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I. Basics of Federated Learning
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Federated Learning Workflow

❑Goal

min
𝑤∈ℝ𝑑

ℒ 𝒘, 𝐷 ≔ 

𝑖∈𝒩

𝐷𝑖

𝐷
ℒ𝑖(𝒘, 𝐷𝑖)

where local loss ℒ𝑖(𝒘, 𝐷𝑖)

❑ Local Training

𝒘𝑖
(𝑡)

𝑘 ← 𝒘𝑖
(𝑡)

𝑘 − 1 − 𝜂∇ℒ𝑖

where 𝜂 is learning rate

❑Global Aggregation

𝒘(𝑡) ← 

𝑖∈𝒩(𝑡)

𝐷𝑖

⋃𝑖∈𝒩(𝑡)𝐷𝑖

𝒘𝑖
(𝑡)

 (𝐾)

❑ Byzantine-robust Aggregation

Rules on server

Clients

Central Server
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Attack & Defense in FL

❑ Targeted Attack
➢ Minimize the accuracy on 

specific test inputs

❑ Untargeted Attack
➢ Minimize the global model 

accuracy on any test input

❑ Defense

Byzantine-robust methods on

central server

➢ Detect and remove outliers 

➢ Limit malicious updates’ impacts

❖ Attack: degrade the global model accuracy by contributing malicious model updates

Attack
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Challenges in Existing Attacks

❑ Fixed Attack Budget: Utilizes a constant number of malicious 

clients, leading to a tradeoff between attack impact and budget

❑ Uniform Attack Strategy: Assumes all training phases are equally 

important, overlooking the significance of initial learning phases

❑ Vulnerability to Defenses: Susceptible to detection and mitigation 

by robust defenses (e.g., FLTrust, SparseFed)

❑ Lack of Adaptiveness: Fails to adjust the attack strategy based on 

critical learning periods, missing the opportunity for maximum impact

What are Critical Learning Periods?
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6



What are CL Periods?
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• Two special cylinders

• Vertical/horizontal lines

• Kittens that were exposed to vertical lines for 

the first few months since birth

• Only see vertical lines, but not horizontal 

ones—for the rest of their lives

• And vice versa
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https://www.futurelearn.com/info/courses/research-methods-psychology-animal-models-

to-understand-human-behaviour/0/steps/265398
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Impact of Critical Learning Periods

❑ Critical Learning Periods (CLP): Initial training phases in deep neural 

networks that have an irreversible impact on the model’s final quality
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Detection of Critical Learning Periods

❑ Federated Gradient Norm (FGN): 

CLP is identified using the changes 

in the Federated Gradient Norm 

during training

RAID 2024, September 30-October 02, 2024, Padua, Italy Gang Yan, Hao Wang, Xu Yuan, and Jian Li

Figure2: Detecting CLP via FGN and FedFIM, where the shade

and double-arrows indicate identi ed CLP.

poisoning attacks, i.e., Min-Max when the underlying aggregation

rules are Multi-krum [10] and Trimmed-mean [59, 66] using non-

IID partitioned CIFAR-10 and Fashion-MNIST datasets. Inspired by

[1, 62], we consider ve cases that Min-Max attack only occurs in

rounds (#1) 0-20; (#2) 20-40; (#3) 40-60; (#4) 60-80; and (#5) 80-100.

We consider a system with # = 128 clients and the adversary con-

trols " = 32 clients. In each round, the server randomly selects

= = 32 clients to participate in global model update, and the adver-

sary invokes " 0 = 14 malicious clients to guarantee that < = 4

malicious clients are selected among the= = 32 clients on average.

Detailed parameter settings are discussed in Section 3.5. Figure 1

reports attack impacts of Min-Max a ected by rounds where the

attack occurs. All results consistently endorse that FL under model

poisoning attacks exhibits CLP: if the attack does not occur in early

training phases, its attack impact is signi cantly degraded. For in-

stance, when the attack occurs in rounds 0-20 (i.e., #1), the attack

impact is 5.5 under Trimmed-mean aggregation rule, while there

is almost no attack impact if that occurs in round 80-100 (i.e., #5).

Similar results hold for other attacks and hence are omitted here.

3.2 Identi fying Critical Learning Periods

Prior worksusethechangesin eigenvaluesof theHessian or approx-

imating Hessian using Fisher information [1, 29, 62] asan indicator

to identify CLP. For example, [62] proposed the federated Fisher

information (FedFIM) to identify CLP, which is computationally ex-

pensive (seeFigure3 with discussions blow). Wedeviate from these

works by leveraging the computationally e cient federated gradi-

ent norm (FGN). Considering the di erence in training loss for an

individual data sample b, let 6(w;b) = m
mF ✓(w;b) denote the gradi-

ent of theloss function evaluated on b. After performing astep SGD

on this sample, the training loss ✓= ✓(w − [ 6(w;b);b) − ✓(w;b)

can be approximated by its gradient norm using Taylor expan-

sion, i.e., ✓⇡ −[ k6(w;b)k2. As a result, the overall training loss

at round C, which we call it as FGN, can be approximated using

the weighted average of training loss across all selected clients,

i.e., FGN(C) =
Õ

82N (C)
|D 8|Õ

82N (C) |D 8|
✓8(C). We then use a simple

threshold-based rule to identify CLP: if
FGN(C)−FGN(C−1)

FGN(C−1)
≥ X, then

thecurrent training round Cis in CLP, whereX is thethreshold used

to declare CLP.

