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|. Basics of Federated Learning



1 Federated Learning Workflow
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1 Attack & Defense in FL

Attack Q Targeted Attack

| > Minimize the accuracy on
@@@. .Q@% ______ .%) specific test inputs
1 Untargeted Attack

> Minimize the global model
accuracy on any test input

d Defense
<] _______________________ Byzantine-robust methods on
@ “1(@) Send global model to participants

| o central server
I@ Local Training

I@ Send back trained models to manager » Detect and remove outliers

I
I
I
I
I@ Global Aggregation I

> Limit malicious updates’ impacts

% Attack: degrade the global model accuracy by contributing malicious model updates




1 Challenges In Existing Attacks

1 Fixed Attack Budget: Utilizes a constant number of malicious
clients, leading to a tradeoff between attack impact and budget

d Uniform Attack Strategy: Assumes all training phases are equally
Important, overlooking the significance of initial learning phases

d Vulnerability to Defenses: Susceptible to detection and mitigation
by robust defenses (e.g., FLTrust, SparseFed)

J Lack of Adaptiveness: Fails to adjust the attack strategy based on
critical learning periods, missing the opportunity for maximum impact

What are Critical Learning Periods?
y© -s5-




What are CL Periods?
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What are CL Periods?

« Two special cylinders
« Vertical/horizontal lines
« Kittens that were exposed to vertical lines for
the first few months since birth
 Only see vertical lines, but not horizontal
ones—for the rest of their lives
 And vice versa
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https://www.futurelearn.com/info/courses/research-methods-psychology-animal-models-
to-understand-human-behaviour/0O/steps/265398



1 Impact of Critical Learning Periods
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Figure 1: FL under model poisoning attacks exhibits CLP,
where the Min-Max attack occurs in (#1) rounds 0-20; (#2)
rounds 20-40; (#3) rounds 40-60; (#4) rounds 60-80; and (#5)
rounds 80-100, respectively.

 Critical Learning Periods (CLP): Initial training phases in deep neural

networks that have an irreversible impact on the model’s final quality
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1 Detection of Critical Learning Periods
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Figure 2: Detecting CLPvia FGN and FedFIM, wherethe shade Figure 3: Computation time and memory consumption of
and double-arrows indicate identified CLP. FGN and FedFIM approach to detect CLP.

 Federated Gradient Norm (FGN):
CLP is identified using the changes
In the Federated Gradient Norm
during training

d Why FGN?: FGN provides a
computationally efficient and online
method to detect CLP, allowing for
adaptive adjustments in the attack

strategy
y© -10-




1 Proposed Attack Methods

dA-CLP (CLP-Aware Model dGraSP (CLP-Aware
Poisoning) Similarity-Based Attack)

» Adaptive Budget: Dynamically » Lightweight: Uses a cosine
adjusts the number of malicious similarity approach to craft
clients malicious gradients

» Optimized Strategy: Increases » Approximate Deviations:
attack budget during CLP for Deviates gradients based on
maximum impact, reducing it similarity, without strictly following
afterward to enhance efficiency the global model’s inverse

> | T . direction
mproved Resilience:
Strengthens resistance against » Superior Impact: Achieves better
defenses like FLTrust attack performance




Il. Design of A-CLP



1 Overview of A-CLP

Algorithm 1 A-CLP: CLP Aware Model Poisoning Attacks

1: fort=0,1,---, T —1do

.o FGN(t)—FGN(t-1)
if FGN(z-1) > J then
3: The adversary invokes a larger number of malicious clients

to share malicious gradients (e.g., 2m) with the central
server //More malicious clients during CLP

else
A smaller number of malicious clients is invoked to share
malicious gradients (e.g., m/2) with the central server
/ /Fewer malicious clients after CLP

6: end if

7: end for

2:

 Concept: A-CLP adapts
the number of malicious
clients during federated
learning rounds based on
the identification of CLP

 Key Insight: Larger
attack budgets are only
required during the Initial
critical learning periods
for maximum impact




1 Feasibility Guarantee for A-CLP

M (N -M)m < nM M’ Method n=16 | n=32 | n =48
= , M= |—1 Equation (1) 7 7 7
n—m N e T oy 7 7 7
Equation (1) 14 14 14
N denotes the total number of clients, m=01%n 1 o nulation 14 14 14
Equation (1) 32 32 32
n represents the clients selected in each round m = 0.25n Simulation 32 32 32
Table 1: The number of malicious clients M’ invoked by the
M is the total number of controlled clients adversary so as to guarantee that on average m malicious

clients are selected by the server.

