
Taming Latency-Memory Trade-Off in MoE-Based LLM
Serving via Fine-Grained Expert Offloading

Hanfei Yu
Stevens Institute of Technology

New Jersey, USA
hyu42@stevens.edu

Xingqi Cui*
Rice University

Texas, USA
xc66@rice.edu

Hong Zhang
University of Waterloo

Ontario, Canada
hongzhangblaze@gmail.com

Hao Wang
Rutgers University
New Jersey, USA

hw488@cs.rutgers.edu

Hao Wang
Stevens Institute of Technology

New Jersey, USA
hwang9@stevens.edu

Abstract
Large Language Models (LLMs) have gained immense suc-
cess in revolutionizing various applications, including content
generation, search and recommendation, and AI-assisted op-
erations. To reduce high training costs, Mixture-of-Experts
(MoE) architecture has become a popular backbone for mod-
ern LLMs. However, despite the benefits, serving MoE-based
LLMs experience severe memory inefficiency due to sparsely
activated experts. Recent studies propose to offload inactive
experts from GPU memory to CPU memory to improve the
serving efficiency of MoE models. However, they either incur
high inference latency or high model memory footprints due
to coarse-grained designs.

To tame the latency-memory trade-off in MoE serving, we
present FineMoE, a fine-grained expert offloading system for
MoE serving that achieves low inference latency with mem-
ory efficiency. We design FineMoE to extract fine-grained
expert selection patterns from MoE models and semantic hints
from input prompts to efficiently guide expert prefetching,
caching, and offloading decisions. FineMoE is prototyped
on top of HuggingFace Transformers and deployed on a six-
GPU testbed. Experiments with open-source MoE models
and real-world workloads show that FineMoE reduces infer-
ence latency by 47% and improves expert hit rate by 39%
over state-of-the-art solutions.

CCS Concepts: • Computing methodologies → Distributed
algorithms; Artificial intelligence; Machine learning.

*This work was conducted while Xingqi Cui was a remote intern student, ad-
vised by Dr. Hao Wang at the IntelliSys Lab, Stevens Institute of Technology.

Please use nonacm option or ACM Engage class to enable CC li-

censes
This work is licensed under a Creative Commons Attribution 4.0 International
License.
EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2212-7/26/04
https://doi.org/10.1145/3767295.3769319

Keywords: Artificial Intelligence, Large Language Model,
Mixture-of-Experts, Model Serving, Offloading

ACM Reference Format:
Hanfei Yu, Xingqi Cui, Hong Zhang, Hao Wang, and Hao Wang.
2026. Taming Latency-Memory Trade-Off in MoE-Based LLM
Serving via Fine-Grained Expert Offloading. In 21st European Con-
ference on Computer Systems (EUROSYS ’26), April 27–30, 2026,
Edinburgh, Scotland Uk. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3767295.3769319

1 Introduction
Large Language Models (LLMs) have achieved remarkable
success in advancing Natural Language Processing (NLP) re-
search and transforming various applications, including con-
tent generation [2, 7, 12, 45], search and recommendation [34,
63], and AI-assisted operations [24, 33, 39]. Given the high
training costs, modern LLMs have returned to Mixture-of-
Experts (MoE) architectures [1, 11, 23, 50, 57, 60] as their
backbone implementations. Inside MoE models, each MoE
layer comprises a gating network and a collection of experts,
with only a subset of experts being activated during computa-
tion. This sparse activation mechanism significantly reduces
the number of floating point operations (FLOPs), enabling
MoE-based LLMs to achieve substantially lower training
costs compared to dense LLMs [11, 23, 60].

Despite the computational efficiency, MoE models exhibit
substantial memory inefficiency during the serving phase.
Though certain model parameters remain inactive during in-
ference, they must still reside in GPU memory to allow for
potential future activation. Expert offloading [4, 16, 51, 58]
has emerged as a promising strategy to address this issue,
which predicts inactive experts and transfers them to CPU
memory while retaining only the necessary experts in GPU
memory, reducing the overall model memory footprint.

However, existing expert offloading solutions struggle to
effectively balance the latency-memory trade-off in MoE
serving. These approaches either suffer from high inference la-
tency [4, 51] or incur substantial model memory footprints [16,
58]. The key reason is that existing works track expert patterns

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3767295.3769319
https://doi.org/10.1145/3767295.3769319

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Hanfei Yu, Xingqi Cui, Hong Zhang, Hao Wang, and Hao Wang

“Summarize this paper”

“This”

“This”

“paper” “is”
Expert 1 …

“about”

Probabilities

Output hidden states

2 J

Iteration 1

Prefill Decode

Iter. 2 Iter. 3 Iter. 4
…

Iter. 5

…

 MoE LLM

Transformer block (TB) 1

Transformer block (TB) L

Embedding layer

Language modeling head

Embed

TB L

Head

TB 1

MoE LLM

 …

“This paper”

Embed

TB L

Head

TB 1

MoE LLM

 …

“This paper is”

Embed

TB L

Head

TB 1

MoE LLM

 …

Input hidden states

Gate Network
 MoE layer

Self-attention layer

…

…

(a) MoE-based LLM serving workflows.

Latency

Memory

FineMoE

ProMoE

MoE-Infinity

No offload

DeepSpeed

Mixtral-offload

(b) Trade-offs in MoE.

Figure 1. Mixture-of-Experts (MoE) Large Language Model (LLM) serving.

and manage experts in coarse granularity. They fail to accu-
rately identify and retain only the necessary experts in GPU
memory during inference, resulting in frequent and costly
on-demand expert loading [51] and performance degradation.

In this paper, we propose FineMoE, a fine-grained expert
offloading system that tames the latency-memory trade-off
in MoE serving. To track and analyze MoE models’ expert
selection behaviors in fine granularity, we propose a new
data structure called expert map, which records the iteration-
level probability distributions output by the gate network.
FineMoE uses historical expert maps for comparing expert
trajectory similarity to guide offloading.1 Apart from the ex-
pert map, FineMoE is designed to track fine-grained input
semantic embeddings from individual request prompts pro-
cessed by the MoE model. Given the collected semantic-based
and trajectory-based information, FineMoE carefully searches
the most accurate expert map for guiding expert prefetching,
caching, and offloading through inference iterations. In sum-
mary, we make the following contributions:

• We design FineMoE, a fine-grained expert offloading sys-
tem that achieves low inference latency while reducing
model memory footprints.