We compare the CLP identi ed by FGN with that identi ed by

using FedFIM in [62]. When training AlexNet on non-IID CIFAR-10,

weobservethat thesetwo approachesyield similar resultsasshown

in Figure 2, where the shade and double-arrows indicate identi ed

Figure 3: Computation time and memory consumption of

FGN and FedFIM approach to detect CLP.

Algori thm 1 A - CLP: CLPAware Model Poisoning Attacks

1: for C= 0,1, · · · ,) − 1 do

2: i f
FGN(C)−FGN(C−1)

FGN(C−1)
≥ X then

3: Theadversary invokesalarger number of maliciousclients

to share malicious gradients (e.g., 2< ) with the central

server / / More malicious clients during CLP

4: else

5: A smaller number of malicious clients is invoked to share

malicious gradients (e.g., < / 2) with the central server

/ / Fewer malicious clients after CLP

6: end if

7: end for

CLP. However, the FGN approach is much more computationally

e cient, i.e., being ordersof magnitude faster to compute, asshown

in Figure 3, where we implement our attacks in PyTorch [44] on

Python 3 with three NVIDIA RTX A6000 GPUs, 48GB with 128GB

RAM. Hence, the FGN approach can be easily leveraged for deter-

mining the number of malicious clients in each round during FL

training process in an online manner.

3.3 The Design of A - CLP

Per our discussions on CLP, the nal model accuracy will be per-

manently impaired if not enough clients are involved in CLP no

matter how much additional training is performed after CLP [62].

Therefore, A - CLP automatically switches between a larger (e.g.,

2< ) and a smaller (e.g.,< / 2) number of malicious clients that attack

A shares their malicious gradients with the server in each round

by identifying CLP in FL, given that attack A without being CLP

aware always selects< malicious clients on average in each round

throughout the FL training process. Therefore, once the CLP is

identi ed, A - CLPincreases the number of malicious clients that

A shares their malicious gradients with the server from < to 2< ,

implying that more clients now are being activated to improve the

attack impact on the global model during CLP. To save the attack

budget, A - CLPchanges to share a smaller number (e.g., < / 2) of

malicious gradients after CLP. Algorithm 1 summarizes A - CLPon

top of any existing attack A .

From a high-level perspective, A - CLPexploits more malicious

clients in the initial training phase than a xed number of malicious

clients for A itself in each training round, to promptly craft the

❑Why FGN?: FGN provides a 

computationally efficient and online 

method to detect CLP, allowing for 

adaptive adjustments in the attack 

strategy
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Proposed Attack Methods

❑GraSP (CLP-Aware 

Similarity-Based Attack)

➢ Lightweight: Uses a cosine 

similarity approach to craft 

malicious gradients

➢ Approximate Deviations: 

Deviates gradients based on 

similarity, without strictly following 

the global model’s inverse 

direction

➢ Superior Impact: Achieves better 

attack performance

❑𝓐-CLP (CLP-Aware Model 

Poisoning)

➢ Adaptive Budget: Dynamically 

adjusts the number of malicious 

clients

➢ Optimized Strategy: Increases 

attack budget during CLP for 

maximum impact, reducing it 

afterward to enhance efficiency

➢ Improved Resilience: 

Strengthens resistance against 

defenses like FLTrust



II. Design of 𝓐-CLP
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Overview of 𝓐-CLP

❑ Concept: 𝒜-CLP adapts 

the number of malicious 

clients during federated 

learning rounds based on 

the identification of CLP

❑ Key Insight: Larger 

attack budgets are only 

required during the initial 

critical learning periods 

for maximum impact
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Feasibility Guarantee for 𝓐-CLP

𝑁 denotes the total number of clients, 

𝑛 represents the clients selected in each round

𝑀 is the total number of controlled clients

𝑀′ is the number of activated clients

𝒎 is the corresponding number of selected malicious clients (we want to guarantee)
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Experimental Details

❑ Datasets: CIFAR-10, CIFAR-100, MNIST, Fashion-MNIST, Shakespeare

❑Models: AlexNet, VGG-11, ResNet-18, LSTM

❑ Baseline Attacks: Fang, LIE, Min-Sum, Min-Max, MPHM

❑ Settings: Total number of clients 𝑁 = 128 selected clients 𝑛 = 32, controlled

clients 𝑀 = 32

❑ Objective: Evaluate the attack impact, budget, and resilience against different 

defense mechanisms
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Different CLP Augmented Schemes