M' is the number of activated clients

m is the corresponding number of selected malicious clients (we want to guarantee)




1 Experimental Details

 Datasets: CIFAR-10, CIFAR-100, MNIST, Fashion-MNIST, Shakespeare
d Models: AlexNet, VGG-11, ResNet-18, LSTM
 Baseline Attacks: Fang, LIE, Min-Sum, Min-Max, MPHM

 Settings: Total number of clients N = 128 selected clients n = 32, controlled
clients M = 32

1 Objective: Evaluate the attack impact, budget, and resilience against different
defense mechanisms




1 Different CLP Augmented Schemes

Tradition: 4.00 dTraditional: Uses a fixed number of

4Jllllll“lm“ll“lllllll“llHML malicious clients throughout all
- training rounds
%8 ----- CL: 2.88
S JCL (CLP-Aware): Increases the
ﬁ CL:7 12 number of malicious clients during
i — ] CLP and reduces it after
<o ORCL (Reverse CLP): Reduces

R BC.RCL: 4.00 malicious clients during CLP and

Increases them afterward
0 25 50 75 100 125 150 175 200 ABC-RCL (Budget-Constrained

Round

RCL): Similar to RCL but with a
Figure 4: The attack budget: A fixed average attack budget of fixed overall attack budget

4 per round.




1 Different CLP Augmented Schemes
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Figure 5: Comparisons of different CLP aware attacks to FL.
All attacks do not know the gradients on benign clients.

dA-CLP (CL) significantly outperforms traditional attacks, achieving higher
accuracy reduction by dynamically targeting CLP