• We propose a new data structure, expert map, that tracks
fine-grained expert selection behaviors of MoE models.
FineMoE leverages input semantic embeddings to aug-
ment the expert map search to guide expert offloading.

• We prototype FineMoE on top of HuggingFace Trans-
formers [55] and deploy it on a six-GPU testbed. Ex-
tensive experiments with open-source MoE models and
real-world workloads show that FineMoE reduces infer-
ence latency by 47% and improves expert hit rate by 39%
compared to state-of-the-art solutions.

1In this paper, “trajectory” is defined as the collection of probability distribu-
tions over experts observed through layers.

2 Background and Motivation
2.1 LLM Serving
Unlike traditional Deep Learning (DL) model inference, Large
Language Model (LLM) serving consists of two consecutive
stages: prefill and decode. Figure 1a illustrates the two stages
when an LLM performs inference for a request prompt. In
the prefill stage, the LLM first computes the intermediate
key-value (KV) states of the prompt tokens, prefills the KV
cache [3, 28, 31, 37, 65], and then generates the first answer
token. In the decode stage, the LLM sequentially generates
the answer to the prompt token-by-token in an auto-regressive
manner, where tokens generated previously are used for gen-
erating the next token.

The two stages have their own unique characteristics. The
prefill stage only requires one iteration2, processing all tokens
in parallel and generating the first answer token. The decode
stage spans several iterations, generating one token per it-
eration until the answer is completed. Due to the different
characteristics of the two stages, recent studies [43, 65] have
identified that the prefill stage is compute-bounded, while the
decode stage is considered memory-bounded. Therefore, peo-
ple typically quantify the serving performance of LLM two
stages using different metrics. For the prefill stage, Time-To-
First-Token (TTFT) is commonly employed, which measures
the latency from receiving the user request until generating
the first answer token. For the decode stage, Tokens-Per-
Second (TPS) or Time-Per-Output-Token (TPOT) is used
to measure the generation rate of LLM serving.

2.2 MoE-based LLM Serving
By integrating MoE layers in Transformer blocks [54], MoE
architectures [61] have emerged as a popular backbone for
modern LLMs, such as Mixtral [23], Snowflake Arctic [50],
and DeepSeek-MoE [11]. Figure 1a illustrates MoE-based
LLMs’ typical structures, where feed-forward network (FFN)

2An iteration refers to a single step in auto-regressive inference that generates
one new token. The iteration time denotes the end-to-end latency of this step.

FineMoE : Taming Latency-Memory Trade-Off in MoE-Based LLM Serving EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

Reroute
(He et al. [20],

Lynx [18])

MoE Serving

Compress
(Samoyeds [56],

Hobbit [53])

Coarse-grained
(Mixtral-Offload [16],

MoE-Infinity [58])

Fine-grained
(FineMoE)

Lossless
Serving

Lossy
Serving

Figure 2. The design space of MoE-based LLM serving.

modules are replaced by MoE layers.3 Each MoE layer con-
sists of a gate network and a set of expert networks. Inside
each Transformer block, the self-attention module first cal-
culates the attentions [54] based on input hidden states, and
then the gate network determines which expert(s) to acti-
vate for computing the output representations. Compared to
traditional dense LLMs, MoE-based LLMs only activate a
subset of parameters during training and inference, reducing
computational overhead while delivering superior generation
performance compared to dense LLMs with a comparable
number of parameters [1, 11, 23, 50, 57, 60].

Despite the benefits of saving training computations, MoE-
based LLM serving still suffers from GPU memory ineffi-
ciency as MoE inference requires loading all model param-
eters into GPU memory, including those inactive experts.
Table 1 characterizes three popular MoE models: Mixtral-
8×7B [23], Qwen1.5-MoE [60], and Phi-3.5-MoE [1]. During
inference, they exhibit 72%, 81%, and 84% inactive param-
eters, respectively, due to the sparsity of expert activation
in MoE. This corresponds to 67, 23, and 70 GB of inactive
GPU memory, resulting in low memory efficiency and serving
throughput. Therefore, to efficiently serve large MoE models,
we must seek a solution to the memory inefficiency inherited
from MoE architecture.

2.3 Latency-Memory Trade-Off
Recently, a few studies have been proposed to improve MoE-
based LLM serving efficiency. Figure 2 describes the de-
sign space in MoE serving. Existing major studies can be
categorized into two types: Lossy serving applies compres-
sion [44], pruning [30], and quantization [27] techniques
to the original MoE models to reduce the serving memory
requirements. However, this line of work achieves serving
efficiency by sacrificing the generation quality. Lossless serv-
ing focuses on offloading model weights (parameters [4, 41]
or experts [16, 51, 58]) that are sparsely utilized in tempo-
ral or spatial patterns from GPU memory to CPU memory,
aiming to preserve reasonable inference latency. Specifically,
expert offloading seeks to predict the activation of experts in
advance, prefetching or caching only the necessary experts

3For simplicity, we only show the process of one single request prompt.

Table 1. Characteristics of three MoE models.

MoE Models Parameters Experts Per Layer Num. of
(active / total) (active / total) Layers

Mixtral-8×7B [23] 12.9B / 46.7B 2 / 8 32
Qwen1.5-MoE [60] 2.7B / 14.3B 4 / 60 24
Phi-3.5-MoE [1] 6.6B / 42B 2 / 16 32

in GPU memory during inference. We opt for lossless serv-
ing to design FineMoE because this line of methods avoids
modifying models, hence assuring generation quality.

However, existing offloading solutions cannot achieve an
optimal spot in the latency-memory trade-off when serving
MoE-based LLMs. Figure 1b compares the performance (i.e.,
inference latency and memory footprint) of existing state-
of-the-art (SOTA) offloading solutions, which either provide
low inference latency but suffer from large memory foot-
print (e.g., No-offload and MoE-Infinity [58]), or vice versa
(e.g., ProMoE [51], Mixtral-Offloading [16], and DeepSpeed-
Inference [4]).

The key reason behind this dilemma is that MoE-based
decoder-only LLMs have balanced expert routing [51], leav-
ing existing solutions hard to find effective patterns for guid-
ing expert offloading. Existing research has identified two
main reasons for this dilemma: First, most MoE-based LLMs
are decoder-only architectures, which exhibit uniform expert
activation patterns and low expert access skewness compared
to encoder-decoder MoE LLMs [18, 51]. Second, recent MoE-
based LLMs employ a load-balancing loss [1, 11, 23, 50, 57],
which encourages the gate network to distribute tokens more
uniformly across experts within each MoE layer, making ex-
pert usage more balanced during training. This balanced
routing diminishes the predictability of expert patterns, thus
making existing solutions ineffective.