❑Traditional: Uses a fixed number of 

malicious clients throughout all 

training rounds

❑CL (CLP-Aware): Increases the 

number of malicious clients during 

CLP and reduces it after

❑RCL (Reverse CLP): Reduces 

malicious clients during CLP and 

increases them afterward

❑BC-RCL (Budget-Constrained 

RCL): Similar to RCL but with a 

fixed overall attack budget
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Different CLP Augmented Schemes

❑𝓐-CLP (CL) significantly outperforms traditional attacks, achieving higher 

accuracy reduction by dynamically targeting CLP

❑RCL and BC-RCL show limited impact as they fail to fully leverage the CLP
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Evaluations of Attack Impact

❑𝑨𝒕𝒕𝒂𝒄𝒌 𝑰𝒎𝒑𝒂𝒄𝒕:

𝑝𝑢𝑟𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑎𝑡𝑡𝑎𝑐𝑘 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑝𝑢𝑟𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
× 100%

❑𝒜-CLP improves 

effectiveness by up 

to 6.85x compared 

to traditional attacks

❑ Achieves a greater 

impact while using a 

smaller attack 

budget
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Resilience Against Defenses

❑𝑨𝒕𝒕𝒂𝒄𝒌 𝑰𝒎𝒑𝒂𝒄𝒕:

𝑝𝑢𝑟𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑎𝑡𝑡𝑎𝑐𝑘 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑝𝑢𝑟𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
× 100%

❑ Demonstrates stronger resistance 

against defenses (e.g., FLTrust, 

SparseFed), enhancing attack success 

by up to 2x

❑  Properly leveraging CLP with adaptive 

client selection significantly boosts the 

attack's performance



III. Design of GraSP
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Design Motivation

❑ High Complexity of Existing Attacks: Traditional model poisoning 

attacks are computationally intensive and complex

❑ CLP Vulnerabilities: Small gradient errors during CLP have a lasting 

impact, providing a window for more effective attacks

❑ Need for Difference: Current methods + 𝒜-CLP produce very similar

malicious updates, easily to be detected

❑ GraSP's Goal: Introduce a lightweight, similarity-based attack that 

maximizes impact with minimal computational effort, targeting the 

most vulnerable training phases
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Design Details

❑Malicious local model is calculated as:

𝐰 represents the model parameters

𝜂 is the learning rate

𝐬𝑡 is the update direction at the 𝑡-th training round, which

is estimated by using received local updates. 

Model poisoning makes the model in the opposite 

direction of current update.
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Design Details

𝐠(𝑡) is the estimated global update

𝐠(𝑡) is the calculated targeted malicious global update

𝐠𝑖(𝑡) represents the update of client 𝑖. 

❑ Each client uses a unique 𝝀𝒊 to manipulate 

its local update. By coordinating their 

efforts, malicious clients make the attack 

harder to detect by defenses like FLTrust
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Design Details

❑ 𝜏 is the attack degree predefined by the attacker; in this work, it is set to 0.1.

❑The targeted malicious global update is calculated as:

𝐠 𝑡 = 𝐠 𝑡 + 𝜆𝐬(𝑡)

where 𝐠 𝑡 =
1

𝑛
σ𝑖=1

𝑛 𝐠𝑖(𝑡), 𝜆 is solved by using the below proposition.
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Compared With 𝓐-CLP

❑Both demonstrate significantly 

improved resilience against 

advanced defenses (e.g., FLTrust, 

SparseFed, FLAIR).

❑GraSP outperforms 𝒜-CLP in most

of scenarios, indicating its strong 

adaptability to defensive measures

❑The similarity-based approach in 

GraSP leads to sustained attack 

success, especially during critical 

learning periods.
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Analysis of GraSP

❑GraSP shows higher gradient magnitudes during Critical Learning Periods 

(CLP), resulting in a greater impact on the global model

❑ Uses cosine similarity to target directions that most disrupt model updates, 

enabling faster and more effective gradient adjustments



IV. Conclusions
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Defense Against Proposed Methods

❑ Defending Against 𝓐-CLP:

➢ Simple Approach: Increase the number 

of participating clients during CLP to 

dilute the impact of malicious updates

➢ Limitation: Results in high 

communication costs and an increased 

attack budget

❑ Defending Against GraSP:

➢ Layer-Based Similarity: Calculate 

gradient similarity across clients at 

specific layers to identify anomalies

➢ Anomaly Detection: Inspired by 

methods like AFA and cosDefense, 

potential malicious clients are excluded 

from model aggregation during CLP for 
stricter protection
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Conclusions

❑ Key Contributions

➢ Proposed 𝓐 -CLP and GraSP, 

adaptive attacks leveraging 

Critical Learning Periods (CLP) 

for greater impact

➢ Introduced the FGN metric for 

efficient, privacy-preserving 

CLP detection

❑ Main Findings

➢ 𝓐-CLP enhances attack 

success, achieving up to 6.85x 

more impact than traditional 

methods by adjusting malicious 

client numbers

➢ GraSP uses similarity-based 

strategies for effective gradient 

deviations with lower 

computational costs, 
outperforming current attacks
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GitHub Repo:
https://github.com/GYan58/RAID-2024-CLP

IntelliSys Lab
https://intellisys.haow.us
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