JRCL and BC-RCL show limited impact as they fall to fully leverage the CLP




1 Evaluations of Attack Impact

Dataset . No Attack Fang LIE Min-Max Min-Sum MPHM Label Flipping
Aggregation Rule
(Model) (Accuracy) | Trad. \ CL | Trad. \ CL | Trad. \ CL | Trad. \ CL | Trad. \ CL | Trad. \ CL
Multi-krum [10] 57.57 10.40 | 20.02 | 5.73 | 11.86 | 12.03 | 26.47 | 11.32 | 24.37 | 11.19 | 23.27 | 3.23 7.94
CIFAR-10 Bulyan [17] 56.34 9.40 | 20.69 | 7.50 | 12.99 | 7.98 | 20.90 | 6.53 | 16.95 | 8.15 | 20.73 | 4.89 10.54
(AlexNet) Trimmed-mean [59, 66] 57.33 10.32 | 2244 | 736 | 17.23 | 950 | 22.85 | 835 | 19.44 | 891 | 21.37 | 6.19 12.05
Median [59, 66] 55.46 11.73 | 22.62 | 10.89 | 1844 | 9.10 | 2048 | 791 | 18.44 | 9.03 | 20.14 | 6.95 13.04
AFA [41] 57.89 6.99 | 11.81 | 2.98 7.41 9.27 | 19.05 | 7.73 | 14.83 | 881 | 17.32 | 2.01 5.30
Multi-krum [10] 62.63 913 | 16.03 | 6.24 | 12.82 | 9.94 | 17.94 | 9.50 | 18.07 | 9.72 | 18.03 | 3.12 4.36
CIFAR-10 Bulyan [17] 63.37 15.16 | 22.53 | 13.46 | 19.56 | 1491 | 21.85 | 14.54 | 21.52 | 14.88 | 21.69 | 7.13 11.60
(VGG-11) Trimmed-mean [59, 66] 62.90 11.62 | 18.88 | 11.20 | 17.02 | 13.14 | 20.89 | 10.09 | 20.95 | 12.53 | 20.34 | 5.54 | 11.08
Median [59, 66] 60.13 15.23 | 23.58 | 12.80 | 15.98 | 15.05 | 23.00 | 14.38 | 23.34 | 14.49 | 23.56 | 5.44 7.67
AFA [41] 62.75 7.21 | 10.58 | 6.26 8.55 8.54 | 11.55 | 7.87 | 11.09 | 8.19 | 11.41 | 443 6.18
Multi-krum [10] 34.89 17.68 | 25.62 | 533 | 11.09 | 16.62 | 25.53 | 10.69 | 20.23 | 18.49 | 25.22 | 3.29 6.02
CIFAR-100 Bulyan [17] 35.21 14.28 | 16.61 | 8.15 | 11.67 | 12.58 | 19.11 | 10.36 | 14.93 | 13.72 | 18.62 | 4.65 8.75
(ResNet-18) Trimmed-mean [59, 66] 35.26 10.01 | 18.49 | 7.85 941 | 10.60 | 18.20 | 11.17 | 19.62 | 10.93 | 19.34 | 5.70 8.19
Median [59, 66] 34.79 12.41 | 23.59 | 4.97 9.71 9.83 | 21.18 | 9.68 | 17.93 | 12.37 | 23.90 | 3.10 6.84
AFA [41] 34.59 9.94 | 11.85 | 2.05 6.33 933 | 13.70 | 8.12 | 13.38 | 10.13 | 13.93 | 1.59 3.67
Multi-krum [10] 97.02 159 | 2.06 | 026 | 096 | 1.51 | 2.32 | 147 | 2.25 | 149 | 2.30 | 0.04 | 0.72
MNIST Bulyan [17] 97.21 1.36 1.88 0.84 1.18 1.32 2.14 1.23 2.06 1.28 2.09 0.34 1.02
(FC) Trimmed-mean [59, 66] 97.24 1.49 2.05 0.24 0.93 1.35 2.28 1.35 2.23 1.32 2.27 0.08 0.62
Median [59, 66] 96.93 1.51 2.03 0.31 1.00 1.31 2.15 1.25 2.12 1.27 2.16 0.08 0.57
AFA [41] 97.20 1.27 1.70 0.13 0.89 1.28 2.06 1.28 2.08 1.29 2.10 0.02 0.52
Multi-krum [10] 83.24 597 | 11.05 | 351 | 6.30 | 506 | 15.05 | 4.64 | 12.10 | 580 | 15.37 | 2.08 | 2.69
Fashion Bulyan [17] 83.12 7.79 | 20.58 | 3.95 7.42 6.80 | 13.24 | 551 | 12.88 | 7.95 | 20.34 | 1.62 3.97
MNIST Trimmed-mean [59, 66] 83.53 6.10 9.39 446 | 11.62 | 5.21 8.75 4.93 8.57 6.02 | 11.77 | 2.66 3.42
(AlexNet) Median [59, 66] 81.81 5.34 8.88 5.84 | 10.65 | 4.27 8.25 4.14 8.72 5.49 9.21 1.23 2.66
AFA [41] 83.97 4.04 6.46 2.96 5.09 4.91 9.49 3.62 7.57 4.86 9.30 2.26 3.91
Multi-krum [10] 47.14 9.65 | 11.94 | 2.65 | 4.73 | 8380 | 11.75 | 8.08 | 11.07 | 8.23 | 11.29 | 1.68 | 3.34
ShelsprEa: ' Bulyan [17] 46.52 10.38 | 13.71 | 1.63 3.48 825 | 12.14 | 7.71 | 11.50 | 7.99 | 11.60 | 1.22 2.69
(LSTM) Trimmed-mean [59, 66] 46.93 9.03 | 12.18 | 2.23 3.98 8.26 | 11.12 | 7.92 | 10.76 | 8.04 | 10.98 | 1.53 3.26
Median [59, 66] 45.76 9.09 | 11.53 | 1.37 3.16 7.45 | 10.38 | 7.05 9.96 7.25 9.52 1.05 2.44
AFA [41] 47.41 7.19 | 10.14 | 4.09 5.50 8.58 | 10.98 | 8.47 9.91 8.36 9.68 1.43 2.97

Table 2: The attack impact for state-of-the-art model poisoning attack A and the corresponding CLP aware attack A-CLP under
various threats using non-IID partitioned datasets when benign gradients are unknown to attack A.

dAttack Impact:

pure accuracy — attack accuracy

pure accuracy
X 100%

d A-CLP improves
effectiveness by up
to 6.85x compared
to traditional attacks

 Achieves a greater
Impact while using a
smaller attack
budget




1 Resilience Against Defenses

Dataset Defense Fang Min-Max Min-Sum MPHM
(Model) Trad. ] CL | Trad. ] CL | Trad. ] CL | Trad. ] CL

FLTrust 474 | 10.35 | 5.21 | 12.79 | 557 | 11.76 | 6.13 | 13.26
CIFAR-10 SparseFed 6.834 | 11.73 | 632 | 12.61 | 6.22 | 12.46 | 7.03 | 12.68
(AlexNet) cosDefense | 5.71 | 11.40 | 6.35 | 13.47 | 596 | 12.56 | 6.15 | 13.22
FLAIR 6.57 | 12.53 | 7.27 | 13.81 | 8.03 | 14.13 | 7.53 | 14.01
LeadFL 6.31 | 10.06 | 5.12 9.96 6.20 | 11.49 | 6.36 | 11.60
FLTrust 1.57 2.85 1.30 3.23 1.74 2.25 1.57 2.77