2.4 Existing MoE Offloading Solutions
Existing expert offloading approaches [16, 58] rely on coarse-
grained expert patterns, which are inefficient for guiding
offloading. We define coarse-grained information as the ex-
pert patterns collected at the request level, where information
is aggregated over multiple iterations of a request prompt.
For example, MoE-Infinity [58] tracks request-level expert
activations. Fine-grained information is defined as the ex-
pert patterns observed separately during each inference iter-
ation. Figure 3a shows examples of coarse-grained and fine-
grained expert activation heatmaps for Mixtral-8×7B [23].
The heatmap records the expert activations across 32 MoE
layers, where each layer contains eight experts and activates
two experts out of eight to compute representations. While
fine-grained (iteration-level) heatmaps show clear expert acti-
vation patterns, the aggregated coarse-grained (request-level)
heatmap diminishes predictability.

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Hanfei Yu, Xingqi Cui, Hong Zhang, Hao Wang, and Hao Wang

Layers
Fine-grained expert heatmap

Coarse-grained expert heatmap

Ex
pe

rts

ag
gr
eg
at
e …

(a) Coarse-grained vs. fine-grained expert
heatmaps for Mixtral-8×7B with LMSYS-
Chat-1M. Heavier colors indicate more ex-
pert activations.

Coarse-grained Fine-grained

M
ea

n
en

tro
py

0

2

4

LMSYS-Chat-1M
Mixtral Qwen Phi

ShareGPT
Mixtral Qwen Phi

(b) Mean entropy per layer of three MoE mod-
els and two datasets for coarse-grained and fine-
grained expert patterns. Higher entropy indi-
cates lower predictability.

Mixtral-8×7B Qwen1.5-MoE Phi-3.5-MoE

LMSYS-Chat-1M ShareGPTM
ea

n
en

tro
py

1

2

3

4

Inference iterations
0 50

Inference iterations
0 50

(c) Mean entropy per layer of three MoE mod-
els and two datasets when aggregating expert
patterns through inference iterations, which di-
minishes predictability.

Figure 3. Expert pattern and predictability analysis in coarse granularity (request-level) and fine granularity (iteration-level).

To demonstrate this point, we analyze the Shannon en-
tropy [48] of expert activations per MoE layer for three pop-
ular MoE models. Entropy is an essential metric to quantify
the uncertainty and unpredictability of variables in informa-
tion theory. A balanced expert activation pattern (e.g., prob-
ability distribution [0.25, 0.25, 0.25, 0.25] of four experts) re-
sults in a high entropy, which indicates the pattern is less
predictable and harder to select experts. Figure 3b presents
the mean entropy computed per layer for three MoE mod-
els (Mixtral-8×7B [23], Qwen1.5-MoE [60], and Phi-3.5-
MoE [1]) across two realistic datasets LMSYS-Chat-1M [64]
and ShareGPT [49]. Coarse-grained expert patterns have sig-
nificantly higher entropy than fine-grained patterns, meaning
that expert patterns in coarse granularity can be less effective
for predictions. Figure 3c shows the mean entropy per layer
when aggregating expert patterns across inference iterations,
where expert selection becomes increasingly unpredictable
as generation progresses. Qwen1.5-MoE reaches a higher
entropy plateau due to its larger expert selection space (60
experts × 24 layers). Similarly, Phi-3.5-MoE (16 × 32) ex-
hibits higher entropy than Mixtral-8×7B (8 × 32). After about
ten iterations, expert patterns become blurred and the entropy
plateaus, indicating that further iterations contribute only mar-
ginal additional unpredictability. While entropy is low at the
beginning of inference, it gradually increases with iterations
as more expert activation information is aggregated, thereby
becoming more unpredictable.

In contrast to coarse-grained expert offloading solutions,
we argue that expert offloading should be carefully guided
by fine-grained designs: analyzing iteration-level patterns,
understanding models’ expert selection preferences, and lever-
aging semantic characteristics of request prompts.

2.5 Problems of Coarse-Grained Offloading
Existing coarse-grained expert offloading solutions exhibit
three problems:
1) Insufficient latency-memory trade-off. Existing solu-
tions prefetch and offload experts in coarse granularity, either
heavily focusing on reducing inference latency but incurring

Coarse-grained
Fine-grained

Mixtral-8×7B

Qwen1.5-MoE

Phi-3.5-MoE
0.5

1.0Ex
pe

rt
hi

t r
at

e

0.5
1.0

0.5

1.0

Prefetch distance
0 5 10 15 20 25 30

Figure 4. Expert hit rates of coarse-grained and fine-
grained expert offloading designs when serving Mixtral-
8×7B, Qwen1.5-MoE, and Phi-3.5-MoE with LMSYS-Chat-
1M at different prefetch distances, respectively.

large memory footprint [58] or reducing memory footprint
but severely increasing inference latency [4, 16].
2) Low expert hit rates. Existing solutions employ coarse-
grained expert pattern tracking methods (e.g., Expert Activa-
tion Matrix in MoE-Infinity [58]), which produce ineffective
expert patterns for guiding offloading decisions, leading to
low expert hit rates and high inference latency.
3) Ignorance of MoE models’ and prompts’ heterogeneity.
Existing solutions largely ignore the unique characteristics of
different MoE models and input prompts and serve them in
a one-fits-all manner [4, 16, 51, 58], which omits opportuni-
ties for fine-grained optimizations adaptive to heterogeneous
models and prompts in MoE serving.

Figure 4 shows the expert hit rates of serving three popular
MoE-based LLMs, Mixtral-8×7B [23], Qwen1.5-MoE [60],
and Phi-3.5-MoE [1] using LMSYS-Chat-1M dataset [64]
with coarse-grained and fine-grained expert offloading de-
signs at different prefetch distances, respectively. Prefetch
distance refers to the number of layers ahead that a prefetch
instruction is issued before the target layer activates its experts.
By leveraging fine-grained expert offloading, we can achieve

FineMoE : Taming Latency-Memory Trade-Off in MoE-Based LLM Serving EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

significantly higher expert hit rates over coarse-grained meth-
ods and preserve better performance by adapting to varying
prefetch distances.

