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ABSTRACT

Most existing model poisoning attacks in federated learning (FL)

control a set of malicious clients and share a fixed number of mali-

cious gradients with the server in each FL training round, to achieve

a desired tradeoff between the attack impact and the attack budget.

In this paper, we show that such a tradeoff is not fundamental and

an adaptive attack budget not only improves the impact of attack

A but also makes it more resilient to defenses. However, adaptively

determining the number of malicious clients that share malicious

gradients with the central server in each FL training round has

been less investigated. This is due to the fact that most existing

model poisoning attacks mainly focus on FL optimization itself

to maximize the damage to the global model, and largely ignore

the impact of the underlying deep neural networks that are used

to train FL models. Inspired by recent findings on critical learn-

ing periods (CLP), where small gradient errors have irrecoverable

impact on model accuracy, we advocate CLP augmented model

poisoning attacks A-CLP in this paper. A-CLP merely augments

an existing model poisoning attack A with an adaptive attack bud-

get scheme. Specifically, A-CLP inspects the changes in federated

gradient norms to identify CLP and adaptively adjusts the number

of malicious clients that share their malicious gradients with the

server in each round, leading to dramatically improved attack im-

pact compared to A by up to 6.85×, with a smaller attack budget.

This in turn improves the resilience ofA by up to 2×. SinceA-CLP
is orthogonal to the attack A, it also crafts malicious gradients by

solving a difficult optimization problem. To tackle this challenge

and based on our understandings of A-CLP, we further relax the in-
ner attack subroutineA inA-CLP and design GraSP, a lightweight
CLP augmented similarity-based attack. We show that GraSP not
only is more flexible but also achieves an improved attack impact

compared to the strongest of existing model poisoning attacks.
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1 INTRODUCTION

Federated learning (FL) [39] has emerged as an attractive distributed

learning paradigm that leverages a large number of untrusted clients
to collaboratively learn a global model, with training data on each

client. A central server repeatedly coordinates clients and collects

their local model updates computed using their local data, aggre-

gates clients’ updates using an aggregation rule, and finally uses

aggregated updates to tune the global model, which is broadcast to

a subset of clients at the beginning of each training round.

Unfortunately, FL is susceptible to poisoning by malicious clients

compromised by an adversary [11, 14, 26, 30, 36, 49, 64], who ham-

pers the global models’ accuracy by instructing malicious clients to

share malicious gradients with the server. Most existing untargeted

model poisoning attacks, such as Fang [18], LIE [6], Min-Sum/Min-

Max [48] and MPHM [50], control a set of malicious clients M. In

each training round, attackA crafts the gradients of a fixed number

of malicious clients (i.e., a subset of M), and shares their malicious

gradients with the central server for global model update.

Tradeoff between the attack impact and the attack budget.

However, choosing the number of malicious clients that share ma-

licious gradients
1
with the central server in each FL training round

presents a seemingly inherent tradeoff between the attack impact
(measured by the reduction in model accuracy) and the attack

1
Unless otherwise specified, in the rest of this paper, we refer to “malicious clients”

only as those that share malicious gradients with the central server for global model

update in each FL training round. Such malicious clients are a subset of the total

compromised clients controlled by the adversary.
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budget (the average number of malicious clients per round). For

example, when training a FL model using Multi-krum aggregation

rule [10] on CIFAR-10 with AlexNet, Fang, LIE, Min-Sum and Min-

Max with an attack budget of 25% of the total clients are 3.75×, 4.2×,
2.7× and 3.8× more impactful than those with an attack budget of

10% of the total clients [48]. However, such attack impact improve-

ments are at the cost of sharing more malicious gradients in each

FL training round, which in turn requires the adversary to invoke

more malicious clients (see Section 3.4 for details).

This raises a fundamental question:

Is this observed tradeoff between the attack impact and the
attack budget fundamental?

In this paper, we show that such a tradeoff is not fundamental

but a mere artifact of using a fixed attack budget throughout the FL

training process. In other words, if the attack budget is adaptively

tuned, i.e., the number of malicious clients is adaptively tuned over

FL training rounds, then both the attack impact and the adversary’s

resilience can be significantly improved, compared against the case

with a fixed number of malicious clients in each FL training round.

The gap between the literature and the practice. However,

determining the number of malicious clients in an adaptive manner
during the training process has been less investigated in the liter-

ature. This is due to the fact that most existing model poisoning

attacks mainly focus on the FL optimization itself to maximize the

distance between benign and malicious clients, and largely ignore

the impact of the underlying deep neural networks (DNNs) that are
used to train the FL models. As a result, existing model poisoning

attacks implicitly assume that all FL training phases are equally

important, and hence consistently craft gradients of a fixed num-

ber of malicious clients in each training round. Unfortunately, this

assumption has recently been revealed to be invalid due to the

existence of critical learning periods (CLP), i.e., the final quality

of a DNN model is determined by the first few training rounds,

in which deficits such as low quality or quantity of training data

cause irreversible model degradation. Notably, this phenomenon

has been revealed in the latest series of works in both centralized

and federated settings [1, 19, 20, 28, 29, 62, 63]. Given this phenom-

enon, it is imperative that advanced poisoning attacks evolve to

leverage these nuances. By focusing on exploiting the identified vul-

nerabilities during CLPs, we can unveil FL’s susceptibilities as well

as contribute to fortifying its defenses against adversarial attacks

[3, 12, 16, 43, 64, 67]. This dual focus not only propels technical

advancements but also underscores the ethical responsibility to

ensure FL’s secure deployment in real-world applications.

Our contributions.We build upon these aforementioned works

and extend the notion of CLP tomodel poisoning attacks to Byzantine-

robust FL.

1. A-CLP: CLP Aware Model Poisoning Attacks.We attribute

the power of adaptive attack budget to the CLP, and advocate CLP
aware model poisoning attacks (A-CLP), which merely augments

a model poisoning attack A with an adaptive scheme for the at-

tack budget (i.e., to determine the number of malicious clients) in

each FL training round. Hence, A-CLP is orthogonal to attack A
since it does not change how attack A crafts malicious gradients.

Specifically, A-CLP first identifies CLP in an online manner using

an easy-to-compute federated gradient norm metric, and then adap-

tively adjusts the number of malicious clients in each FL training

round. We show that a larger attack budget is only required during

CLP. As a result, A-CLP significantly improves the impact of A
attack itself while maintaining a smaller attack budget on average.

This in turn improves the resilience of attack A and makes it less

easier to be defeated by state-of-the-art defenses, such as FLTrust

[12], SparseFed [43], cosDefense [16], FLAIR [3] and LeadFL [67].

Extensive experiments on two popular tasks (i.e., image clas-

sification and natural language processing) using five real-world

datasets (i.e., CIFAR-10, CIFAR-100, MNIST, Fashion-MNIST, and

the Shakespeare) across several representative models (i.e., AlexNet,

VGG-11, ResNet-18, and LSTM) show that when augmenting the

strongest state-of-the-art model poisoning attacks, e.g., Fang, LIE,

Min-Sum/Min-Max and MPHM [50], our A-CLP results in up to

6.85× more accuracy reduction compared to A itself (i.e., without

being CLP aware). Moreover, when facing state-of-the-art defensive

mechanisms, A-CLP not only sustains efficacy but also enhances

the resilience of A by up to 2×.
The limitation of A-CLP: To achieve the above desired trade-

off, one needs to specify the inner attack subroutine A in A-CLP.
The goal of most existing model poisoning attacks A is to deviate

the global model parameter the most towards the inverse of the
direction along which the global model parameter would change

without being attacked in each FL training round. However, op-

timizing such a global objective becomes difficult due to highly

non-linear constraints, large state space of local models and non-

IID local data at each client [37]. As a result, either sub-optimal

approximation techniques [18] or a fixed perturbation to malicious

gradients is assumed [48], with attack efficiency highly dependent

on these artificial hyperparameters. Exacerbating the problem is the

fact that full knowledge of the FL central server’s aggregation rule

is often required; however, the practice is often on the other side

since FL platforms can conceal the details and/or the parameters of

their Byzantine-robust aggregation rule to protect the security of

the proprietary global model.

2. GraSP: CLP Aware Similarity-based Attack. To address the

aforementioned limitation and based on our understandings on

A-CLP, we further relax the inner attack subroutine (i.e., A) in

A-CLP so as to make it be better integrated with the existing of

CLP in FL training process via a lightweight similarity-based poi-

soning attack. This results in a CLP aware gradient-similarity-based
poisoning attack, dubbed as GraSP. Our key insight is that it is suffi-

cient to approximate an inverse direction that deviates the gradient

updates of malicious clients based on the proximities between the

adversary’s local updates, but not necessarily the most towards

the inverse direction of the global model update as done in most

existing model poisoning attacks.

To this end, we adopt a simple cosine similarity as a proximity

between clients’ gradients, and relax the adversary’s goal to com-

promise a set of malicious clients such that the cosine similarity be-

tween after-attacked aggregated gradient and that of before-attack

is beyond an attack threshold 𝜏 . Such a relaxation not only makes

GraSP significantly computationally efficient compared to A-CLP,
but also ensures that GraSP achieves an improved attack impact by

up to 1.4× compared to A-CLP on CIFAR-10, CIFAR-100, MNIST,

Fashion-MNIST and the Shakespeare datasets across several models.
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A closer look reveals that the flexible attack threshold, rather than

a maximal attack, makesA fit better with the existence of CLP, e.g.,

GraSP has a larger gradient magnitude than A, especially during

CLP. This contributes to the superior performance of GraSP.
We summarize our key contributions as follows:

• We advocate the CLP aware model poisoning attack A-CLP
that enables an existing attack A to adaptively determine the num-

ber of malicious clients in each FL training round by identifying

CLP via an easy-to-compute federated gradient norm. A-CLP in-
creases A’s effectiveness and resilience without sacrificing the

attack budget (See Section 3).

•We further propose GraSP, a CLP aware similarity-based attack,

which crafts malicious gradients based on an attack threshold, and

hence is more flexible and easy to implement (See Section 4).

2 BACKGROUND

Federated Learning (FL) leverages a large set of clients, denoted

as N = {1, · · · , 𝑁 }, to collaboratively learn a model with decen-

tralized data under the coordination of a central server. Formally,

the goal of FL is to solve an optimization problem, which can be

decomposed as: min
w∈R𝑑 𝐹 (w) := ∑

𝑖∈N 𝑝𝑖 · 𝐹𝑖 (w), where 𝐹𝑖 (w) =
1

|D𝑖 |
∑
𝜉∈D𝑖

ℓ𝑖 (w; 𝜉) is the local loss function associated with client

𝑖’s dataset D𝑖 , and 𝑝𝑖 = |D𝑖 |/
∑
𝑖 |D𝑖 | is the relative sample size.

Critical Learning Periods. Recent works have revealed that the

first few training epochs—known as critical learning periods (CLP)—

determine the final quality of a DNN model in centralized learning.

During CLP, deficits such as low quality or quantity of training data

will cause irreversible model degradation, no matter how much

additional training is performed after CLP. The existence of CLP in

FL was recently discovered in [62]. However, studying CLP hinged

on a costly information metric (e.g., eigenvalues of the Hessian) that

emerges after the full training, limiting their practical benefits. We

differ from most existing works by developing an easy-to-compute

metric to identify CLP during the training process in an online

manner, which can be easily leveraged to adaptively determine the

attack budget for the adversary.