F 2.71 4. 2. 4.42 2. 4.02 .01 4.
CIFAR-10 SparseFed 7 63 60 57 0 3.0 88
(VGG-11) cosDefense | 3.07 4.52 2.42 4.64 3.41 4.55 3.43 4.74
FLAIR 2.86 4.25 3.05 4.96 4.01 5.04 3.76 4.79
LeadFL 1.31 243 0.88 2.65 0.73 2.15 1.18 2.86
FLTrust 3.10 4.49 2.45 5.19 243 5.47 2.99 5.73

F 32 2 2.64 .01 2. 5 .21 o
CIFAR-100 SparseFed 3.3 6.25 6 5.0 95 5.39 3 5.57
(ResNet-18) cosDefense | 3.39 5.42 4.51 5.56 3.62 5.85 5.39 6.45
FLAIR 3.38 4.97 4.94 6.25 5.20 5.96 6.25 7.10
LeadFL 1.85 3.55 0.97 3.95 0.82 3.72 2.19 4.34
FLTrust 1.33 1.66 1.37 2.10 1.31 2.03 1.39 2.16
MNIST SparseFed | 1.22 | 1.65 | 1.12 | 1.81 | 1.53 | 1.79 | 1.60 | 1.84
cosDefense | 1.09 1.78 1.48 2.05 1.20 1.94 1.37 2.00
(FO) FLAIR 1.28 1.58 1.01 1.93 1.24 2.07 1.18 2.05
LeadFL 1.23 1.63 1.07 1.99 1.19 2.08 1.30 2.03
FLTrust 2.93 5.80 3.28 6.82 3.82 7.63 3.60 7.21
Fashion SparseFed | 3.25 | 5.35 | 2.56 | 441 | 251 | 539 | 3.06 | 4.76
MNIST cosDefense | 3.12 7.45 3.36 7.85 2.99 6.77 3.61 8.09
(AlexNet) FLAIR 3.48 7.32 3.72 7.58 3.92 7.86 4.17 8.13
LeadFL 3.34 5.50 3.41 5.85 2.89 5.12 3.34 591
FLTrust 4.43 5.58 5.41 7.24 5.74 7.05 5.64 7.38
SparseFed 5.20 7.25 6.04 8.22 6.38 8.54 6.34 8.81

Shakespeare

(LSTM) cosDefense | 5.31 6.94 5.35 7.78 6.05 7.58 5.78 7.74
FLAIR 6.08 7.20 5.97 6.96 6.94 7.75 5.87 7.09
LeadFL 4.05 6.57 5.12 7.89 4.39 7.41 4.78 8.16

Table 4: Attack impacts of A and A-CLP defended by FLTrust,

SparseFed, cosDefense, FLAIR and LeadFL.

dAttack Impact.

pure accuracy — attack accuracy

X 100%
pure accuracy

 Demonstrates stronger resistance
against defenses (e.g., FLTrust,
SparseFed), enhancing attack success
by up to 2x

O Properly leveraging CLP with adaptive
client selection significantly boosts the
attack's performance




IIl. Design of GraSP



1 Design Motivation

d High Complexity of Existing Attacks: Traditional model poisoning
attacks are computationally intensive and complex

d CLP Vulnerabilities: Small gradient errors during CLP have a lasting
Impact, providing a window for more effective attacks

J Need for Difference: Current methods + A-CLP produce very similar
malicious updates, easily to be detected

d GraSP's Goal: Introduce a lightweight, similarity-based attack that
maximizes impact with minimal computational effort, targeting the
most vulnerable training phases




1 Design Details

dMalicious local model is calculated as:

wi(t) :=wj(t) — nAist, w represents the model parameters
n is the learning rate

s; IS the update direction at the t-th training round, which
IS estimated by using received local updates.

Model poisoning makes the model in the opposite
direction of current update.




1 Design Details

LEMMA 1. Suppose that A; is the changing direction to craft ma-
licious gradient of the malicious client i, Vi = 1,--- ,m“ Y. Then for
any given attack threshold t, the value of A; satisfies

~ (g(t), g () —zllg®gD]
- g(t)Ts(t) ’

A Vi=1,---,m“f. (9)

g(t) is the estimated global update
g(t) is the calculated targeted malicious global update

g;(t) represents the update of client i.