3 FineMoE’s Overview
3.1 Objectives and Challenges
FineMoE is designed to achieve the following three goals:

Memory-efficient MoE serving with minimal inference
latency. We have demonstrated that existing expert offload-
ing solutions [16, 51, 58] fail to tame the latency-memory
trade-off in MoE serving (§2.3). We aim to achieve both low
memory footprint and inference latency by proposing fine-
grained expert offloading.

Minimize expert miss due to mispredictions in expert
prefetching. Expert prefetching, involving future expert ac-
tivation predictions, is an essential step in expert offloading
solutions. However, a recent study [51] has shown that expert
miss due to mispredictions can cause high on-demand expert
loading delay in inference. We should minimize expert miss
and mitigate mispredictions in expert offloading.

Adapt to heterogeneous MoE models and prompts. MoE
inference can serve heterogeneous models [11, 23, 50, 57, 60]
with varying prompts [49, 64] in real-world scenarios. While
existing solutions handle different models and prompts with
a one-fits-all design, we should design our expert offloading
to adapt to the heterogeneity in MoE serving.

We must address three critical challenges to realize the
above objectives:

How to maximize expert hit rate when prefetching and
offloading experts? Expert hit rate directly relates to the
inference latency. With more experts being hit, fewer experts
need to be loaded on demand. We propose a fine-grained
expert offloading solution to achieve a high expert hit rate.

How to adapt to different MoE models and prompts?
Heterogeneous MoE models and input prompts exhibit unique
system and semantic characteristics. We should craft our so-
lution with fine-grained optimizations to enable adaptivity.

How to avoid additional system overheads when manag-
ing experts? Our design must not introduce additional system
overheads when serving existing MoE LLMs. We apply a se-
ries of system optimizations in FineMoE to ensure serving
efficiency and minimize additional overheads.

3.2 Architecture and Workflow
Figure 5 describes the architecture and workflow of FineMoE,
which consists of three main components:

Expert Map Store. We record expert maps, a new data
structure defined in FineMoE, to track fine-grained expert
activation patterns from historical request prompts. expert
maps provide nuance expert selection preferences over ex-
isting coarse-grained expert tracking methods (e.g., Expert
Activation Matrix in MoE-Infinity [58]). The Expert Map

Request prompt

Expert Map Searcher

FineMoE

“Summarize this paper”

Expert Cache

“ThisGenerated answers

Expert Map
Store

Se
ar
ch

si

m
ila

rit
y Semantic

Trajectory

2

3

Contexts

paper is about…”

CPU Mem.

(,)

(,)
(,)

(,)

Prefill

Decode
“This”

…

“…”

1

Prefetch
Offload

Guide5

Inference

GPU Mem.

4

Figure 5. FineMoE’s architecture and workflow.

Store dynamically keeps the most useful and unique expert
maps for real-time inferences.

Expert Map Searcher. When a request prompt arrives,
FineMoE searches the Expert Map Store for appropriate ex-
pert maps to guide expert prefetching before inference. expert
map search is guided by calculating similarity scores in two
folds: semantic and trajectory similarity.

Expert Cache. After receiving the searched expert maps,
FineMoE prefetches experts from CPU memory to GPU to
perform computations in inference. FineMoE evicts and of-
floads low-priority expert weights to CPU memory if exceed-
ing Expert Cache capacity.

FineMoE follows the five steps below to enable memory-
efficient MoE serving with minimal inference latency:
Step 1 : Inference context collection. Before every infer-
ence iteration, FineMoE collects necessary contexts, such as
semantic embeddings and previous expert activation trajec-
tories (§4.1), and feeds them to the Expert Map Searcher for
hybrid similarity searching.
Step 2 : Expert map similarity searching. After receiving
iteration-level contexts, the Expert Map Searcher identifies
the most similar expert maps by comparing the input context
data with historical context data in the Expert Map Store
(§4.2). The retrieved expert maps are forwarded to the Expert
Cache to guide expert prefetching and offloading decisions.
Step 3 : Guided expert prefetching and offloading. We
dynamically compute expert selection thresholds to determine
which expert(s) to prefetch and offload in the MoE model
guided by the searched expert maps (§4.3). Then, FineMoE
prefetches the expert weights from CPU to GPU memory and
offloads cached experts from GPU to CPU when reaching the
cache limit (§4.5).
Step 4 : Expert serving. The whole inference process con-
sists of one iteration in the Prefill stage and multiple iterations
in the Decode stage. For each MoE layer in every iteration,

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Hanfei Yu, Xingqi Cui, Hong Zhang, Hao Wang, and Hao Wang

FineMoE directly serves the expert required by the gating
network if the corresponding weights are available in the
GPU memory (defined as an expert hit). Otherwise, FineMoE
on-demand loads the expert weights from CPU to GPU to
perform lossless serving (defined as an expert miss).
Step 5 : Expert map update. FineMoE observes new expert
maps produced after each iteration and updates them in the
Expert Map Store (§4.4). When reaching the store capacity
(e.g., 1K expert maps), FineMoE deduplicates the Expert Map
Store by identifying and dropping redundant expert maps to
maintain diversity, maximizing the possibility of providing
effective expert maps for any request prompts.

3.3 Problem Formulation
We consider serving an MoE-based LLM with 𝐿 MoE layers
on a GPU cluster, where each MoE layer has one gating net-
work and 𝐽 experts. The gating network of each layer selects
top 𝐾 ∈ [1, 𝐽] experts for computation. The MoE model pro-
cesses and generates answers for a workload consisting of𝑊
unique request prompts. Let [𝑊] := {1, . . . ,𝑤, . . . ,𝑊 } denote
the set of all requests, [𝐿] := {1, . . . , 𝑙, . . . , 𝐿} denote the set of
all layers in a MoE model, and [𝐽] := {1, . . . , 𝑗, . . . , 𝐽 } denote
the set of all experts in a layer, respectively. Each request
prompt 𝑤 ∈ [𝑊] consists of multiple iterations processed
during the prefill and decode stages. Let 𝐸 (𝑖)

𝑙, 𝑗
denote the 𝑗-th

expert at the 𝑙-th layer in the 𝑖-th iteration, where 𝑙 ∈ [𝐿],
𝑗 ∈ [𝐽], and 𝑖 ∈ [𝑤]. During each iteration 𝑖, we can make at
most 𝐿 · 𝐽 prefetching decisions. Let 𝐸𝑖cache and 𝐸𝑖activate denote
the set of cached experts and the set of activated experts for
Iteration 𝑖, respectively. Hence, we represent the result of
whether an expert 𝐸 (𝑖)