Poisoning Attacks on FL. FL is vulnerable to various poisoning

attacks, which can be categorized into two classes based on the

adversary’s goal and capabilities. On one hand, an attack can be

either untargeted [6, 17, 18, 38, 48, 60, 64], targeted [7, 15, 52], or

backdoor [4, 5, 42, 53, 57, 58, 61, 68] based on the goal of the ad-

versary, among which untargeted attacks can completely cripple

the global model and hence pose more severe threats to FL. On the

other hand, an attack can be eithermodel [5, 7, 17, 18, 47, 48, 60, 64]
or data [27, 40, 47] poisoning based on the capabilities of the adver-

sary, among which model poisoning attacks often achieve higher

attack impacts on FL. Therefore, our research focuses on untar-

geted model poisoning attacks in FL due to their broad and severe

impact on model accuracy across all inputs, presenting a greater

challenge than targeted attacks. Notably, advanced attacks such

as Min-Max/Min-Sum [48] and MPHM [50] successfully bypassed

Byzantine-robust algorithms such as Krum [10] and Trimmed-mean

[59, 66], underscoring their effectiveness. The emergence of corre-

sponding defenses such as FLTrust [12], SparseFed [43], and LeadFL

[67] against these threats marks a pivotal shift in research towards
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Figure 1: FL under model poisoning attacks exhibits CLP,

where the Min-Max attack occurs in (#1) rounds 0-20; (#2)

rounds 20-40; (#3) rounds 40-60; (#4) rounds 60-80; and (#5)

rounds 80-100, respectively.

tackling these security issues, highlighting the pressing need for

effective countermeasures.

Adversary’s Goal is to craft malicious gradients such that the

accuracy of the global model reduces indiscriminately, i.e., on any

test input [8, 9, 27, 35, 46, 56, 65]. This is also known as untargeted

model poisoning attack.

Adversary’s Capability. The adversary has control over𝑀 out to

𝑁 total clients, which is assumed to be less than 50%, i.e.,𝑀/𝑁 <

50% [18, 48]; otherwise, no Byzantine-robust aggregation rule will

be able to defeat poisoning attacks. Following previous works [5–7,

18, 24, 48, 59], the adversary can access the global model parameters

in each round and directly craft the gradients on malicious clients.

In each FL training round, the adversary invokes 𝑀′
out of 𝑀

malicious clients, and the central server selects 𝑛 out of 𝑁 clients

for model update, among which𝑚 are malicious.

Adversary’s Knowledge can be characterized along two dimen-

sions: aggregation rule and gradient updates shared by benign

devices. In particular, many previous works [6, 18, 48, 59] assume

full access to both knowledge, which has limited practical signif-

icance. For example, to protect the security of proprietary global

models, FL platforms can conceal details and/or parameters of their

robust aggregation rule, and hence the assumption of full knowl-

edge of aggregation rule is not realistic. Instead, we consider a more

practical and challenging setting where the adversary is agnostic to
the aggregation rule and gradient updates shared by benign clients,

i.e., the adversary only knows gradient updates on malicious clients.

Since the adversary does not know the aggregation rule, we need

to manipulate local updates for malicious clients based on a certain

aggregation rule. To our best knowledge, only [48] considered a

similar setting as ours.

3 A-CLP: CLP AWARE MODEL POISONING

ATTACKS

In this section, we advocate CLP aware model poisoning attack

A-CLP, which is orthogonal to attackA. Unlike altering the method

of generating malicious gradients by A, A-CLP enhances A with

an adaptive approach to dynamically adjust the number ofmalicious

clients𝑚(𝑡) for each round 𝑡 , moving away from the static approach

of a constant𝑚(𝑡) ≡𝑚 for all rounds.

3.1 Model Poisoning Attacks to FL Exhibit CLP

We first show that FL under model poisoning attacks indeed ex-

hibits CLP. For illustration, we leverage one of the strongest model
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Figure 2: Detecting CLP via FGN and FedFIM, where the shade

and double-arrows indicate identified CLP.

poisoning attacks, i.e., Min-Max when the underlying aggregation

rules are Multi-krum [10] and Trimmed-mean [59, 66] using non-

IID partitioned CIFAR-10 and Fashion-MNIST datasets. Inspired by

[1, 62], we consider five cases that Min-Max attack only occurs in

rounds (#1) 0-20; (#2) 20-40; (#3) 40-60; (#4) 60-80; and (#5) 80-100.

We consider a system with 𝑁 = 128 clients and the adversary con-

trols 𝑀 = 32 clients. In each round, the server randomly selects

𝑛 = 32 clients to participate in global model update, and the adver-

sary invokes 𝑀′ = 14 malicious clients to guarantee that𝑚 = 4

malicious clients are selected among the 𝑛 = 32 clients on average.

Detailed parameter settings are discussed in Section 3.5. Figure 1

reports attack impacts of Min-Max affected by rounds where the

attack occurs. All results consistently endorse that FL under model

poisoning attacks exhibits CLP: if the attack does not occur in early

training phases, its attack impact is significantly degraded. For in-

stance, when the attack occurs in rounds 0-20 (i.e., #1), the attack

impact is 5.5 under Trimmed-mean aggregation rule, while there

is almost no attack impact if that occurs in round 80-100 (i.e., #5).

Similar results hold for other attacks and hence are omitted here.

3.2 Identifying Critical Learning Periods

Prior works use the changes in eigenvalues of the Hessian or approx-

imating Hessian using Fisher information [1, 29, 62] as an indicator

to identify CLP. For example, [62] proposed the federated Fisher

information (FedFIM) to identify CLP, which is computationally ex-

pensive (see Figure 3 with discussions blow). We deviate from these

works by leveraging the computationally efficient federated gradi-

ent norm (FGN). Considering the difference in training loss for an

individual data sample 𝜉 , let 𝑔(w; 𝜉) = 𝜕
𝜕𝑤 ℓ (w; 𝜉) denote the gradi-

ent of the loss function evaluated on 𝜉 . After performing a step SGD

on this sample, the training loss Δℓ = ℓ (w − 𝜂𝑔(w; 𝜉); 𝜉) − ℓ (w; 𝜉)
can be approximated by its gradient norm using Taylor expan-

sion, i.e., Δℓ ≈ −𝜂∥𝑔(w; 𝜉)∥2. As a result, the overall training loss
at round 𝑡 , which we call it as FGN, can be approximated using

the weighted average of training loss across all selected clients,

i.e., FGN(𝑡) =
∑
𝑖∈N(𝑡 )

|D𝑖 |∑
𝑖∈N(𝑡 ) |D𝑖 | Δℓ𝑖 (𝑡). We then use a simple

threshold-based rule to identify CLP: if
FGN(𝑡 )−FGN(𝑡−1)

FGN(𝑡−1) ≥ 𝛿, then

the current training round 𝑡 is in CLP, where 𝛿 is the threshold used

to declare CLP.

We compare the CLP identified by FGN with that identified by

using FedFIM in [62]. When training AlexNet on non-IID CIFAR-10,

we observe that these two approaches yield similar results as shown

in Figure 2, where the shade and double-arrows indicate identified
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Figure 3: Computation time and memory consumption of

FGN and FedFIM approach to detect CLP.

Algorithm 1 A-CLP: CLP Aware Model Poisoning Attacks

1: for 𝑡 = 0, 1, · · · ,𝑇 − 1 do

2: if
FGN(𝑡 )−FGN(𝑡−1)

FGN(𝑡−1) ≥ 𝛿 then

3: The adversary invokes a larger number ofmalicious clients

to share malicious gradients (e.g., 2𝑚) with the central

server //More malicious clients during CLP

4: else

5: A smaller number of malicious clients is invoked to share

malicious gradients (e.g., 𝑚/2) with the central server

//Fewer malicious clients after CLP

6: end if

7: end for

CLP. However, the FGN approach is much more computationally

efficient, i.e., being orders of magnitude faster to compute, as shown

in Figure 3, where we implement our attacks in PyTorch [44] on

Python 3 with three NVIDIA RTX A6000 GPUs, 48GB with 128GB

RAM. Hence, the FGN approach can be easily leveraged for deter-

mining the number of malicious clients in each round during FL

training process in an online manner.

3.3 The Design of A-CLP
Per our discussions on CLP, the final model accuracy will be per-

manently impaired if not enough clients are involved in CLP no

matter how much additional training is performed after CLP [62].

Therefore, A-CLP automatically switches between a larger (e.g.,
2𝑚) and a smaller (e.g.,𝑚/2) number of malicious clients that attack

A shares their malicious gradients with the server in each round

by identifying CLP in FL, given that attack A without being CLP

aware always selects𝑚 malicious clients on average in each round

throughout the FL training process. Therefore, once the CLP is

identified, A-CLP increases the number of malicious clients that

A shares their malicious gradients with the server from𝑚 to 2𝑚,

implying that more clients now are being activated to improve the

attack impact on the global model during CLP. To save the attack

budget, A-CLP changes to share a smaller number (e.g.,𝑚/2) of
malicious gradients after CLP. Algorithm 1 summarizes A-CLP on

top of any existing attack A.

From a high-level perspective, A-CLP exploits more malicious

clients in the initial training phase than a fixed number of malicious

clients for A itself in each training round, to promptly craft the
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𝑀′
Method 𝑛 = 16 n=32 𝑛 = 48

𝑚 = 0.0625𝑛
Equation (1) 7 7 7

Simulation 7 7 7

𝑚 = 0.125𝑛
Equation (1) 14 14 14

Simulation 14 14 14

𝑚 = 0.25𝑛
Equation (1) 32 32 32

Simulation 32 32 32

Table 1: The number of malicious clients𝑀′
invoked by the

adversary so as to guarantee that on average 𝑚 malicious

clients are selected by the server.

global model with a higher attack impact since the initial learn-

ing phase plays a critical role in FL performance. However, the

performance improvement comparison is unfair since more ma-

licious clients are used during CLP. To address this, we decrease

the number of malicious clients after CLP. Our empirical results

show that this improves the attack budget without hurting the final

attack impact. The key point is that more malicious clients should

be involved in the global model update in the initial learning phase,

and only a smaller number of malicious clients is needed after CLP.

Remark 1. For simplicity and usability, we set the two numbers in
Algorithm 1 to be 2𝑚 during CLP, and𝑚/2 after CLP. However, our
design can be generalized to other larger and smaller numbers. See
the ablation study in Section 3.5.

3.4 Feasibility Guarantee for A-CLP
As aforementioned, the sever randomly selects a subset of 𝑛 clients

to participate in the global model update in each round. Note that

the adversary cannot interfere the server’s client selection. Instead,

the adversary can invoke more clients out of the𝑀 malicious clients

that it controlled in each round. A natural question is that to ensure
that𝑚, 2𝑚 or𝑚/2 malicious clients are among the 𝑛 clients being
selected by the central server, how many malicious clients out of𝑀
needed to be invoked by the adversary in each round?

In the following, we provide a theoretical performance guarantee

on the feasibility of A-CLP. Specifically, let𝑀′
be the number of

evoked malicious clients in each round by the adversary, satisfying

𝑀′ ≤ 𝑀 . The expected number of malicious clients 𝑚 selected

by the server is directly influenced by 𝑀′
. In the following, we

characterize the relations between𝑀′
and𝑚. Our key insight is that

this problem can be transformed into a hypergeometric distribution
problem [21, 22]. Specifically, let the number of malicious clients

selected by the server at each round be a random variable 𝑋 , which

follows the hypergeometric distribution, i.e., 𝑋 ∼ 𝐻 (𝑛,𝑀′, 𝑁 −𝑀 +
𝑀′). Our goal is to calculate the expected value of 𝑋 , satisfying

E[𝑋 ] = 𝑚. As
𝑛𝑀 ′

𝑁−𝑀+𝑀 ′ = 𝑚, we obtain 𝑀′ =
(𝑁−𝑀 )𝑚
𝑛−𝑚 . Since

𝑀′ ≤ 𝑀 , we have𝑚 ≤ 𝑛𝑀
𝑁

. As𝑀′
and𝑚 are both integer, we have

𝑀′ =

⌈
(𝑁 −𝑀)𝑚
𝑛 −𝑚

⌉
, 𝑚 ≤

⌈
𝑛𝑀

𝑁

⌉
. (1)

We numerically evaluate the performance of our proposed light-

weight method in Equation (1). Let 𝑁 = 128, 𝑛 = 32 and 𝑀 = 32.

