. Every idle container needs to uninstall three
layers sequentially in a keep-alive period: User, Lang, and
Bare. Before transitioning to the next type, a container noti-
�es the container pool that stores the invocation distribution
models. The pool uses the corresponding distribution’s quan-
tile function to estimate the IAT of invocations in the next

type. We de�ne C (:) as the startup latency of installing the
dependencies of the corresponding layer, and de�ne < (:)

as the memory consumption of an idle container in type
: 2 {b, l, u}. The startup cost⇠ (:)

BC0ACD? in Eq. 1 is measured by
accumulating startup latency C (:) . Since CPU allocation can
be adjusted using CPU sharing techniques without terminat-
ing the container (e.g., cpu-shares in Linux cgroups [31]),
we measure the product of memory occupation < (:) and
idle time to account for resource waste cost⇠ (:)

<4<>A~ in Eq. 1
of an idle container. The startup latency and memory foot-
print of an idle container for a function is typically constant,
thus we use the average startup latency C̄ (:) and the average
memory occupation <̄ (:) :

C̄: =

Õ=
8=1 C

(:)
8

=
, <̄: =

Õ=
8=1<

(:)
8

=
, (5)

over the sliding window of = invocations of the function for
type : . We compute an upper bound V (:) for the predicted
IAT of : by assuming U ⇥ C̄ (:) = (1 � U) ⇥ <̄ (:)V (:) in Eq. 1:

V (:) :=
UC̄ (:)

(1 � U)<̄ (:) , : 2 {b, l, u}. (6)

The IAT upper bound V in Eq. 6 dictates the maximum du-
ration for a container to stay idle, thus constraining a con-
tainer’s memory waste cost cannot exceed its startup cost
of the function. The TTL length for function = keep-alive
decisions with quantile ? at : is given by

))!(=,:, ?) = min{��) (:, ?), V (:) }, : 2 {b, l, u}. (7)

Algorithms 1 and 2 summarize RainbowCake’s event-driven
pre-warming and keep-alive strategies. We design Rainbow-
Cake to make layer-wise pre-warming and keep-alive de-
cisions driven by invocations. The event-driven design ef-
�ciently shrinks the decision space, which has immense
exponential complexity analyzed in §4. We make decisions
of pre-warming and keep-alive separately, where invocation
arrivals trigger RainbowCake to make pre-warming decisions
and idle container timeouts trigger keep-alive decisions. Both
pre-warming and keep-alive require RainbowCake to per-
form a constant complexity of operations as described in
§5.2. Hence, RainbowCake’s pre-warming and keep-alive de-
cisions incur negligible operational overhead compared to
the original decision space.

5.3 Security
Container-sharing techniques have been vastly proposed in
recent years to better serve serverless computing [23, 36, 37,
40, 50]. Despite existing works claiming to share containers
among functions securely, one may question RainbowCake
for compromising security by sharing Lang and Bare con-
tainers. In RainbowCake’s design, we strictly follow server-
less computing work�ow and reverse the steps of container
startup to enable safe container sharing. All the functions
are enforced to run on RainbowCake as non-root users of

Whenever a container ends its 
keep-alive period

Compute Time-to-live given a 
container and its predicted IAT
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Algorithm 2: RainbowCake’s Keep-alive
1 def ComputeTTL(container, IAT):
2 C  container.get_startup_latency()
3 < container.get_memory_footprint()
4 V  (U ⇥ C)/((1 � U) ⇥<) /* Equation 6 */

5 return Min(IAT, V)
6 while container timeouts do
7 function_id container.get_function_id()
8 layer container.get_type()
9 if layer is Bare then

/* Bare containers timeout */

10 container.kill()
11 else

/* User or Lang containers timeout */

12 container.downgrade()
13 layer container.get_type()
14 next_IAT Poisson(function_id, layer)
15 TTL ComputeTTL(container, next_IAT)
16 SetContainerTimeout(container, TTL)

are highly correlated with each other. Finding an optimal so-
lution is impractical in serverless platforms with sub-second
latency requirements (§4).

Therefore, we propose an event-driven heuristic algorithm
to dynamically adjust the length of pre-warming and keep-
alive TTLs in real-time. The event-driven design is aligned
with the serverless computing nature, where serverless func-
tion invocations are highly volatile, bursty, and usually trig-
gered by various user events. The algorithm utilizes sharing-
aware distributions modeled from historical invocation infor-
mation to adapt the length of TTLs. RainbowCake’s algorithm
consists of two parts: pre-warming and keep-alive.
Pre-warming. Upon the latest invocation arrives, Rainbow-
Cake’s container pool queries the function history to esti-
mate the IAT in Eq. 4. Then, the pool schedules a pre-warm
event after the IAT time to pre-warm a User container for the
function. When the event is scheduled, the container pool
�rst checks whether any idle User containers of the function
exist. If any, we ignore the pre-warming schedule since an
incoming invocation can directly reuse idle User containers
in the pool. Otherwise, we start pre-warming a User con-
tainer for the function. Pre-warmed containers proceed to
the keep-alive period immediately after startup, which can
further downgrade and be reused by other invocations.
Keep-alive. Every idle container needs to uninstall three
layers sequentially in a keep-alive period: User, Lang, and
Bare. Before transitioning to the next type, a container noti-
�es the container pool that stores the invocation distribution
models. The pool uses the corresponding distribution’s quan-
tile function to estimate the IAT of invocations in the next

type. We de�ne C (:) as the startup latency of installing the
dependencies of the corresponding layer, and de�ne < (:)

as the memory consumption of an idle container in type
: 2 {b, l, u}. The startup cost⇠ (:)