𝑙, 𝑗
∈ 𝐸 (𝑖)

activate is missed by 𝐸 (𝑖)
cache:

𝑅
(𝑖)
𝑙, 𝑗

=

{
1, if

(
𝐸
(𝑖)
𝑙, 𝑗

∈ 𝐸 (𝑖)
activate

) ∧ (
𝐸
(𝑖)
𝑙, 𝑗

∉ 𝐸
(𝑖)
cache

)
,

0, otherwise,

where 𝑅 (𝑖)
𝑙, 𝑗

= 1 means 𝐸 (𝑖)
𝑙, 𝑗

is a miss and requires on-demand
loading from CPU memory. Since all experts in an MoE
model are typically designed to have the same weight size,
we assume experts’ loading time 𝑇𝑒 and memory footprint
𝑀𝑒 are homogenous.4 Therefore, the total on-demand loading
latency 𝑇 is summed across all iterations for each expert
during the inference process:

𝑇 := 𝑇𝑒 ·
∑︁

𝑤∈[𝑊]

∑︁
𝑖∈[𝑤]

∑︁
𝑙∈[𝐿]

∑︁
𝑗∈[𝐽]

𝑅
(𝑖)
𝑙, 𝑗
.

Finally, employing the above definitions, we formulate the
MoE expert offloading as an integer linear programming (ILP)

4We only consider selective experts. Some MoE models, such as Qwen1.5-
MoE-A2.7B, have a few always-on experts that are not offloadable.

“is”

M
oE

 L
LM

0.4 0.2 0.1…

…

…

…

0.1 0.2 0.5

0.2 0.3 0.2

…… …

…

…

Expert ID

La
ye

r I
D

1 2 J

1

2

L

Iter. 3

TB L

TB 1

…
TB 2

“This paper”

0.4
0.10.2 …

Expert 1 …

Prob. Dist.

2 J

Output hidden states

 MoE layer
Gate Network

Input hidden states

Expert Map <latexit sha1_base64="WZWQbWQ2Z18O+kFehBv9yEjmDdo=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBE8ld0i1WPBi8cKbltol5JNs21okl2SrFCW/gYvHhTx6g/y5r8xbfegrQ8GHu/NMDMvSgU31vO+0cbm1vbObmmvvH9weHRcOTltmyTTlAU0EYnuRsQwwRULLLeCdVPNiIwE60STu7nfeWLa8EQ92mnKQklGisecEuukQJJ0wAeVqlfzFsDrxC9IFQq0BpWv/jChmWTKUkGM6fleasOcaMupYLNyPzMsJXRCRqznqCKSmTBfHDvDl04Z4jjRrpTFC/X3RE6kMVMZuU5J7NisenPxP6+X2fg2zLlKM8sUXS6KM4Ftguef4yHXjFoxdYRQzd2tmI6JJtS6fMouBH/15XXSrtf8Rq3xcF1t1os4SnAOF3AFPtxAE+6hBQFQ4PAMr/CGFHpB7+hj2bqBipkz+AP0+QPYEo6t</latexit>mapi

<latexit sha1_base64="MHlA64jYFhbI7Vz1/+JATTnlRvI=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuKdVjwYvHCvZD2rVk02wbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3sbm1vZPfLeztHxweFY9P2jpKFKEtEvFIdQOsKWeStgwznHZjRbEIOO0Ek5u533miSrNI3ptpTH2BR5KFjGBjpYfmY1pml7MBHxRLbsVdAK0TLyMlyNAcFL/6w4gkgkpDONa657mx8VOsDCOczgr9RNMYkwke0Z6lEguq/XRx8AxdWGWIwkjZkgYt1N8TKRZaT0VgOwU2Y73qzcX/vF5iwms/ZTJODJVkuShMODIRmn+PhkxRYvjUEkwUs7ciMsYKE2MzKtgQvNWX10m7WvHqlfpdrdSoZnHk4QzOoQweXEEDbqEJLSAg4Ble4c1Rzovz7nwsW3NONnMKf+B8/gAwLY/6</latexit>

P
(i)
l

Figure 6. Expert selections tracked by an expert map.

optimization problem:

min
{𝐸 (𝑖)

𝑙,𝑗
}

(
𝑇𝑒 ·

∑︁
𝑤∈[𝑊]

∑︁
𝑖∈[𝑤]

∑︁
𝑙∈[𝐿]

∑︁
𝑗∈[𝐽]

𝑅𝑖
𝑙, 𝑗

)
s.t. |𝐸 (𝑖)

cache | ≤ 𝐿 · 𝐽 , ∀𝑖 ∈ [𝑤], ∀𝑤 ∈ [𝑊], (1)

|𝐸 (𝑖)
activate | = 𝐿 · 𝐾, ∀𝑖 ∈ [𝑤], ∀𝑤 ∈ [𝑊], (2)

|𝐸 (𝑖)
cache | ·𝑀𝑒 ≤ 𝑀, ∀𝑖 ∈ [𝑤], ∀𝑤 ∈ [𝑊] . (3)

The objective is to minimize the on-demand loading latency
(ideally 𝑇 = 0 with perfect predictions) while limiting the to-
tal memory footprint of cached experts to satisfy the available
GPU memory 𝑀 . Constraint 1 denotes the total number of
prefetched experts should not exceed the total number of all
experts in the MoE model. Constraint 2 represents the total
number of activated experts, which must be the same as the
total number of top𝐾 experts summed across all 𝐿 layers. Con-
straint 3 describes the total memory footprint of prefetched
experts must be limited by the available GPU memory size.
Note that solving the ILP problem is already NP-hard [10],
while in reality, prefetching experts always have mispredic-
tions that further complicate the problem. Therefore, we opt
for a heuristic-based design for FineMoE.

4 FineMoE’s Design
4.1 Expert Maps
We propose a new data structure, Expert Map, to track expert
activation patterns with a fine granularity. Figure 6 depicts the
structure of an expert map. During the 𝑖-th iteration, the 𝑙-th
self-attention layer first calculates the attention states. The
gate network receives attentions and computes a probability
distribution P(𝑖)

𝑙
∈ R𝐽 over all the experts at Layer 𝑙 :

P(𝑖)
𝑙

:=
{
𝑝
(𝑖)
𝑙,1 , . . . , 𝑝

(𝑖)
𝑙, 𝑗
, . . . , 𝑝

(𝑖)
𝑙,𝐽

}
,

∑︁
𝑗∈[𝐽]

𝑝
(𝑖)
𝑙, 𝑗

= 1, ∀𝑝 (𝑖)
𝑙, 𝑗

≥ 0.