We consider four random seeds and report the results by averaging

over 1, 000 independent runs in Table 1. When 𝑚 = 4 malicious

clients are selected, we have𝑀′ = 14, i.e., the adversary needs to

invoke 14 malicious clients out of 𝑀 = 32 clients that it controls.

Likewise, when 2𝑚 = 8 (resp.𝑚/2 = 2), the adversary needs to in-

voke𝑀′ = 32 (resp.𝑀′ = 7) malicious clients out of𝑀 = 32 clients

that it controls. All these cases are feasible since𝑀′ ≤ 𝑀 = 32. This

validates the feasibility of our design on A-CLP.

3.5 Evaluation of A-CLP
3.5.1 Experimental Setup.
• Datasets. We consider two tasks: (i) image classification us-

ing CIFAR-10, CIFAR-100 [32], MNIST and Fashion-MNIST [34]

datasets; and (ii) NLP for next-character prediction on the dataset

of The Complete Works of William Shakespeare (Shakespeare) [39].
We simulate a heterogeneous partition into 𝑁 clients by sampling

𝒑𝑖 ∼ Dir𝑁 (𝛼), where 𝛼 is the parameter of the Dirichlet distri-

bution. We choose 𝛼 = 0.5 in our main experiments as done in

[13, 18, 54, 55], and will numerically investigate its impact.

• Models. For image classification task, we consider four DNN

models: AlexNet [33], VGG-11 [51], ResNet-18 [23] and a fully

connected network (FC). In particular, we use AlexNet and VGG-11

as the global model architecture for CIFAR-10, ResNet-18 for CIFAR-

100, FC for MNIST and AlexNet for Fashion-MNIST, respectively.

For NLP task, we train a stacked character-level LSTM language

model as in [31, 39]. Note that our goal is not to achieve the largest
attack impact or rates for considered datasets using DNN architectures,
but rather to show that augmenting existing attacks A with CLP via
our A-CLP can significantly improve the attack impact of a state-of-
the-art poisoning attack A of the learned DNN classifiers.
• Baselines.We consider five strongest model poisoning attacks in

the literature, i.e., Fang [18], LIE [6], Min-Sum/Min-Max [48] and

MPHM [50]. As aforementioned, we consider a challenging case that

all attacks do not know the benign gradients. Finally, despite data

poisoning attack is relatively weaker compared to model poisoning

attack (see Section 2), for the sake of completeness, we augment

existing data poisoning attack named Label Flipping [18, 61] with

CLP to illustrate the importance of CLP awareness.

• Different CLP augmented schemes. To illustrate the impor-

tance of being CLP augmented and take attack budget into account,

we consider four schemes:

▷ Tradition (The original/default scheme): Attack A always

shares𝑚 malicious gradients in all FL training rounds.

▷ CL (The CLP augmented scheme): As in Algorithm 1, attack A
shares 2𝑚 malicious gradients with the server for model update in

each round during CLP, and𝑚/2 malicious gradients after CLP.

▷ RCL (The reverse CLP augmented scheme): In contrast to CL,

attack A shares𝑚/2 malicious gradients with the server for model

update in each round during CLP, and 2𝑚 malicious gradients after

CLP.

▷ BC-RCL (The budget-constrained RCL scheme): The total num-

ber of clients selected by attack A is the same as that of Tradition

throughout the whole FL training process.

Remark 2. As an illustrative example, the average attack budget
per round is shown in Figure 4, where we run AlexNet on non-IID
partitioned CIFA-10 over 200 rounds. In Tradition, attack A always
selects𝑚 = 4 malicious clients in each round. In CL, attack A selects
2𝑚 = 8 malicious clients during CLP and𝑚/2 = 2 malicious clients
afterwards, resulting in an average attack budget of 2.88 malicious
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Figure 4: The attack budget: A fixed average attack budget of

4 per round.

clients per round. Similarly, the average attack budgets under RCL
and BC-RCL are 7.12 and 4, respectively. As we will see later, CL
improves the attack impact ofA compared to Tradition with a lower
average attack budget. Likewise, though RCL has a higher average
attack budget, it even degrades the attack impact of A. This indicates
the importance of not only being CLP augmented, but also being
augmented in a proper manner.

• Parameter settings.We implement our attacks in PyTorch on

Python 3 with three NVIDIA RTX A6000 GPUs. We run each ex-

periment using four different random seeds and report the average

results. For ease of presentation, we omit the variances which are

observed to be small in our experiments. By default, we consider a

total number of 𝑁 = 128 clients in our experiments and the server

randomly selects 𝑛 = 32 clients to participate in the global model

update in each round. According to feasibility guarantee of A-CLP
(see Table 1), the adversary controls𝑀 = 32 clients, out of which

𝑀′ = 32 are activated during CLP and 𝑀′ = 7 after CLP so that

2𝑚 = 8 and𝑚/2 = 2 malicious clients can be chosen by the server

in each round before and after CLP, respectively. For attack A, it

needs to evoke 𝑀′ = 14 clients in each round so that𝑚 = 4 mali-

cious clients are selected on average. Each client applies 2 epochs

of the stochastic gradient descent to update its local model and

the server aggregates local model updates from all selected clients.

We set 200 rounds for all models on all datasets considered in this

paper. The local learning rate 𝜂 is initialized as 0.01 and decayed

by a constant factor 0.95 after each communication round. The

batch size is set to be 16. We set the weight decay to be 10
−4

and

the detection threshold 𝛿 = 0.01 in all of our experiments. The

Trimmed-mean aggregation rule prunes the largest and smallest 𝛽

parameters, where𝑚 ≤ 𝛽 ≤ 𝑛/2. By default, we consider 𝛽 = 2𝑚

as that is the default setting in [66].

3.5.2 Significance of CLP Awareness.
We evaluate A-CLP in terms of attack impact, attack budget and

resilience against defenses for all state-of-the-art attacks A consid-

ered in this paper using different models and aggregation rules. The

impacts of A attack and its corresponding CLP aware attacks are

summarized in Table 2. For ease of readability, we focus on show-

casing the results of the four most effective model poisoning attacks
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Figure 5: Comparisons of different CLP aware attacks to FL.

All attacks do not know the gradients on benign clients.

using AlexNet on non-IID partitioned CIFAR-10 with Multi-krum

aggregation rule in Figure 5.

• Improved attack impact. For any attack A, when augmented

by CLP (i.e., CL columns in Table 2 and CL curves in Figure 5), the

attack impact is dramatically improved compared to A itself (i.e.,

Trad. columns in Table 2 and Tradition curves in Figure 5).A-CLP
attack is 1.25× to 6.85× more impactful than A itself. For example,

when running AlexNet on non-IID CIFAR-10 with the underlying

aggregation rule of Bulyan, Fang has an attack impact of 9.4, while

augmenting it with CLP, the impact of Fang-CLP attack is 20.69,

i.e., ourA-CLP for Fang (i.e., Fang-CLP) is 2.2×more effective than

Fang itself. Take AlexNet on non-IID Fashion-MNIST with Multi-

krum aggregation rule as another example, the impact of Min-Sum

attack is 4.64, while the corresponding impact of Min-Sum-CLP
is 12.1, i.e., Min-Sum-CLP is 2.6× impactful than Min-Sum itself

without being augmented by CLP. We also notice the effectiveness

of Label Flipping attack when augmented by CLP. To be consistent

with the main theme of this paper and due to space constraint, we

will only focus on model poisoning attacks in the rest of this paper.

• Importance of properly leveraging CLP. To further advocate

the importance of being CLP aware in a proper manner, we consider
two variants, i.e., RCL and BC-RCL in Figure 5. On one hand,

RCL only exhibits a slightly better or even similar attack impact

as Tradition. In other words, if A only shares malicious gradients

from a smaller number of malicious clients during CLP, it will

require A to share malicious gradients from a much larger number

of malicious clients after CLP in order to achieve a slighter better

or even similar attack impact as Tradition. This finding on the

importance of being CLP aware in the FL training process and

properly leveraging CLP to adaptively determine the number of

malicious clients is consistent with recently reported observations

that the initial learning phase plays a key role in determining the

outcome of the training process [1, 62].

Further exacerbating the importance of properly leveraging CLP

is the fact that RCL achieves similar attack performance as Tra-

dition at the cost of a significant increase in the attack budget,

i.e., a 78% attack budget increase (i.e., average 7.12 vs. 4 attack per

round as shown in Figure 4). On the other hand, if we reduce the

attack budget, i.e., keeping the total attack budget the same as that

of Tradition, the impact of BC-RCL is significantly worse than

Tradition. This coincides with the intuition and the functionality

of CLP periods in FL training that if the learning models cannot

be sufficiently crafted in early training phases, additional attacks

cannot improve the attack impact.

• Necessity of properly leveraging CLP. Through the discus-

sions presented, it becomes evident that the strategic application

of CLP can enhance the efficacy of attacks while adhering to a
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Dataset

(Model)

Aggregation Rule

No Attack

(Accuracy)

Fang LIE Min-Max Min-Sum MPHM Label Flipping

Trad. CL Trad. CL Trad. CL Trad. CL Trad. CL Trad. CL

CIFAR-10

(AlexNet)

Multi-krum [10] 57.57 10.40 20.02 5.73 11.86 12.03 26.47 11.32 24.37 11.19 23.27 3.23 7.94

Bulyan [17] 56.34 9.40 20.69 7.50 12.99 7.98 20.90 6.53 16.95 8.15 20.73 4.89 10.54

Trimmed-mean [59, 66] 57.33 10.32 22.44 7.36 17.23 9.50 22.85 8.35 19.44 8.91 21.37 6.19 12.05

Median [59, 66] 55.46 11.73 22.62 10.89 18.44 9.10 20.48 7.91 18.44 9.03 20.14 6.95 13.04

AFA [41] 57.89 6.99 11.81 2.98 7.41 9.27 19.05 7.73 14.83 8.81 17.32 2.01 5.30

CIFAR-10

(VGG-11)

Multi-krum [10] 62.63 9.13 16.03 6.24 12.82 9.94 17.94 9.50 18.07 9.72 18.03 3.12 4.36

Bulyan [17] 63.37 15.16 22.53 13.46 19.56 14.91 21.85 14.54 21.52 14.88 21.69 7.13 11.60

Trimmed-mean [59, 66] 62.90 11.62 18.88 11.20 17.02 13.14 20.89 10.09 20.95 12.53 20.34 5.54 11.08

Median [59, 66] 60.13 15.23 23.58 12.80 15.98 15.05 23.00 14.38 23.34 14.49 23.56 5.44 7.67

AFA [41] 62.75 7.21 10.58 6.26 8.55 8.54 11.55 7.87 11.09 8.19 11.41 4.43 6.18

CIFAR-100

(ResNet-18)

Multi-krum [10] 34.89 17.68 25.62 5.33 11.09 16.62 25.53 10.69 20.23 18.49 25.22 3.29 6.02

Bulyan [17] 35.21 14.28 16.61 8.15 11.67 12.58 19.11 10.36 14.93 13.72 18.62 4.65 8.75

Trimmed-mean [59, 66] 35.26 10.01 18.49 7.85 9.41 10.60 18.20 11.17 19.62 10.93 19.34 5.70 8.19

Median [59, 66] 34.79 12.41 23.59 4.97 9.71 9.83 21.18 9.68 17.93 12.37 23.90 3.10 6.84

AFA [41] 34.59 9.94 11.85 2.05 6.33 9.33 13.70 8.12 13.38 10.13 13.93 1.59 3.67

MNIST

(FC)

Multi-krum [10] 97.02 1.59 2.06 0.26 0.96 1.51 2.32 1.47 2.25 1.49 2.30 0.04 0.72