1 Each client uses a unique 4; to manipulate
Its local update. By coordinating their
efforts, malicious clients make the attack
harder to detect by defenses like FLTrust




1 Design Details

dThe targeted malicious global update is calculated as:
8(t) = g(t) + 1s(8)
where g(t) = % *.gi(t), Ais solved by using the below proposition.
PROPOSITION 1. Suppose that A is the changing direction to craft

gradients of m“** malicious clients based on the cosine similarity. For
any given attack threshold t, the value of A is

A=

—z — /2% — 4xy
2 ’

(8)

where x = (g(t)Ts(t))? =2 lg)II° - s, y = (1=7%) - g%,
and z = 2(* = 1)llg(®)[1* - g(1)Ts(2).

U 7 Is the attack degree predefined by the attacker; in this work, it is set to 0.1.




1 Compared With A-CLP

Dataset . . g

(Model) Attack FLTrust | SparseFed | cosDefense | FLAIR | LeadFL DBoth demonstra‘te S|gn|f|cant|y
CIFAR-10 | Best A*-CLP | 13.26 12.68 13.47 14.13 | 11.60 improved resilience against

(AlexNet) GraSP 13.98 14.21 14.98 15.14 | 13.33

CIFART0 | Best A'-CLP | 323 | 488 176 | 504 | 286 advanced defenses (e.g., FLTrust,
(VGG-11) GraSP 4.68 5.60 6.42 5.89 | 3.98 SparseFed FLA|R)

CIFAR-100 | Best A*-CLP | 5.73 6.25 6.45 710 | 434 ’ '
(ResNet-18) GraSP 6.83 7.33 8.67 7.10 | 6.61

Yo | e | Eae | i 2w 2 (AGraSP outperforms A-CLP in most
F.MNIST | Best A*-CLP | 7.63 5.39 8.09 813 | 5091 of scenarios, indicating its strong
(AlexNet) GraSP 7.95 6.74 9.42 8.57 7.19 adaptablllty tO defensive measures
Shakespeare | Best A*-CLP 7.38 8.81 7.78 7.75 8.16

(LSTM) GraSP 8.23 10.23 9.84 8.59 | 9.40

Table 6: Attack impacts of GraSP and A*-CLP when defended []The similarity-based approach in

by FLTrust, SparseFed, cosDefense, FLAIR and LeadFL under -

various threat models using non-IID partitioned datasets. GraSP leads to SUStaI 4 ed att.a.C K
success, especially during critical

learning periods.




1 Analysis of GraSP

= = Fang-CLP Min-Max-CLP = = Min-Sum-CLP MPHM-CLP GraSP
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(a) C + Multi-krum  (b) C + Trimmed-mean (c) F + Multi-krum  (d) F + Trimmed-mean
Figure 16: The /;,-norm of gradient magnitude different of
CLP augmented attacks when benign gradients are unknown
to the adversary, where “C” and “F” stands for CIFAR-10 and

Fashion-MNIST datasets, respectively.

1 GraSP shows higher gradient magnitudes during Critical Learning Periods
(CLP), resulting in a greater impact on the global model

1 Uses cosine similarity to target directions that most disrupt model updates,
enabling faster and more effective gradient adjustments




V. Conclusions



1 Defense Against Proposed Methods

 Defending Against A-CLP:  Defending Against GraSP:

» Simple Approach: Increase the number » Layer-Based Similarity: Calculate
of participating clients during CLP to gradient similarity across clients at
dilute the impact of malicious updates specific layers to identify anomalies

» Limitation: Results in high » Anomaly Detection: Inspired by
communication costs and an increased methods like AFA and cosDefense,
attack budget potential malicious clients are excluded

from model aggregation during CLP for
stricter protection




1 Conclusions

 Key Contributions d Main Findings

> Proposed A -CLP and GraSP, » A-CLP enhances attack
adaptive attacks leveraging
Critical Learning Periods (CLP)
for greater impact

» Introduced the FGN metric for
efficient, privacy-preserving
CLP detection

success, achieving up to 6.85x
more impact than traditional
methods by adjusting malicious
client numbers

GraSP uses similarity-based
strategies for effective gradient
deviations with lower
computational costs,
outperforming current attacks




GitHub Repo:
https://github.com/GYan58/RAID-2024-CLP

IntelliSys Lab
https://intellisys.haow.us
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