Then, top 𝐾 ∈ [1, 𝐽] experts are selected from 𝑃
(𝑖)
𝑙

to com-
pute representations for Layer 𝑙 . We collect the probability
distributions 𝑃 (𝑖)

𝑙
across all 𝐿 layers to form the expert map

of Iteration 𝑖:

map𝑖 := {P(𝑖)
1 , . . . , P(𝑖)

𝑙
, . . . , P(𝑖)

𝐿
}, 𝑙 ∈ [𝐿] .

FineMoE : Taming Latency-Memory Trade-Off in MoE-Based LLM Serving EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

d

Expert Map Store

(,) …
…

0.1 0.5

… …

…

…

1 J

1

0.4 0.1… d
…… … …

Semantic search

(,)
#1

#J
…

Iter. 1
Iter. 2

0.9

0.2

0.6
…

Layers
<latexit sha1_base64="rBkWnwPPqOfUQDssvqemuntaXC8=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4kJIUqR4LXjxWsB+YhrLZbNqlm92wuxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzwpQzbVz321lb39jc2i7tlHf39g8OK0fHHS0zRWibSC5VL8SaciZo2zDDaS9VFCchp91wfDvzu09UaSbFg5mkNEjwULCYEWys9NhnAvneJYqCQaXq1tw50CrxClKFAq1B5asfSZIlVBjCsda+56YmyLEyjHA6LfczTVNMxnhIfUsFTqgO8vnFU3RulQjFUtkSBs3V3xM5TrSeJKHtTLAZ6WVvJv7n+ZmJb4KciTQzVJDFojjjyEg0ex9FTFFi+MQSTBSztyIywgoTY0Mq2xC85ZdXSade8xq1xv1VtVkv4ijBKZzBBXhwDU24gxa0gYCAZ3iFN0c7L86787FoXXOKmRP4A+fzB/dbj8U=</latexit>2 [1, d]<latexit sha1_base64="fPrxlijW0D3c4qC/76Jbw9r7FAs=">AAACDHicbVDLSgMxFM3UV62vqks3g0VwIWWmSHVZcOOygn1AW0smvdOGJpkhyUiHYT7Ajb/ixoUibv0Ad/6NaTuIth4InJxzD8k9Xsio0o7zZeVWVtfWN/Kbha3tnd294v5BUwWRJNAgAQtk28MKGBXQ0FQzaIcSMPcYtLzx1dRv3YNUNBC3Og6hx/FQUJ8SrI3UL5a6GiYmlygSSEjvkp878DTtJ5OzODVTTtmZwV4mbkZKKEO9X/zsDgIScRCaMKxUx3VC3Uuw1JQwSAvdSEGIyRgPoWOowBxUL5ktk9onRhnYfiDNEdqeqb8TCeZKxdwzkxzrkVr0puJ/XifS/mUvoSKMNAgyf8iPmK0De9qMPaASiGaxIZhIav5qkxGWmGjTX8GU4C6uvEyalbJbLVdvzku1SlZHHh2hY3SKXHSBauga1VEDEfSAntALerUerWfrzXqfj+asLHOI/sD6+AZ1DJ0b</latexit>

scoresemx,y

(,)Iter. i

Pr
ef

et
ch

…
…

0.1 0.5

… …
0.1 0.2…

Expert ID

Previous trajectory

…… …
0.3 0.1…

<latexit sha1_base64="uHT3Y/a5RfpGPMXw7pvGjY7L5vY=">AAACDXicbVC7SgNBFJ2NrxhfUUubxShYSNgNEi0DNpYRzAOSNcxObpIxsw9m7kqWZX/Axl+xsVDE1t7Ov3HyEDTxwMCZc+5h5h43FFyhZX0ZmaXlldW17HpuY3Nreye/u1dXQSQZ1FggAtl0qQLBfaghRwHNUAL1XAENd3g59hv3IBUP/BuMQ3A82vd5jzOKWurkj9oII51LFAskpLfJzx0lvUvTTjI6jdNOvmAVrQnMRWLPSIHMUO3kP9vdgEUe+MgEVaplWyE6CZXImYA0144UhJQNaR9amvrUA+Ukk21S81grXbMXSH18NCfq70RCPaViz9WTHsWBmvfG4n9eK8LehZNwP4wQfDZ9qBcJEwNzXI3Z5RIYilgTyiTXfzXZgErKUBeY0yXY8ysvknqpaJeL5euzQqU0qyNLDsghOSE2OScVckWqpEYYeSBP5IW8Go/Gs/FmvE9HM8Yss0/+wPj4Bk0snZE=</latexit>

scoretrajx,y Expert Map Store

(,)
(,)

Iter. 1
Iter. 2

0.2

0.4

0.8
…

(,)Iter. i

Trajectory
search

2

…… …
…

…
1 J

…… … …
0.1 0.2… l

Layer Prefetch

(a)

<latexit sha1_base64="AilwD9d47hyzHFfe5XiUkSZYNjM=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBZBUEpSpHosePHgoYL9gDSWzWbTLt1swu5GKaH/w4sHRbz6X7z5b9y2OWjrg4HHezPMzPMTzpS27W+rsLK6tr5R3Cxtbe/s7pX3D9oqTiWhLRLzWHZ9rChngrY005x2E0lx5HPa8UfXU7/zSKVisbjX44R6ER4IFjKCtZEeOOoxgdzgzDlHt16/XLGr9gxomTg5qUCOZr/81QtikkZUaMKxUq5jJ9rLsNSMcDop9VJFE0xGeEBdQwWOqPKy2dUTdGKUAIWxNCU0mqm/JzIcKTWOfNMZYT1Ui95U/M9zUx1eeRkTSaqpIPNFYcqRjtE0AhQwSYnmY0MwkczcisgQS0y0CapkQnAWX14m7VrVqVfrdxeVRi2PowhHcAyn4MAlNOAGmtACAhKe4RXerCfrxXq3PuatBSufOYQ/sD5/ACFnkPA=</latexit>

l 2 [d + 1, L]

“T
hi

s”

“p
ap

er
”

Em
be

d

 …

La
ye

r d

La
ye

r d
+1

La
ye

r L … …

LM
 H

ea
d

(b)

a1

a2
a3

a4

b1
b2

b3

b4

Layer 1

Layer l-d

Layer L-d

…
…

La
ye

r 1

La
ye

r l

Semantic
embeddings

Figure 7. Workflow of FineMoE’s expert map search.