Bulyan [17] 97.21 1.36 1.88 0.84 1.18 1.32 2.14 1.23 2.06 1.28 2.09 0.34 1.02

Trimmed-mean [59, 66] 97.24 1.49 2.05 0.24 0.93 1.35 2.28 1.35 2.23 1.32 2.27 0.08 0.62

Median [59, 66] 96.93 1.51 2.03 0.31 1.00 1.31 2.15 1.25 2.12 1.27 2.16 0.08 0.57

AFA [41] 97.20 1.27 1.70 0.13 0.89 1.28 2.06 1.28 2.08 1.29 2.10 0.02 0.52

Fashion

MNIST

(AlexNet)

Multi-krum [10] 83.24 5.97 11.05 3.51 6.30 5.06 15.05 4.64 12.10 5.80 15.37 2.08 2.69

Bulyan [17] 83.12 7.79 20.58 3.95 7.42 6.80 13.24 5.51 12.88 7.95 20.34 1.62 3.97

Trimmed-mean [59, 66] 83.53 6.10 9.39 4.46 11.62 5.21 8.75 4.93 8.57 6.02 11.77 2.66 3.42

Median [59, 66] 81.81 5.34 8.88 5.84 10.65 4.27 8.25 4.14 8.72 5.49 9.21 1.23 2.66

AFA [41] 83.97 4.04 6.46 2.96 5.09 4.91 9.49 3.62 7.57 4.86 9.30 2.26 3.91

Shakespeare

(LSTM)

Multi-krum [10] 47.14 9.65 11.94 2.65 4.73 8.80 11.75 8.08 11.07 8.23 11.29 1.68 3.34

Bulyan [17] 46.52 10.38 13.71 1.63 3.48 8.25 12.14 7.71 11.50 7.99 11.60 1.22 2.69

Trimmed-mean [59, 66] 46.93 9.03 12.18 2.23 3.98 8.26 11.12 7.92 10.76 8.04 10.98 1.53 3.26

Median [59, 66] 45.76 9.09 11.53 1.37 3.16 7.45 10.38 7.05 9.96 7.25 9.52 1.05 2.44

AFA [41] 47.41 7.19 10.14 4.09 5.50 8.58 10.98 8.47 9.91 8.36 9.68 1.43 2.97

Table 2: The attack impact for state-of-the-art model poisoning attack A and the corresponding CLP aware attack A-CLP under

various threats using non-IID partitioned datasets when benign gradients are unknown to attack A.

Dataset

(Model)

Case

Multi-krum Trimmed-mean

Trad. CL RCL BC-RCL Trad. CL RCL BC-RCL

CIFAR-10

(AlexNet)

Fixed 12.03 26.47 18.89 8.23 9.50 22.85 14.51 5.60

Random 12.03 11.48 27.94 11.83 9.50 8.92 23.53 8.95

Missing 9.32 19.27 15.38 8.12 8.54 16.51 12.29 7.88

Fashion

MNIST

(AlexNet)

Fixed 5.06 15.05 12.24 4.89 5.21 8.75 6.44 5.03

Random 5.06 4.91 15.89 5.57 5.21 4.72 8.59 4.88

Missing 3.13 12.43 10.50 3.19 3.78 6.18 5.23 3.41

Shakespeare

(LSTM)

Fixed 8.80 11.75 9.47 7.63 8.26 11.12 8.92 7.39

Random 8.80 9.07 11.54 8.45 8.26 7.74 11.43 8.53

Missing 6.23 9.81 8.87 5.62 5.69 9.03 8.19 5.05

Table 3: The necessity of properly leveraging CLP: The attack

impact under Min-Max attack.

constrained budget. To elucidate the importance of employing CLP

judiciously, we examine two scenarios, which underscore the effec-

tiveness of employing fixed-scheme methodologies: (1) “Random”.

Similar to the budget allocation in Figure 4, we maintain an fixed

average attack budget of 4 per round. Different from Figure 4, we

now “randomly” allocate the budget in each round for “CL”, “RCL”,

and “BC-RCL” as shown in Figure 6. (2)Missing. In practice, the

attacker may lose connectivity with the FL training process in some

rounds. Specifically, we assume that with probability of 30%, the

attacks may not be executed in each training round. As observed

from Table 3, CLP-augmented method robustly outperforms the

default scheme (without CLP awareness) across all scenarios with

a notably high attach impact. This further affirm the validity of our
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Figure 6: The attack budget is randomly allocated over train-

ing rounds.

proposed CLP aware attacks. Finally, we note that in scenarios char-

acterized by randomness, the RCL approach emerges as the most

effective, attributing to its utilization of the maximum attack budget.

This underscores a critical insight: the improper leverage of CLP

can significantly diminish performance, reinforcing the necessity

for strategic CLP application to optimize outcomes.
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Dataset

(Model)

Defense

Fang Min-Max Min-Sum MPHM

Trad. CL Trad. CL Trad. CL Trad. CL

CIFAR-10

(AlexNet)

FLTrust 4.74 10.35 5.21 12.79 5.57 11.76 6.13 13.26

SparseFed 6.84 11.73 6.32 12.61 6.22 12.46 7.03 12.68

cosDefense 5.71 11.40 6.35 13.47 5.96 12.56 6.15 13.22

FLAIR 6.57 12.53 7.27 13.81 8.03 14.13 7.53 14.01

LeadFL 6.31 10.06 5.12 9.96 6.20 11.49 6.36 11.60

CIFAR-10

(VGG-11)

FLTrust 1.57 2.85 1.30 3.23 1.74 2.25 1.57 2.77

SparseFed 2.71 4.63 2.60 4.42 2.57 4.02 3.01 4.88

cosDefense 3.07 4.52 2.42 4.64 3.41 4.55 3.43 4.74

FLAIR 2.86 4.25 3.05 4.96 4.01 5.04 3.76 4.79

LeadFL 1.31 2.43 0.88 2.65 0.73 2.15 1.18 2.86

CIFAR-100

(ResNet-18)

FLTrust 3.10 4.49 2.45 5.19 2.43 5.47 2.99 5.73

SparseFed 3.32 6.25 2.64 5.01 2.95 5.39 3.21 5.57

cosDefense 3.39 5.42 4.51 5.56 3.62 5.85 5.39 6.45

FLAIR 3.38 4.97 4.94 6.25 5.20 5.96 6.25 7.10

LeadFL 1.85 3.55 0.97 3.95 0.82 3.72 2.19 4.34

MNIST

(FC)

FLTrust 1.33 1.66 1.37 2.10 1.31 2.03 1.39 2.16

SparseFed 1.22 1.65 1.12 1.81 1.53 1.79 1.60 1.84

cosDefense 1.09 1.78 1.48 2.05 1.20 1.94 1.37 2.00

FLAIR 1.28 1.58 1.01 1.93 1.24 2.07 1.18 2.05

LeadFL 1.23 1.63 1.07 1.99 1.19 2.08 1.30 2.03

Fashion

MNIST

(AlexNet)

FLTrust 2.93 5.80 3.28 6.82 3.82 7.63 3.60 7.21

SparseFed 3.25 5.35 2.56 4.41 2.51 5.39 3.06 4.76

cosDefense 3.12 7.45 3.36 7.85 2.99 6.77 3.61 8.09

FLAIR 3.48 7.32 3.72 7.58 3.92 7.86 4.17 8.13

LeadFL 3.34 5.50 3.41 5.85 2.89 5.12 3.34 5.91

Shakespeare

(LSTM)

FLTrust 4.43 5.58 5.41 7.24 5.74 7.05 5.64 7.38

SparseFed 5.20 7.25 6.04 8.22 6.38 8.54 6.34 8.81

cosDefense 5.31 6.94 5.35 7.78 6.05 7.58 5.78 7.74

FLAIR 6.08 7.20 5.97 6.96 6.94 7.75 5.87 7.09

LeadFL 4.05 6.57 5.12 7.89 4.39 7.41 4.78 8.16

Table 4: Attack impacts ofA andA-CLP defended by FLTrust,

SparseFed, cosDefense, FLAIR and LeadFL.

• Improved resilience against defenses. The benefit of being

CLP aware for improved attack impact is reflected in the attack

budget as shown in Figure 4. It is clear that A-CLP is more impact-

ful than A itself with even a smaller number of attack budgets, i.e.,

A-CLP achieves a higher attack impact and a smaller attack budget

at the same time. This in turn improves the resilience of A. For

example, FLTrust [12], SparseFed [43], cosDefense [16], FLAIR [3]

and LeadFL [67] are five state-of-the-art defenses against model

poisoning attacks. We present the attack impact of Fang, Min-Sum,

Min-Max and MPHM when they are defended by these defenses

under different cases in Table 4. It is clear that being CLP aware

significantly improves the attack effectiveness, e.g., in CIFAR-10 us-

ing AlexNet, the impact of Min-Sum attack is 5.57% when defended

by FLTrust, while the impact of Min-Sum-CLP attack is 11.76%, i.e.,

the CLP makes Min-Sum 2.11× impactful.

Takeaway 1. We show that attack A should be aware of the
CLP to determine the number of malicious clients to share malicious
gradients with the central server for global model update in each FL
training round to avoid the tradeoff between attack impact and attack
budget, and hence the vulnerability to defenses. In other words,A-CLP
dramatically improves both the attack impact and the vulnerability
of A. In addition, CLP should be leveraged in a proper manner, i.e.,
more malicious clients are only needed during the CLP.

3.5.3 Ablation Study.
• Sensitivity of CLP detection threshold. As aforementioned,

CLP can be efficiently identified using FGN via a threshold-type

rule. We now evaluate the sensitivity of threshold value 𝛿 to de-

clare CLP. Figure 7 illustrates the final model accuracy of Fang-CLP,
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Figure 8: Non-IID degree.

Min-Max-CLP, Min-Sum-CLP and MPHM-CLP attacks to FLwithMulti-

krum and Trimmed-mean using AlexNet on non-IID partitioned

CIFAR-10. It is clear that the CLP declaration determined by 𝛿 has

an observable effect on the impact of A-CLP. This is because as
𝛿 becomes larger, fewer rounds in the initial training phases are

declared as CLP. As a result, A-CLP only uses a larger number of

malicious clients to participate in the global model update in fewer

rounds according to Algorithm 1, and hence the effect of being CLP

aware on the attack impact is diminished. However, we observe

that even using a large threshold, e.g., 𝛿 = 0.5, A-CLP is still more

impactful than A itself. For example, when 𝛿 = 0.5 with Trimmed-

mean aggregation rule, the impact of Min-Sum-CLP is 14.51% on

CIFAR-10, while that of Min-Sum is 8.35%. For ease of simplicity

and from Figure 7, we set 𝛿 = 0.01 in all of our experiments.

• Non-IID degrees of data distribution.We simulate a hetero-

geneous data partition into 𝑁 clients using the Dirichlet distri-

bution with parameter 𝛼. As observed in Figure 8 using AlexNet

on CIFAR10, when the non-IID degree increases, the impacts of

Fang-CLP, Min-Max-CLP, Min-Sum-CLP and MPHM-CLP increase. This
is quite intuitive since a higher degree of non-IID data makes the

Byzantine-robust aggregation rule harder to detect and remove

malicious gradients. As a result, the attack crafts more malicious

gradients without being detected and hence improves their attack

impacts. In addition, we observe that our A-CLP consistently out-

performs its counterpart A across all settings. Without loss of

generality, we set 𝛼 = 0.5 in all of our experiments.

• Participated malicious client number. Our A-CLP automati-

cally switches between a larger and a smaller number of malicious

clients that attack A shares their malicious gradients with the cen-

tral server during training. For simplicity, we set the number to

be 2𝑚 and𝑚/2 in Algorithm 1 given that A without being CLP

aware always selects𝑚 malicious clients in each round. We now

vary the larger (resp. smaller) number to be 𝑚, 2𝑚, 3𝑚, 4𝑚 (resp.
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Figure 9: Participated malicious client number.
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Figure 10: Participated malicious client number after CLP.
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Figure 11: Total number of clients 𝑁 .