BC0ACD? in Eq. 1 is measured by
accumulating startup latency C (:) . Since CPU allocation can
be adjusted using CPU sharing techniques without terminat-
ing the container (e.g., cpu-shares in Linux cgroups [31]),
we measure the product of memory occupation < (:) and
idle time to account for resource waste cost⇠ (:)

<4<>A~ in Eq. 1
of an idle container. The startup latency and memory foot-
print of an idle container for a function is typically constant,
thus we use the average startup latency C̄ (:) and the average
memory occupation <̄ (:) :

C̄: =

Õ=
8=1 C

(:)
8

=
, <̄: =

Õ=
8=1<

(:)
8

=
, (5)

over the sliding window of = invocations of the function for
type : . We compute an upper bound V (:) for the predicted
IAT of : by assuming U ⇥ C̄ (:) = (1 � U) ⇥ <̄ (:)V (:) in Eq. 1:

V (:) :=
UC̄ (:)

(1 � U)<̄ (:) , : 2 {b, l, u}. (6)

The IAT upper bound V in Eq. 6 dictates the maximum du-
ration for a container to stay idle, thus constraining a con-
tainer’s memory waste cost cannot exceed its startup cost
of the function. The TTL length for function = keep-alive
decisions with quantile ? at : is given by

))!(=,:, ?) = min{��) (:, ?), V (:) }, : 2 {b, l, u}. (7)

Algorithms 1 and 2 summarize RainbowCake’s event-driven
pre-warming and keep-alive strategies. We design Rainbow-
Cake to make layer-wise pre-warming and keep-alive de-
cisions driven by invocations. The event-driven design ef-
�ciently shrinks the decision space, which has immense
exponential complexity analyzed in §4. We make decisions
of pre-warming and keep-alive separately, where invocation
arrivals trigger RainbowCake to make pre-warming decisions
and idle container timeouts trigger keep-alive decisions. Both
pre-warming and keep-alive require RainbowCake to per-
form a constant complexity of operations as described in
§5.2. Hence, RainbowCake’s pre-warming and keep-alive de-
cisions incur negligible operational overhead compared to
the original decision space.

5.3 Security
Container-sharing techniques have been vastly proposed in
recent years to better serve serverless computing [23, 36, 37,
40, 50]. Despite existing works claiming to share containers
among functions securely, one may question RainbowCake
for compromising security by sharing Lang and Bare con-
tainers. In RainbowCake’s design, we strictly follow server-
less computing work�ow and reverse the steps of container
startup to enable safe container sharing. All the functions
are enforced to run on RainbowCake as non-root users of

Whenever a container ends its 
keep-alive period

Compute Time-to-live given a 
container and its predicted IAT

Terminate if a Bare container 
times out
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Algorithm 2: RainbowCake’s Keep-alive
1 def ComputeTTL(container, IAT):
2 C  container.get_startup_latency()
3 < container.get_memory_footprint()
4 V  (U ⇥ C)/((1 � U) ⇥<) /* Equation 6 */

5 return Min(IAT, V)
6 while container timeouts do
7 function_id container.get_function_id()
8 layer container.get_type()
9 if layer is Bare then

/* Bare containers timeout */

10 container.kill()
11 else

/* User or Lang containers timeout */

12 container.downgrade()
13 layer container.get_type()
14 next_IAT Poisson(function_id, layer)
15 TTL ComputeTTL(container, next_IAT)
16 SetContainerTimeout(container, TTL)

are highly correlated with each other. Finding an optimal so-
lution is impractical in serverless platforms with sub-second
latency requirements (§4).

Therefore, we propose an event-driven heuristic algorithm
to dynamically adjust the length of pre-warming and keep-
alive TTLs in real-time. The event-driven design is aligned
with the serverless computing nature, where serverless func-
tion invocations are highly volatile, bursty, and usually trig-
gered by various user events. The algorithm utilizes sharing-
aware distributions modeled from historical invocation infor-
mation to adapt the length of TTLs. RainbowCake’s algorithm
consists of two parts: pre-warming and keep-alive.
Pre-warming. Upon the latest invocation arrives, Rainbow-
Cake’s container pool queries the function history to esti-
mate the IAT in Eq. 4. Then, the pool schedules a pre-warm
event after the IAT time to pre-warm a User container for the
function. When the event is scheduled, the container pool
�rst checks whether any idle User containers of the function
exist. If any, we ignore the pre-warming schedule since an
incoming invocation can directly reuse idle User containers
in the pool. Otherwise, we start pre-warming a User con-
tainer for the function. Pre-warmed containers proceed to
the keep-alive period immediately after startup, which can
further downgrade and be reused by other invocations.
Keep-alive. Every idle container needs to uninstall three
layers sequentially in a keep-alive period: User, Lang, and
Bare. Before transitioning to the next type, a container noti-
�es the container pool that stores the invocation distribution
models. The pool uses the corresponding distribution’s quan-
tile function to estimate the IAT of invocations in the next

type. We de�ne C (:) as the startup latency of installing the
dependencies of the corresponding layer, and de�ne < (:)

as the memory consumption of an idle container in type
: 2 {b, l, u}. The startup cost⇠ (:)