By tracking expert maps, we guide FineMoE to discover
fine-grained expert patterns—the iteration-level expert se-
lection preferences via probability distributions. Intuitively,
analyzing probability distributions enables FineMoE to not
only identify which experts are binarily selected or omitted,
but also to assess the confidence or preference assigned to
each expert from the perspective of the gate networks.

The design of expert maps has two key advantages over
existing coarse-grained expert tracking methods (e.g., MoE-
Infinity [58] tracks the request-level expert hit counts). First,
existing works only focus on aggregated request-level expert
activations, whereas an expert map tracks individual iterations
with detailed expert selections. Second, existing works only
record the expert hit counts, whereas we track detailed proba-
bility distributions. Note that expert maps can easily recover
coarse-grained information by applying a top 𝐾 selection
operator to the probability distributions and aggregating ex-
pert counts over iterations, therefore generalizing to existing
tracking methods.

4.2 Expert Map Search
Given the historical expert maps defined in §4.1, FineMoE
searches expert maps that provide the most accurate expert
activation predictions with two fine-grained metrics: seman-
tic similarity (§4.2.1) and trajectory similarity (§4.2.2). We
also show that they are both effective in searching accurate
historical expert maps for prediction and offloading (§4.2.3).

Existing solutions [16, 51, 58] cannot observe previous ex-
pert patterns for prediction and prefetching before the target
layer is ready to activate experts for the initial layers 𝑙 ∈ [1, 𝑑],
where 𝑙 represents the current layer index in an iteration and
𝑑 is referred as the prefetch distance. When predicting and
prefetching experts for MoE models, prefetch distance is used

to avoid impacting inference latency [51, 62]. Prefetch dis-
tance is the number of layers ahead that a prefetch instruction
is issued before the target layer activates its experts, simi-
lar to the same term in memory prefetching [29]. An ideal
prefetch distance should perfectly overlap the prediction and
prefetching operation overheads with the inference process.

Therefore, existing approaches [16, 51, 58] typically em-
ploy coarse-grained rules to prefetch experts for initial layers
𝑙 ∈ [1, 𝑑]. For example, MoE-Infinity [58] prefetches the most
popular experts across all historical data points. Even for lay-
ers 𝑙 ∈ [𝑑 + 1, 𝐿], existing approaches use coarse-grained
(request-level) metrics for predicting and prefetching experts,
leading to low offloading accuracy.

In contrast, FineMoE leverages fine-grained iteration-level
metrics tailored to the prefetch distance 𝑑 , employing seman-
tic embeddings for layers prior to the prefetch distance and
expert trajectories for layers subsequent to it. Figure 7 shows
that FineMoE employs two fine-grained search approaches
to jointly search expert maps for guiding expert prefetching:
Semantic-based expert map search compares the input em-
beddings with historical embeddings to find expert maps with
similar inputs, whereas trajectory-based search observes pre-
vious expert trajectories (i.e., probability distributions) and
searches for similar expert maps. We combine both semantic
and trajectory features to improve FineMoE’s map-searching
and expert offloading accuracy.

4.2.1 Semantic-based Expert Map Search. Recent stud-
ies [25] demonstrate that semantic embeddings, i.e., embed-
ding layer’s output after processing raw tokens, can poten-
tially indicate expert selection behaviors. When serving re-
quest prompts and recording their expert maps, we record the
semantic embeddings for each inference iteration. Existing
MoE-based LLMs all contain an embedding layer for token
semantic encoding, where words or subwords that appear in
similar contexts will have similar embeddings [38]. It’s natu-
ral to extract the semantic embeddings using the output from
the model’s original embedding layer. Figure 7(a) shows the
semantic-based expert map search in four steps: a1) extract
semantic embeddings from the embedding layer, a2) compute
similarity scores using semantic embeddings with historical
data points in the Expert Map Store, a3) search similar expert
maps based on similarity scores, and a4) prefetch experts with
high probabilities for layers 𝑙 ∈ [1, 𝑑].

For any input prompts, we compute pairwise cosine sim-
ilarity scoresem ∈ R𝐵×𝐶 between the semantic embedding
semnew ∈ R𝐵×ℎ and the collection of historical semantic em-
beddings semold ∈ R𝐶×ℎ in the Expert Map Store:

scoresem
𝑥,𝑦 :=

semnew
𝑥 · semold

𝑦

∥semnew
𝑥 ∥ · ∥semold

𝑦 ∥
, 𝑥 ∈ [𝐵], 𝑦 ∈ [𝐶], (4)

where 𝐵 is the batch size of input prompts, 𝐶 is the Expert
Map Store capacity, and ℎ is the hidden dimension size. Then,
for prompt 𝑥 , the historical Iteration 𝑦 with the highest score

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Hanfei Yu, Xingqi Cui, Hong Zhang, Hao Wang, and Hao Wang

Mixtral
Qwen
Phi

M
ea

n
ex

pe
rt

hi
t r

at
e

0

0.5

1.0

Semantic similarity score
0 0.5 1.0

Trajectory similarity score
0 0.5 1.0

Figure 8. Mean expert hit rates of different semantic and
trajectory similarity scores with LMSYS-Chat-1M.

is selected. We use partial expert maps from the selected
iteration, {P(𝑦)

1 , . . . , P(𝑦)
𝑑

} ∈ mapold
𝑦 , to guide layers 𝑙 ∈ [1, 𝑑].

4.2.2 Trajectory-based Expert Map Search. We leverage
expert probability trajectories of previous (𝑙 − 𝑑) layers to
search expert maps for layers 𝑙 ∈ [𝑑 +1, 𝐿]. Specifically, when
𝑙 = 𝑑 + 1, we use the past expert trajectories from Layer 1
for prediction; when 𝑙 = 𝑑 + 2, we use the past trajectories
from Layers 1 and 2; and so on. When 𝑙 = 𝐿 (last layer), we
use the past trajectories from Layers 1 to 𝐿 − 𝑑 for prediction.
Figure 7(b) shows the trajectory-based expert search for a
layer 𝑙 ∈ [𝑑+1, 𝐿] in four steps: b1) collect previous trajectory
{P1, . . . , P𝑙−𝑑 } from Layers 1 to 𝑙 − 𝑑 , b2) compute similarity
scores using collected trajectories with historical data points
in the Expert Map Store, b3) search similar expert maps
based on similarity scores, and b4) prefetch experts with high
probabilities for the layer 𝑙 ∈ [𝑑 +1, 𝐿]. We repeat this process
until the last layer (Layer 𝐿) is completed.