𝑚,𝑚/2,𝑚/3,𝑚/4). As shown in Figure 9, as a larger number of

malicious clients is selected during CLP, the final accuracy is more

severely degraded, which is consistent with above observations (see

Takeaway 1). However, as more malicious clients are involved dur-

ing CLP, the average attack budget is also increased (see Figure 4).

To balance the tradeoff between attack impact and attack budget,

and for simplicity, we choose 2𝑚 and𝑚/2 in our experiments. To

substantiate our selection of 𝑚/2, we embark on a series of ad-

ditional experiments. Specifically, we maintain 2𝑚 as a constant

during the CLP, subsequently adjusting the value of 𝑘 ·𝑚 within

the range from 0 ·𝑚 to 1 ·𝑚. The outcomes of these experiments are

illustrated in Figure 10. We observe that as 𝑘 escalates, the impact of

the attack intensifies, albeit at the cost of an increased attack budget.

Aiming to strike a balance, we opt for 𝑘 = 0.5 for our experiments.

• Number of total clients and selected clients. In the com-

prehensive series of experiments, we examine a FL configuration

involving 𝑁 = 128 total clients, with 𝑛 = 32 being selected for par-

ticipation. Expanding upon the experimental framework outlined in
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Figure 12: Total number of participants 𝑛.
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Figure 13: Total number of controlled clients𝑀 .
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Figure 14: Total number of malicious participants𝑚.

Section 3.5.1, we explore variations in 𝑁 and 𝑛 within a system em-

ploying Multi-krum aggregation rules, utilizing AlexNet on a non-

IID partitioned CIFAR-10 dataset. Adhering to the established prin-

ciples for ensuring the practicality of CLP discussed in Section 3.4,

as illustrated in Figures 11 and 12, we observe consistent enhance-

ments in performance with CLP-augmented strategies (namely,

Fang-CLP, Min-Max-CLP, Min-Sum-CLP and MPHM-CLP), which sig-

nificantly surpass their non-augmented counterparts across varying

client populations. Without loss of generality, we set 𝑁 = 128 and

𝑛 = 32, respectively, in our experiments.

• Number of malicious clients. Additional experiments are con-

ducted to evaluate the impact of varying𝑀 (total controlled clients)

and𝑚 (selected malicious clients). The results, as depicted in Fig-

ures 13 and 14, illustrate a clear trend: as 𝑀 increases, the effec-

tiveness of the CLP-augmented attacks gradually improves, while

Figure 14 shows that the success of CLP-augmented attacks remains

consistent. These observations further corroborate the superior per-

formance of CLP-augmented attacks.
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4 CLP AWARE SIMILARITY-BASED ATTACK

As discussed in Section 1, the inner attack subroutine (i.e., A) in

A-CLP crafts malicious gradients via solving a difficult optimiza-

tion problem to deviate the global model parameter the most to-
wards the inverse of the direction along which the global model

parameter would change before-attack. To address this limitation of

A-CLP and avoid solving a complex optimization, we relax the in-

ner attack subroutine and propose GraSP, a lightweight CLP aware

gradient-similarity-based poisoning attack. For ease of presentation,

we present GraSP with all benign gradients known in the design

(Section 4.1), which can be easily generalized to the full agnostic

case (Remark 3).

4.1 The Design of GraSP
4.1.1 Background. In the general setting of model poisoning

attacks to FL, there is one global optimization goal, which is to

maximize the damage to the global model [18, 48]. Specifically, let

𝑠 𝑗 (𝑡) be the changing direction of the 𝑗-th global model parameter

in round 𝑡 when there is no attack, where 𝑠 𝑗 (𝑡) = 1 (resp. 𝑠 𝑗 (𝑡) = 1)

means that the 𝑗-th global model parameter increases (resp. de-

creases) upon the previous round. Denote s(𝑡) = (𝑠 𝑗 (𝑡)) 𝑗=1,· · · ,𝑑 .
Suppose in round 𝑡 , w𝑖 (𝑡) (resp. g𝑖 (𝑡)) is the local model (resp. gra-

dient) update that client 𝑖 tends to send to the central server when

there is no attack, and w̃𝑖 (𝑡) (resp. g̃𝑖 (𝑡)) is the local model (resp.

gradient) update if client 𝑖 is compromised. Like most of the existing

attacks, e.g., [18, 48], we restrict ourselves to

w̃𝑖 (𝑡) := w𝑖 (𝑡) − 𝜂𝜆𝑖s𝑡 , (2)

which models the deviation between the crafted local model w̃𝑖 (𝑡)
and the before-attack local modelw𝑖 (𝑡), with 𝜆𝑖 > 0. Sincew𝑖 (𝑡) =
w𝑖 (𝑡 − 1) − 𝜂g𝑖 (𝑡) and w̃𝑖 (𝑡) = w𝑖 (𝑡 − 1) − 𝜂g̃𝑖 (𝑡),where w𝑖 (𝑡 − 1)
is the received latest global model at the beginning of round 𝑡 ,

from (2), we have g̃𝑖 (𝑡) = g𝑖 (𝑡) + 𝜆𝑖s𝑡 . The adversary’s goal is then

to derivate the global model parameter the most towards the inverse
of the direction along which the global model parameter would

change without attacks at each round 𝑡 , i.e., for any aggregation

rule H(·),

max

g̃
1
(𝑡 ),· · · ,g̃𝑚 (𝑡 )

s
⊺
𝑡 (g𝑡 − g̃𝑡 ), (3)

s.t. g(𝑡) = H(g
1
(𝑡), · · · , g𝑚 (𝑡), g𝑚+1 (𝑡), · · · , g𝑛 (𝑡)), (4)

g̃(𝑡) = H(g̃
1
(𝑡), · · · , g̃𝑚 (𝑡), g𝑚+1 (𝑡), · · · , g𝑛 (𝑡)). (5)

Given (2), Fang et al. [18] showed that the above optimization

problem can be transformed to one with the objective function

of (𝜆𝑖 )𝑖=1,· · · ,𝑚 . However, optimizing such a global objective for

(𝜆𝑖 )𝑖=1,· · · ,𝑚 becomes difficult due to highly non-linear constraints,

large state space of local models and non-IID local data distributions

at each client [37]. Below, we first provide intuition behind our

attack and then propose a CLP aware similarity-based poisoning

attack, GraSP to compromise malicious clients in FL.

4.1.2 Intuition. Most Byzantine-robust FL aggregation rules are

distance-based, i.e., removing gradients that lie outside of the clique

formed by benign gradients. In particular, the distances could be

from benign gradients [2], or difference between ℓ𝑝 -norms of benign

and malicious clients [52], or distributional differences with benign

gradients [7]. A natural idea to maximize the performance of the

adversary is to ensure that malicious gradients lie within the clique

of benign gradients. However, to guarantee such a similarity is

far from trivial. As discussed earlier, optimizing a complex global

objective is often difficult [18]. Instead of solving a complex global

optimization problem to determine the changing directions,why not
simply craft the malicious clients’ gradients based on the proximities
between their local models?

4.1.3 GraSP. Our key insight is that it is sufficient to approximate
an inverse direction that deviates the malicious gradient updates

based on proximities between the adversary’s local updates, but
not necessarily the most towards the inverse direction of global

model update as in existing attacks A. The number of such ma-

licious clients in each round is determined by the identified CLP

as in Algorithm 1. This naturally leads to two questions: (i) how
to measure the proximity or distance? and (ii) how to determine the
attack goal of the adversary in each communication round?

For the choice of measure, the ℓ𝑝 distance has been used as a

heuristic between models [48]. However, this often suffers from

huge computational overheads due to the large state space of local

models. The cosine similarity between gradients calculated by up-

dates of model parameters is an alternative lightweight measure.

Specifically, the cosine similarity between gradient updates of any

two clients 𝑖 and 𝑖′ satisfies

F (g𝑖 (𝑡), g𝑖′ (𝑡)) :=
〈
g𝑖 (𝑡), g𝑖′ (𝑡)

〉
∥g𝑖 (𝑡)∥ · ∥g𝑖′ (𝑡)∥

. (6)

The expectation of F (·, ·) remains asymptotically constant as di-

mensionality increases [45].

Using this similarity measure, the goal of the adversary boils

down to craft the gradients of𝑚CLP
malicious clients such that the

cosine similarity between the after-attacked aggregated gradient

computed by the adversary and that of before-attack is 𝜏 ∈ [−1, 1],
where 𝜏 is a system-wide control knob, which the adversary can

set to tradeoff between the severity of attacks and possibility to

be defensed. The number of malicious clients is𝑚CLP = 2𝑚 if the

current round is in CLP, and otherwise𝑚/2 as in A-CLP. We call 𝜏

as the attack threshold. The choice of 𝜏 is very much dependent on

the adversary, and having 𝜏 as an adversary input adds to the “flex-

ibility” of the overall attacking framework and ultimately, shows

the wide applicability of our GraSP.
Therefore, for a given attack threshold 𝜏 , the goal of the adversary

is to find changing directions via 𝜆𝑖 ,∀𝑖 to craft gradients of each of

𝑚CLP
malicious clients by solving (7),

F (g(𝑡), g̃(𝑡)) = 𝜏, (7)

where g(𝑡) and g̃(𝑡) are given in (4) and (5), and g̃𝑖 (𝑡) = g𝑖 (𝑡) +𝜆𝑖s𝑡 ,
∀𝑖 = 1, · · · ,𝑚CLP

. One challenge to solve (7) is that the adversary

does not know the aggregation rule. To this end, we make one

approximation. The attack threshold provides a “flexibility” to the

adversary since it does not need to attack towards the most inverse

direction by solving a complex optimization problem, and hence our

approximation can be treated as part of such a flexibility. As we will

demonstrate in experiments, GraSP using such an approximation

for all considered aggregation rules can substantially increase the

attack impact compared to the strongest state of the arts.

Specifically, we assume that the adversary adopts an “average

rule” to approximate the aggregation rule of the server, i.e., g(𝑡) ≈
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1

𝑛

∑𝑛
𝑖=1 g𝑖 (𝑡), g̃(𝑡) ≈

1

𝑛

∑𝑛
𝑖=1 g̃𝑖 (𝑡), and 𝜆 ≜

∑𝑚CLP

𝑖=1 𝜆𝑖 . Then g̃(𝑡) ≈
g(𝑡) + 𝜆s(𝑡), from which we can easily solve a so-called “global” 𝜆

that is common for all𝑚CLP
malicious clients. Formally, we have

the following proposition.

Proposition 1. Suppose that 𝜆 is the changing direction to craft
gradients of𝑚CLP malicious clients based on the cosine similarity. For
any given attack threshold 𝜏 , the value of 𝜆 is

𝜆 =
−𝑧 −

√︁
𝑧2 − 4𝑥𝑦

2𝑥
, (8)

where 𝑥 = (g(𝑡)⊺s(𝑡))2 −𝜏2∥g(𝑡)∥2 · ∥s(𝑡)∥2, 𝑦 = (1−𝜏2) · ∥g(𝑡)∥4,
and 𝑧 = 2(𝜏2 − 1)∥g(𝑡)∥2 · g(𝑡)⊺s(𝑡).

Given the value of 𝜆 in Proposition 1, the adversary determines

the changing directions for the aggregated gradient g̃(𝑡) of all
malicious clients at round 𝑡 . Since in practical FL systems, clients

often have heterogeneous data distributions and system capabilities

[11, 25, 30], and hence a heterogeneous changing direction deter-

mined by 𝜆𝑖 ,∀𝑖 is more preferable than a “global” one 𝜆 across all ma-

licious clients. To achieve this goal, we first leverage the definition of

cosine similarity to obtain F (g(𝑡), g̃(𝑡)) = 1

𝑚CLP

∑𝑚CLP

𝑖=1 ⟨g(𝑡 ),g̃𝑖 (𝑡 )⟩
∥g(𝑡 ) ∥ · ∥ g̃(𝑡 ) ∥ .