BC0ACD? in Eq. 1 is measured by
accumulating startup latency C (:) . Since CPU allocation can
be adjusted using CPU sharing techniques without terminat-
ing the container (e.g., cpu-shares in Linux cgroups [31]),
we measure the product of memory occupation < (:) and
idle time to account for resource waste cost⇠ (:)

<4<>A~ in Eq. 1
of an idle container. The startup latency and memory foot-
print of an idle container for a function is typically constant,
thus we use the average startup latency C̄ (:) and the average
memory occupation <̄ (:) :

C̄: =

Õ=
8=1 C

(:)
8

=
, <̄: =

Õ=
8=1<

(:)
8

=
, (5)

over the sliding window of = invocations of the function for
type : . We compute an upper bound V (:) for the predicted
IAT of : by assuming U ⇥ C̄ (:) = (1 � U) ⇥ <̄ (:)V (:) in Eq. 1:

V (:) :=
UC̄ (:)

(1 � U)<̄ (:) , : 2 {b, l, u}. (6)

The IAT upper bound V in Eq. 6 dictates the maximum du-
ration for a container to stay idle, thus constraining a con-
tainer’s memory waste cost cannot exceed its startup cost
of the function. The TTL length for function = keep-alive
decisions with quantile ? at : is given by

))!(=,:, ?) = min{��) (:, ?), V (:) }, : 2 {b, l, u}. (7)

Algorithms 1 and 2 summarize RainbowCake’s event-driven
pre-warming and keep-alive strategies. We design Rainbow-
Cake to make layer-wise pre-warming and keep-alive de-
cisions driven by invocations. The event-driven design ef-
�ciently shrinks the decision space, which has immense
exponential complexity analyzed in §4. We make decisions
of pre-warming and keep-alive separately, where invocation
arrivals trigger RainbowCake to make pre-warming decisions
and idle container timeouts trigger keep-alive decisions. Both
pre-warming and keep-alive require RainbowCake to per-
form a constant complexity of operations as described in
§5.2. Hence, RainbowCake’s pre-warming and keep-alive de-
cisions incur negligible operational overhead compared to
the original decision space.

5.3 Security
Container-sharing techniques have been vastly proposed in
recent years to better serve serverless computing [23, 36, 37,
40, 50]. Despite existing works claiming to share containers
among functions securely, one may question RainbowCake
for compromising security by sharing Lang and Bare con-
tainers. In RainbowCake’s design, we strictly follow server-
less computing work�ow and reverse the steps of container
startup to enable safe container sharing. All the functions
are enforced to run on RainbowCake as non-root users of

Compute Time-to-live given a 
container and its predicted IAT

Terminate if a Bare container 
times out
Otherwise, fit Poisson 
distribution to predict next Inter-
Arrival Time (IAT)



Implementation
RainbowCake is prototyped on top of Docker and Apache OpenWhisk
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environment

Lang Layer

OpenWhisk’s 

Java/Python/Node.js


runtimes

OpenWhisk’s 

Container Proxy

User Layer Pre-warming 
 & Keep-alive

OpenWhisk’s

Container Pool



Evaluation
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Histogram: Shahrad, Mohammad, et al. “Serverless in the Wild: Characterizing and Optimizing the Serverless…” ATC’20

FaaSCache: Fuerst, Alexander, et al. "SeBS: A Serverless Benchmark Suite for Function-as-a-Service Computing." ASPLOS’21

SEUSS: Cadden, James, et al. "SEUSS: Skip Redundant Paths to Make Serverless Fast." EuroSys’20

Pagurus: Li, Zijun, et al. "Help Rather Than Recycle: Alleviating Cold Startup in Serverless Computing…” ACSOS 20

Baselines

OpenWhisk default

Histogram

FaaSCache


SEUSS

Pagurus

Metrics

Function response latency

Memory waste

Traces

Azure Functions traces 

8-hour workloads

Testbed

3 nodes

140 AMD EPYC CPU cores


240 GB Memory
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RainbowCake achieves similar or better function 
and invocation latency than other baselines

function
invocation



Memory Footprint
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RainbowCake significantly reduces memory waste 
compared to other baselines
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Combining container 
caching and sharing

Layer-wise pre-warming  
and keep-alive decisions

Mitigating cold-starts with 
minimal memory waste

RainbowCake
68%
Function startup latency reduction

77%
Memory waste reduction



RainbowCake Code Repo: 
https://github.com/IntelliSys-Lab/RainbowCake-ASPLOS24 
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