Then the changing direction to craft each malicious gradient ∀𝑖
can be approximated by F (g(𝑡), g̃𝑖 (𝑡)) =

⟨g(𝑡 ),g̃𝑖 (𝑡 )⟩
∥g(𝑡 ) ∥ · ∥ g̃(𝑡 ) ∥ ≈ 𝜏 . When

combined with g̃𝑖 (𝑡) = g𝑖 (𝑡) + 𝜆𝑖s𝑡 , we can determine 𝜆𝑖 ,∀𝑖 , which
is summarized in the following corollary.

Lemma 1. Suppose that 𝜆𝑖 is the changing direction to craft ma-
licious gradient of the malicious client 𝑖 , ∀𝑖 = 1, · · · ,𝑚CLP. Then for
any given attack threshold 𝜏 , the value of 𝜆𝑖 satisfies

𝜆𝑖 =

〈
g(𝑡), g𝑖 (𝑡)

〉
− 𝜏 ∥g(𝑡)∥∥g̃(𝑡)∥

g(𝑡)⊺s(𝑡) , ∀𝑖 = 1, · · · ,𝑚CLP . (9)

Remark 3. Our GraSP can be easily generalized when benign
gradients are unknown to the adversary. Since the adversary does
not have benign gradients, the changing directions s(𝑡),∀𝑡 are not
known and hence we cannot directly solve for 𝜆𝑖 using (9). However,
the before-attack local models on malicious clients are known to the
adversary. Similar to [18, 48], we estimate changing directions using
the mean before-attack local model of malicious clients. In other words,
if the mean of the 𝑗-parameter is larger than the 𝑗-th global model
parameter received from the server in the current round, then 𝑠 𝑗 (𝑡) is
approximated to be 1, and otherwise −1. Using this approximation,
we can obtain the changing directions, which we denote as s̃, and
hence the ˜𝜆𝑖 ,∀𝑖 using (9).

4.2 Evaluation of GraSP
We compare GraSP with state-of-the-art CLP aware attacks (Sec-

tion 3) when benign gradients are unknown (Table 5) to the adver-

sary. We consider the same experimental setup as in Section 3.5.

Similar observations hold when benign gradients known to the

adversary, and hence are omitted here due to space constraint.

• Attack impacts. When benign gradients are unknown to the

adversary, the impacts of GraSP attack and that of the best among

LIE-CLP, Fang-CLP, Min-Max-CLP, Min-Sum-CLP and MPHM-CLP at-
tacks (Table 2), denoted as A∗-CLP, are reported in Table 5. GraSP

Dataset

(Model)

Aggregation

Rule

A∗-CLP GraSP
Attack

Impact

Time

(ms)

Memory

(MB)

Attack

Impact

Time

(ms)

Memory

(MB)

CIFAR-10

(AlexNet)

Multi-krum 26.47 283.9 95.7 28.55 54.2 94.5

Bulyan 20.90 264.9 94.3 22.11 52.1 93.2

Trimmed-mean 22.85 266.0 91.9 24.31 52.7 90.9

Median 22.62 537.4 107.6 23.60 50.5 98.3

AFA 19.05 244.0 95.1 20.27 49.9 96.2

CIFAR-10

(VGG)

Multi-krum 18.07 986.7 382.5 20.13 110.7 403.1

Bulyan 22.53 2134.9 430.5 24.03 118.8 410.4

Trimmed-mean 20.95 842.4 371.4 22.62 108.1 398.9

Median 23.58 2203.5 405.7 24.21 113.3 407.2

AFA 11.55 901.3 392.4 13.27 107.1 415.3

CIFAR-100

(ResNet)

Multi-krum 25.62 1440.2 498.1 27.13 217.7 449.3

Bulyan 19.11 1099.9 423.5 20.30 219.6 431.3

Trimmed-mean 19.62 1121.7 419.3 21.35 220.4 428.7

Median 23.90 1414.6 472.4 24.30 216.8 455.6

AFA 13.93 1103.8 420.2 14.01 215.8 412.9

MNIST

(FC)

Multi-krum 2.32 42.2 15.6 2.86 13.5 17.2

Bulyan 2.14 43.8 16.2 3.02 13.4 15.8

Trimmed-mean 2.28 42.1 14.3 2.85 14.1 14.1

Median 2.16 43.0 17.1 2.72 13.6 16.9

AFA 2.10 41.8 13.9 2.55 12.6 15.3

Fashion

MNIST

(AlexNet)

Multi-krum 15.37 212.8 106.9 16.37 43.9 107.8

Bulyan 20.58 390.2 116.8 21.81 56.6 103.2

Trimmed-mean 11.77 126.6 76.5 12.41 58.0 98.0

Median 10.65 116.3 82.4 11.35 50.6 104.3

AFA 9.49 201.3 98.6 10.68 45.1 102.7

Shakespeare

(LSTM)

Multi-krum 11.94 340.6 63.8 12.85 43.6 56.8

Bulyan 13.71 327.9 59.4 14.46 42.5 53.4

Trimmed-mean 12.18 329.6 67.2 13.05 43.0 58.1

Median 11.53 316.4 56.8 12.21 42.6 52.9

AFA 10.98 256.2 50.5 11.40 43.6 54.7

Table 5: Comparisons of GraSP andA∗-CLP in terms of attack

impact and computational complexity under various threat

models using non-IID partitioned datasets, when the benign
gradients are unknown.

is consistently more impactful than the strongest of existing poi-

soning attacks. For example, GraSP is 1.1× more impactful than

A∗-CLP attack for AlexNet and VGG-11 models on non-IID parti-

tioned CIFAR-10. Combined with results in Table 2, GraSP is up to

2.9× more impactful than the strongest state-of-the-art LIE, MIN-

Sum and Min-Max attacks. Similarly, GraSP is 1.4× and 1.1× more

impactful thanA∗-CLP attack for FC model on non-IID MNIST and

AlexNet model on non-IID Fashion-MNIST, respectively, and hence

is 9.6× and 3.3× more impactful than the strongest state-of-the-art

attacks, respectively.

•Gradientmagnitude.Given the above results, a natural question

is why GraSP is much more impactful than A∗-CLP? Recall that
existing attacks A craft malicious gradients via solving a difficult

optimization problem to deviate the global model parameter the
most towards the inverse of the direction along which the global

model parameter would change before-attack. This is a two-edged

sword. On one hand, it is successful, then it brings the largest

attack impact to the global model. On the other hand, this makes it

vulnerable and easier to be detected by existing Byzantine-robust

aggregation rule, which in turn diminish its attack impacts. In

contrast, GraSP relaxes the hard optimization rather than deviating

the most inverse directions (see Section 4.1), which becomes harder

to be detected and in turn improves the attack impact.

Another reason that leads to the higher attack impact of GraSP is
due to its larger gradient magnitude. More precisely, let g𝑖 (𝑡) be the
gradient of 𝑖-th client at 𝑡-th training round without being attacked,

and g
′
𝑖
(𝑡) be the modified gradient of 𝑖-th client after being attacked.
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Figure 15: The average ℓ2-norm of gradient magnitude dif-

ferent of CLP augmented attacks when benign gradients are
unknown to the adversary.
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Figure 16: The ℓ2-norm of gradient magnitude different of

CLP augmented attacks when benign gradients are unknown
to the adversary, where “C” and “F” stands for CIFAR-10 and

Fashion-MNIST datasets, respectively.

Consider the ℓ2-norm of gradient magnitude difference between

g𝑖 (𝑡) and g
′
𝑖
(𝑡) at round 𝑡 as | |g(𝑡) − g

′ (𝑡) | |2 = 1

𝑚

𝑚∑
𝑖=1

| |g𝑖 (𝑡) −

g
′
𝑖
(𝑡) | |2. For simplicity, we denote “Average| |g(𝑡) − g

′ (𝑡) | |2” as the
average value over 𝑇 training rounds. We present the results in

Figure 15 and the real-time performance in Figure 16. We observe

from Figure 15 that GraSP has a larger gradient magnitude than

considered baselines, and more intuitively, these benefits mainly

come from the early training phases (CLP) as shown in Figure 16.

• Computational complexity. The improved attack impact is fur-

ther pronounced when we compare the computational complexity

of our GraSP and A∗-CLP, which are implemented in PyTorch on

Python 3 with three NVIDIA RTX A6000 GPUs, 48GB with 128GB

RAM. From Table 5, it is obvious that our GraSP is orders of magni-

tude faster to compute compared to A∗-CLP with modest memory

cost (CPU & GPU). This further validates the limitations of most

existing attacks A and the design motivation of our GraSP based
on our understanding of A-CLP. Furthermore, we observe that the

computational time is longer when benign gradients are known.

This is due to the fact that when benign gradients are known, the

adversary needs to deal with more model parameters.

• Resilience against defenses.We further compare the resilience

of GraSP andA∗-CLP. Table 6 illustrates the attack impact of GraSP
and A∗-CLP when defended by FLTrust, SparseFed, cosDefense,

FLAIR and LeadFL, respectively. We observe that GraSP is more

resilient than A∗-CLP in all settings. For example, GraSP makes

FLTrust 1.45× less effective to be defeated thanA∗-CLP using VGG-
11 on CIFAR-10 with unknown benign gradients.

• Impact of attack threshold 𝜏 . Our GraSP contains a control

knob called the attack threshold 𝜏 , which is much dependent on the

adversary. We now evaluate the impact of 𝜏 on the attack impact

of GraSP. For illustration and due to space constraints, we only

Dataset

(Model)

Attack FLTrust SparseFed cosDefense FLAIR LeadFL

CIFAR-10

(AlexNet)

Best A∗-CLP 13.26 12.68 13.47 14.13 11.60

GraSP 13.98 14.21 14.98 15.14 13.33

CIFAR-10

(VGG-11)

Best A∗-CLP 3.23 4.88 4.74 5.04 2.86

GraSP 4.68 5.60 6.42 5.89 3.98

CIFAR-100

(ResNet-18)

Best A∗-CLP 5.73 6.25 6.45 7.10 4.34

GraSP 6.83 7.33 8.67 7.10 6.61

MNIST

(FC)

Best A∗-CLP 2.16 1.84 2.05 2.07 2.08

GraSP 2.50 2.35 3.34 2.88 2.66

F. MNIST

(AlexNet)

Best A∗-CLP 7.63 5.39 8.09 8.13 5.91

GraSP 7.95 6.74 9.42 8.57 7.19

Shakespeare

(LSTM)

Best A∗-CLP 7.38 8.81 7.78 7.75 8.16

GraSP 8.23 10.23 9.84 8.59 9.40

Table 6: Attack impacts of GraSP and A∗-CLP when defended

by FLTrust, SparseFed, cosDefense, FLAIR and LeadFL under

various threat models using non-IID partitioned datasets.
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Figure 17: Attack threshold 𝜏 .

show results using CIFAR-10 and Fashion-MNIST datasets with the

underlying aggregation rules beingMulti-krum and Trimmed-mean.

As shown in Figure 17, as 𝜏 increases, the attack impact decreases.

This is quite intuitive and consistent with our design. This is due

to the fact that as 𝜏 increases, the similarity between after-attacked

aggregated gradients and that of before-attack increases, which

in turn diminishes the impact of the attack as shown in Lemma 1.

Without loss of generality, we set 𝜏 = 0.1 in all of our experiments.

• Discussion of defense against proposed methods. To de-

fend against the proposed attack algorithms, we implement dif-

ferentiated defense strategies based on CLP detection. This work

introduces the FGN metric to detect CLP, which is computation-

ally efficient, as illustrated in Figure 3. The FGN metric can be

executed by the server throughout the training process without re-

lying on the client’s private data, requiring only the gradient norms

collected locally during client training. This approach minimizes

communication overhead and enhances privacy protection.

To counter theA-CLP attack, themost straightforward defense is

to increase the number of participating clients during CLP, thereby

reducing the proportion of malicious clients and mitigating the

impact of their updates. However, this method leads to high com-

munication costs and increased attack budgets. For the GraSP attack,
defense strategies must consider the attack pattern by employing a

layer-based method to calculate the similarity of all client updates

at a specific layer, subsequently detecting anomalies. Similar meth-

ods have been used in AFA [41] and cosDefense [16]. Based on the

detection results at each layer, potential malicious clients are identi-

fied. During the detected CLP, a strict strategy is adopted, excluding

any potentially risky updates from the model aggregation.
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Dataset

(Model)

Aggregation

Rule

Unknown Known

A∗ GraSP∗ A∗ GraSP∗

CIFAR-10

(AlexNet)

Multi-krum 12.03 13.82 19.88 21.76

Bulyan 9.40 10.58 13.61 15.01

Trimmed-mean 10.32 11.76 16.43 17.36

Median 11.73 12.69 18.31 19.12

AFA 9.27 10.42 15.11 16.88

CIFAR-10

(VGG)

Multi-krum 9.94 11.18 19.43 21.04

Bulyan 15.16 15.98 21.00 22.25

Trimmed-mean 13.14 14.68 22.24 23.88

Median 15.23 16.08 20.02 21.43

AFA 8.54 9.03 12.87 13.66

CIFAR-100

(ResNet-18)

Multi-krum 18.49 19.08 23.61 24.88

Bulyan 14.28 15.01 22.63 24.51

Trimmed-mean 11.17 12.31 14.49 16.74

Median 12.41 13.12 18.45 19.82

AFA 10.13 11.06 12.83 14.43

MNIST

(FC)

Multi-krum 1.59 1.81 2.12 2.31

Bulyan 1.36 1.73 1.71 1.95

Trimmed-mean 1.49 1.97 1.76 2.13

Median 1.51 1.75 1.85 1.97

AFA 1.29 1.51 1.80 1.96

Fashion

MNIST

(AlexNet)

Multi-krum 5.97 6.90 9.43 10.39

Bulyan 7.95 8.59 12.59 13.20

Trimmed-mean 6.10 7.42 6.74 7.69

Median 5.84 6.74 9.47 10.75

AFA 4.91 5.58 7.76 8.59

Shakespeare

(LSTM)

Multi-krum 9.65 10.58 13.34 13.93

Bulyan 10.38 10.89 12.23 12.95

Trimmed-mean 9.03 9.92 10.18 10.65

Median 9.09 9.64 10.72 11.32

AFA 8.58 9.21 10.10 10.52

Table 7: Comparisons of GraSP∗ (i.e., GraSP without CLP) and

A∗
in terms of attack impact under various threat models us-

ing non-IID partitioned datasets, whereA∗
is the best among

baseline attacks reported in Table 2. “Unknown” (“Known”)

means that benign gradients are unknown (known) to the

adversary.

•Without CLP awareness. In this paper, we focus on advocating

CLP aware attacks, and directly present the results of GraSP. We

also evaluate the performance of GraSPwithout CLP awareness and
denote the corresponding method as GraSP∗. As shown in Table 7,

GraSP∗ improves the performance of A, however, its benefits are

further pronounced when being CLP aware, i.e., GraSP brings much

more benefits than GraSP∗ as shown in Tables 5.

Takeaway 2. There are two fundamental differences between
GraSP and existing attacks that contribute to the superior performance
of GraSP. First, rather than solving a complex optimization problem to
maximize the difference in the direction between malicious and benign
gradients, a key insight in the design of GraSP is that it is sufficient
to approximate the largest derivation via an attack threshold. This
flexible control knob relaxes the assumptions (see Section 1) needed in
state of the arts [18, 48], whose performance largely depend on these
hyperparameters. In addition, GraSP carefully crafts the gradient
of each malicious client (i.e., using different 𝜆𝑖 ) due to the practical

heterogeneity among FL clients, rather than a single attack across all
malicious clients, e.g., [18].

Second, our GraSP leverages CLP to adaptively determine the num-
ber of malicious clients in each round while existing attacks are ag-
nostic to CLP. Though being CLP aware also significantly improves
the impact of these attacks (see Section 3.5), GraSP is superior to their
A-CLP counterparts. We conjecture that a flexible attack threshold,
rather than a maximal attack, fits better with CLP, e.g., GraSP has
a larger gradient magnitude especially during CLP (see Figure 15),
which contributes to the its superior performance. Building a better
theoretical understanding of GraSP is our future work.

5 CONCLUSIONS

In this paper, we advocated CLP aware model poisoning attacks,

dubbed asA-CLP. We demonstrated that by augmenting an existing

state-of-the-art model poisoning attack A with the CLP, the attack

impact and the resilience can be significantly improved. We further

proposed a lightweight CLP aware similarity-based attack GraSP
that outperforms the strongest of existing model poisoning attacks

by large margins. In the future work, it would be interesting to

study CLP aware targeted and backdoor attacks, and to design new

CLP aware defenses against CLP aware attacks.
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A APPENDIX: DATASETS AND MODELS

In this study, our exploration spans two pivotal tasks using a variety

of datasets and models, as we aim to dissect the intricacies of both

image classification and natural language processing (NLP).

For image classification, we engage with the CIFAR-10 and

CIFAR-100 datasets [32], each comprising 60,000 color images of
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Parameter Shape Layer hyper-parameter

layer1.conv1.weight 3 × 3, 64 stride:1; padding: 1

layer1.conv1.bias 64 N/A

batchnorm2d 64 N/A

layer2.conv2

[
3 × 3, 64

3 × 3, 64

]
× 2 stride:1; padding: 1

layer3.conv3

[
3 × 3, 128

3 × 3, 128

]
× 2 stride:1; padding: 1

layer4.conv4

[
3 × 3, 256

3 × 3, 256

]
× 2 stride:1; padding: 1

layer5.conv5

[
3 × 3, 512

3 × 3, 512

]
× 2 stride:1; padding: 1

pooling.avg N/A N/A

layer6.fc6.weight 512 × 100 N/A

layer6.fc6.bias 100 N/A

Table 8: Detailed information of the ResNet-18 architecture

used in our experiments. All non-linear activation functions

in this architecture are ReLU. The shapes for convolution

layers follow (𝐶𝑖𝑛,𝐶𝑜𝑢𝑡 , 𝑐, 𝑐).

Parameter Shape Layer hyper-parameter

layer1.conv1.weight 3 × 64 × 3 × 3 stride:1; padding: 1

layer1.conv1.bias 64 N/A

pooling.max N/A kernel size:2; stride: 2

layer2.conv2.weight 64 × 128 × 3 × 3 stride:1; padding: 1

layer2.conv2.bias 128 N/A

pooling.max N/A kernel size:2; stride: 2

layer3.conv3.weight 128 × 256 × 3 × 3 stride:1; padding: 1

layer3.conv3.bias 256 N/A

layer4.conv4.weight 256 × 256 × 3 × 3 stride:1; padding: 1

layer4.conv4.bias 256 N/A

pooling.max N/A kernel size:2; stride: 2

layer5.conv5.weight 256 × 512 × 3 × 3 stride:1; padding: 1

layer5.conv5.bias 512 N/A

layer6.conv6.weight 512 × 512 × 3 × 3 stride:1; padding: 1

layer6.conv6.bias 512 N/A

pooling.max N/A kernel size:2; stride: 2

layer7.conv7.weight 512 × 512 × 3 × 3 stride:1; padding: 1

layer7.conv7.bias 512 N/A

layer8.conv8.weight 512 × 512 × 3 × 3 stride:1; padding: 1

layer8.conv8.bias 512 N/A

pooling.max N/A kernel size:2; stride: 2

dropout N/A p=20%

layer9.fc9.weight 4096 × 512 N/A

layer9.fc9.bias 512 N/A

layer10.fc10.weight 512 × 512 N/A

layer10.fc10.bias 512 N/A

dropout N/A p=20%

layer11.fc11.weight 512 × 10 N/A

layer11.fc11.bias 10 N/A

Table 9: Detailed information of the VGG-11 architecture

used in our experiments. All non-linear activation functions

in this architecture are ReLU. The shapes for convolution

layers follow (𝐶𝑖𝑛,𝐶𝑜𝑢𝑡 , 𝑐, 𝑐).

32×32 pixels across 10 and 100 classes respectively, segmented into

Parameter Shape Layer hyper-parameter

layer1.conv1.weight 3 × 64 × 3 × 3 stride:2; padding: 1

layer1.conv1.bias 32 N/A

pooling.max N/A kernel size:2; stride: 2

layer2.conv2.weight 64 × 192 × 3 × 3 stride:1; padding: 1

layer2.conv2.bias 64 N/A

pooling.max N/A kernel size:2; stride: 2

layer3.conv3.weight 192 × 384 × 3 × 3 stride:1; padding: 1

layer3.conv3.bias 128 N/A

layer4.conv4.weight 384 × 256 × 3 × 3 stride:1; padding: 1

layer4.conv4.bias 128 N/A

layer5.conv5.weight 256 × 256 × 3 × 3 stride:1; padding: 1

layer5.conv5.bias 256 N/A

pooling.max N/A kernel size:2; stride: 2

dropout N/A p=5%

layer6.fc6.weight 1024 × 4096 N/A

layer6.fc6.bias 512 N/A

dropout N/A p=5%

layer7.fc7.weight 4096 × 4096 N/A

layer7.fc7.bias 512 N/A

layer8.fc8.weight 4096 × 10 N/A

layer8.fc8.bias 10 N/A

Table 10: Detailed information of the AlexNet architecture

used in our experiments. All non-linear activation functions

in this architecture are ReLU. The shapes for convolution

layers follow (𝐶𝑖𝑛,𝐶𝑜𝑢𝑡 , 𝑐, 𝑐).

Parameter Shape Layer hyper-parameter

layer1.embeding 80 × 256 N/A

layer2.lstm 256 × 512 num_layers=2, batch_first=True

dropout N/A p=5%

layer3.fc.weight 512 × 80 N/A

layer3.fc.bias 80 N/A

Table 11: Detailed information of the LSTM architecture used

in our experiments.

Parameter Shape Layer hyper-parameter

layer1.fc1.weight 1024 × 256 N/A

layer1.fc1.bias 256 N/A

layer2.fc2.weight 256 × 256 N/A

layer2.fc2.bias 256 N/A

layer3.fc3.weight 256 × 10 N/A

layer3.fc3.bias 10 N/A

Table 12: Detailed information of the FC architecture used in

our experiments. All non-linear activation functions in this

architecture are ReLU. The shapes for convolution layers

follow (𝐶𝑖𝑛,𝐶𝑜𝑢𝑡 , 𝑐, 𝑐).

sets of 50,000 images for training and 10,000 for testing. Addition-

ally, we utilize the Fashion-MNIST and MNIST datasets [34], each

containing 60,000 28 × 28 grayscale training images and 10,000 test

images, distributed among 10 classes.

In the domain of NLP, our focus shifts to next-character pre-

diction, employing “The Complete Works of William Shakespeare”

dataset [39], which encompasses 734,057 training data points and

70,657 test data points, spread over 74 characters. Through this

diverse dataset and model utilization, our work seeks to provide
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nuanced insights into the methodologies’ effectiveness and adapt-

ability across different challenges.

For classification tasks, we deploy several models accordingly:

ResNet-18 [23], VGG-11 [51], and AlexNet [33]. Detailed specifica-

tions of these models can be found in Tables 8, 10 and 9. For NLP’s

next-character prediction, use an LSTM language model, as detailed

in Table 11, following the configuration in [31]. The FC model used

for the MNIST dataset is described in Table 12. This diverse array

of datasets and models provides a robust platform for evaluating

our federated learning strategies.

B APPENDIX: DESIGN DETAILS

B.1 Feasibility Guarantee for A∗-CLP
As aforementioned, the central server randomly selects a subset

of 𝑛 out of 𝑁 clients to participate in the global model update in

each round. In our A-CLP framework,𝑚 out of 𝑛 clients should

be malicious clients. Then a natural question is that how many
clients in total (denoted as𝑀) should the adversary A control so that
our A-CLP framework is feasible? In the following, we provide a

theoretical performance guarantee on the feasibility of A-CLP. In
other words, we determine the so-called control rate 𝑀 of attack

A such that the event that at least𝑚 malicious clients are selected

in each round 𝑡 and hence contribute to the global model update,

occurs with a probability 𝑝0, i.e.,

1(𝑁
𝑛

) min(𝑀,𝑛)∑︁
𝑖=𝑚

(𝑁−𝑀
𝑛−𝑖

) (𝑀
𝑖

)
≥ 𝑝0 . (10)

Unfortunately, (10) is hard to be solved directly due to the compu-

tational complexity, especially when 𝑁 is large. Our key insight

is that this problem can be equivalently transformed into a hyper-
geometric distribution problem [21, 22]. Specifically, denote 𝑋 as a

random variable indicating the number of malicious clients selected

by the central server at each round, which follows the hypergeo-

metric distribution, i.e., 𝑋 ∼ 𝐻 (𝑛,𝑀, 𝑁 ), with its mean 𝜇̃ = 𝑛𝑀
𝑁

and

variance 𝜎̃2 = 𝑛𝑀
𝑁

(1 − 𝑀
𝑁
) 𝑁−𝑛
𝑁−1 . When the total number of clients

𝑁 is large, the hypergeometric distribution can be approximated

by the binomial distribution and hence 𝑋 approximately follows

the normal distribution𝜓 (𝜇̃, 𝜎̃2) due to the central limit theorem.

As a result, the number of selected malicious clients 𝑋 satisfies

P(𝑋 ≥ 𝑚) = P
(
𝑋 − 𝜇̃

𝜎̃
≥ 𝑚 − 𝜇̃

𝜎̃

)
≥ 𝑝0, (11)

where
𝑋−𝜇̃
𝜎̃

∼ 𝜓 (0, 1). Therefore, we can obtain𝑀 by solving (11),

which satisfies

𝑀 ≥ −𝑏 +
√
𝑏2 − 4𝑎𝑐

2𝑎
, (12)

where 𝑎 = 2𝑛
𝑁

+ (𝑄 (𝑝0))2 (𝑁−𝑛)𝑛
𝑁 2 (𝑁−1) , 𝑏 = −2𝑛𝑚

𝑁
− (𝑄 (𝑝0))2 (𝑁−𝑛)𝑛

𝑁 (𝑁−1) ,

𝑐 = 𝑚2
, and 𝑄 (𝑝0) = 𝑚−𝜇̃

𝜎̃
is the quantile of normal distribution.

We remark that (12) can be easily solved for any given 𝑛,𝑚, 𝑁, 𝑝0.

We now numerically evaluate the performance of our proposed

lightweight approximated method in Equation (12) to determine the

control rate, i.e.,𝑀 of attack A for any given 𝑛,𝑚, 𝑁, 𝑝0. We com-

pare it with the exact results computed from Equation (10), which

is order of magnitude complex than our method in Equation (12).

𝑝0 = 0.55 Method 𝑛 = 16 𝑛 = 24 𝑛 = 32

𝑚 = 0.125𝑛
Equation (10) 15 15 16

Equation (12) 17 17 17

𝑚 = 0.25𝑛
Equation (10) 31 31 32

Equation (12) 33 33 33

𝑚 = 0.375𝑛
Equation (10) 47 47 48

Equation (12) 50 49 49

Table 13: Comparison of the control rate 𝑀 computed by

Equation (10) and Equation (12) when 𝑁 = 128 and 𝑝0 = 0.55.

𝑝0 = 0.55 Method 𝑛 = 32 𝑛 = 48 𝑛 = 64

𝑚 = 0.125𝑛
Equation (10) 31 32 32

Equation (12) 34 33 33

𝑚 = 0.25𝑛
Equation (10) 63 64 64

Equation (12) 66 66 65

𝑚 = 0.375𝑛
Equation (10) 95 96 96

Equation (12) 98 98 98

Table 14: Comparison of the control rate 𝑀 computed by

Equation (10) and Equation (12) when 𝑁 = 256 and 𝑝0 = 0.55.

𝑝0 = 0.9 Method 𝑛 = 16 𝑛 = 24 𝑛 = 32

𝑚 = 0.125𝑛
Equation (10) 28 26 24

Equation (12) 31 27 25

𝑚 = 0.25𝑛
Equation (10) 47 44 42

Equation (12) 49 45 43

𝑚 = 0.375𝑛
Equation (10) 64 61 59

Equation (12) 65 62 59

Table 15: Comparison of the control rate 𝑀 computed by

Equation (10) and Equation (12) when 𝑁 = 128 and 𝑝0 = 0.9.

𝑝0 = 0.9 Method 𝑛 = 32 𝑛 = 48 𝑛 = 64

𝑚 = 0.125𝑛
Equation (10) 49 46 44

Equation (12) 52 47 44

𝑚 = 0.25𝑛
Equation (10) 86 82 79

Equation (12) 87 82 79

𝑚 = 0.375𝑛
Equation (10) 119 115 112

Equation (12) 120 115 112

Table 16: Comparison of the control rate 𝑀 computed by

Equation (10) and Equation (12) when 𝑁 = 256 and 𝑝0 = 0.9.

For ease of complexity (mainly for computing Equation (10)), we

consider two cases: (i) 𝑁 = 128, and the FL central server selects

𝑛 = 16, 24 or 32 clients for global model update in each round; and

(ii) 𝑁 = 256, and the FL central server selects 𝑛 = 32, 48 or 64 clients

for global model update in each round.

The adversary needs to guarantee 𝑚 malicious clients are se-

lected with probability 𝑝0. Specifically, we consider the following

cases with𝑚 = 0.125𝑛 to𝑚 = 0.375𝑛 and 𝑝0 = 0.55, 0.9. The number

of malicious clients𝑀 that the adversary need to control computed

by Equation (10) and Equation (12) for the above cases are presented

in Tables 13 and 15, and Tables 14 and 16, respectively. It is clear

that the results computed by these two methods are quite close to

each other, especially when 𝑛 and𝑚 become larger. Hence we use

our lightweight method in Equation (12) to determine the control

rate𝑀 for the adversary in our experiments.
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Dataset

(Model)

Aggregation

No

Attack

Fang LIE Min-Max Min-Sum

FedFIM FGN FedFIM FGN FedFIM FGN FedFIM FGN

CIFAR-10

(AlexNet)

Multi-krum 57.57 20.85 20.02 12.45 11.86 27.13 26.47 24.47 24.37

Bulyan 56.34 20.72 20.69 13.53 12.99 21.24 20.9 17.04 16.95

Trimmed-mean 57.33 22.56 22.44 17.37 17.23 23.61 22.85 18.99 19.44

Median 55.46 23.04 22.62 17.89 18.44 20.25 20.48 17.72 18.44

AFA 57.89 11.91 11.81 7.56 7.41 18.85 19.05 15.07 14.83

Fashion MNIST

(AlexNet)

Multi-krum 83.24 12.40 11.05 5.9 6.3 14.7 15.05 12.38 12.1

Bulyan 83.12 20.59 20.58 7.68 7.42 13.06 13.24 12.55 12.88

Trimmed-mean 83.53 9.35 9.39 12.11 11.62 8.77 8.75 9.09 8.57

Median 81.81 9.33 8.88 10.67 10.65 8.82 8.25 8.54 8.72

AFA 83.97 6.75 6.46 5.05 5.09 9.13 9.49 7.84 7.57

Shakespeare

(LSTM)

Multi-krum 47.14 12.25 11.94 4.93 4.73 12.22 11.75 11.31 11.07

Bulyan 46.52 13.92 13.71 3.89 3.48 12.53 12.14 12.49 11.50

Trimmed-mean 46.93 13.55 12.18 3.55 3.98 10.91 11.12 10.84 10.76

Median 45.76 12.80 11.53 3.73 3.16 9.93 10.38 9.43 9.96

AFA 47.41 9.96 10.14 5.74 5.50 10.54 10.98 9.47 9.91

Table 17: Attack Impact of A-CLP when leveraging CLP iden-

tified by using FedFIM and FGN approaches.
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Figure 18: Comparisons of detecting CLP from the perspec-

tives of FL central server and adversary A using AlexNet on

Fashion-MNIST with the Multi-krum aggregation rule.
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Figure 19: Comparisons of detecting CLP from the perspec-

tives of FL central server and adversary A using AlexNet on

Fashion-MNIST with the Trimmed-mean aggregation rule.

B.2 Robustness of Identifying CLP

We propose a lightweight FGN metric to identify CLP in federated

settings in Section 3.3. Our numerical results show that our FGN

approach yields similar results on identifying CLP as that using

the state-of-the-art FedFIM approach [62] as shown in Figure 2,

however, our FGN approach is much more computationally efficient

than FedFIM approach as shown in Figure 3. Therefore, we leverage

the CLP identified by our FGN approach in the design of A-CLP
as in Algorithm 1. In Table 17, we also report the attack impact

when A-CLP leverages the CLP identified by the FedFIM approach

using CIFAR-10 and Fashion-MNIST datasets. As expected, the

attack impacts are similar since the CLP identified by these two

approaches are similar.

Note that in Figure 2, we compute the FGN from the perspective

of the FL central server, which controls a total of 𝑁 clients and

randomly selects 𝑛 clients for model update in each FL training

round. This is the same setting as in [62] for comparison.

Once the central server identifies the CLP, it may broadcast the

information to all clients along with the updated global model at the

beginning of each round. For the defense purpose, the central server

may not want to share such information with the adversary A, as

our A-CLP framework shows that the attack A can leverage the

0 50 100150200
Round

0.0
0.5
1.0
1.5
2.0
2.5

FG
N

(a) Fang

0 50 100150200
Round

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

(b) LIE

0 50 100150200
Round

0.0
0.5
1.0
1.5
2.0
2.5

(c) Min-Sum

0 50 100150200
Round

0.0
0.5
1.0
1.5
2.0
2.5

(d) Min-Max

Central Server Adversary

Figure 20: Comparisons of detecting CLP from the perspec-

tives of FL central server and adversary A using AlexNet on

CIFAR-10 with the Multi-krum aggregation rule.
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Figure 21: Comparisons of detecting CLP from the perspec-

tives of FL central server and adversary A using AlexNet on

CIFAR-10 with the Trimmed-mean aggregation rule.

CLP information to significantly improve its attack impact. Since

the adversary 𝐴 controls a set of𝑀 clients, and shares𝑚 malicious

gradients with the central server for model update in each round, a

natural question is that can the adversary A also detect the CLP

by itself? If so, is the identified CLP the same as that identified by

the central server?

Here, we provide affirmative answers to these questions. Specif-

ically, the adversary A computes the FGN using the information

from the set of 𝑀 clients it controls. For ease of readability, we

consider to train AlexNet on Fashion-MNIST dataset where the

server uses the Multi-krum or Trimmed-mean aggregation rules.

We evaluate the CLP identified by four attacks considered in this

paper. As shown in Figures 18, 19, 20 and 21, where we compute

the FGN from both the perspectives of the central server and the

adversary A, we observe that the CLPs identified by the central

server and the adversary are very similar. Hence, our proposed FGN

approach is robust and can be applied to both the FL central server

and the adversary.
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