Similar to the semantic-based search, we compute pairwise
cosine similarity scoretraj ∈ R𝐵×𝐶 between the observed tra-
jectories, mapnew ∈ R𝐵×(𝑙−𝑑) 𝐽 , and the collection of historical
expert maps, mapold ∈ R𝐶×(𝑙−𝑑) 𝐽 , in the Expert Map Store:

scoretraj
𝑥,𝑦 :=

mapnew
𝑥 ·𝑚𝑎𝑝old

𝑦

∥mapnew
𝑥 ∥ · ∥mapold

𝑦 ∥
, 𝑥 ∈ [𝐵], 𝑦 ∈ [𝐶] . (5)

We select the historical iteration with the highest score. Then,
we use P(𝑦)

𝑙
∈ mapold

𝑦 from the selected expert map to guide
the expert prefetching for the target layer 𝑙 ∈ [𝑑 + 1, 𝐿].

By combining the two expert map search methods, we
carefully customize the map that guides expert prefetching
for every inference iteration in MoE serving. With this design,
expert map search introduces negligible overhead to the end-
to-end inference latency, which we demonstrate in §6.8.

4.2.3 Effectiveness of Semantic and Trajectory Similar-
ity. To verify how semantic and trajectory similarity scores
can guide expert offloading, we run three MoE models (Mixtral-
8×7B, Qwen1.5-MoE, and Phi-3.5-MoE) with two datasets
(LMSYS-Chat-1M and ShareGPT). For each model and dataset,
we first run prompts and record their semantic embeddings
and expert trajectories, where each prompt generates one
data point consisting of a semantic embedding and an expert
map. Then, we exhaust all pairwise cases by calculating their

Semantic similarity Trajectory similarity

0.
96

0.
97

0.
920.
97

0.
95

0.
84 0.
94

0.
96

0.
900.
96

0.
93

0.
85

Pe
ar

so
n

co
ef

fic
ie

nt

0

1

LMSYS-Chat-1M
Mixtral Qwen Phi

ShareGPT
Mixtral Qwen Phi

Figure 9. Pearson correlation coefficients between semantic
and trajectory similarity scores and expert hit rates.

semantic and trajectory similarity and expert hit rate (i.e.,
overlapped expert ratio). Figure 8 shows the mean expert hit
rates of different semantic and trajectory similarity scores for
three MoE models with LMSYS-Chat-1M. Both semantic
and trajectory similarity can effectively indicate the accuracy
of historical prompts or expert maps for offloading.

To statistically quantify the correlations between similarity
score and expert hit rate, we calculate the Pearson correla-
tion coefficients [9] using all paired semantic and trajectory
similarity scores and corresponding expert hit rates in Fig-
ure 8. The Pearson coefficient is commonly used to measure
correlations between variables, where a coefficient close to 1
indicates a strong positive correlation and a coefficient close
to 0 means a weak correlation. Figure 9 shows the Pearson
coefficients between similarity score and expert hit rate with
three MoE models and two datasets. The results show that
high similarity scores potentially relate to high expert hit rates.

4.3 Expert Prefetching
Given the searched and customized expert map P(𝑖)

𝑙
for a layer

𝑙 ∈ [𝐿] in Iteration 𝑖, we explain how it guides FineMoE to
dynamically prefetch experts in fine granularity.

Similarity-aware expert selection. With the different con-
texts collected during iterations, expert maps searched by
FineMoE also have varying similarity scores.5 Figures 8 and 9
demonstrated that similarity scores can effectively indicate
the search confidence, where high searched similarity scores
potentially mean high expert hit rates. Hence, we design
FineMoE’s expert prefetching to be similarity-aware. For a
layer 𝑙 ∈ [𝐿] with a score ∈ [−1, 1] to prefetch, we first dy-
namically compute an expert selection threshold 𝛿𝑙 ∈ [0, 1]:

𝛿𝑙 := Clip(1 − score, 0, 1) = max(0, min(1 − score, 1)),

where score is the cosine similarity score computed in Equa-
tions 4 and 5. Given searched P𝑙 , we find the set of experts
to prefetch 𝐸prefetch by iteratively picking the expert with the
highest probability from P𝑙 = {𝑝𝑙,1, . . . , 𝑝𝑙, 𝑗 , . . . , 𝑝𝑙,𝐽 } until the

5In the following paper, we use “similarity scores” in both search contexts
for simplicity, i.e., semantic similarity in semantic-based expert map search
and trajectory similarity in trajectory-based search, respectively.

FineMoE : Taming Latency-Memory Trade-Off in MoE-Based LLM Serving EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

summed probability of 𝐸prefetch exceeds 𝛿𝑙 :

min
{𝐸𝑙,𝑗 }

|𝐸prefetch | (6)

s.t.
∑︁

𝐸𝑙,𝑗 ∈𝐸prefetch

𝑝𝑙, 𝑗 ≥ 𝛿𝑙 , 𝑗 ∈ [𝐽], ∀𝑙 ∈ [𝐿], (7)

|𝐸prefetch | ≥ 𝐾, 𝐾 ≤ [𝐽], (8)

where 𝐾 is the number of experts needed to activate per layer
(e.g., Mixtral-8×7B activates two experts per layer). Con-
straint 7 requires the total probability of selected experts to
prefetch per layer to be greater than 𝛿𝑙 . Constraint 8 represents
the minimum number of selected experts must be larger than
the number of experts to activate required by the MoE model.
Intuitively, we assign a higher 𝛿 to low-score expert maps so
that more experts are prefetched to mitigate mispredictions
and assign a lower 𝛿 for high-score expert maps to reduce
the memory footprint. Experts with higher probabilities are
prioritized to be prefetched.

Asynchronous expert map searching and prefetching.
Existing studies [16, 58] predict and prefetch experts syn-
chronously during inference, severely hindering the inference
performance. For example, MoE-Infinity [58] cannot com-
pute forward functions before finishing expert prediction and
prefetching at every MoE layer [59]. To minimize the system
overhead and inference latency, we decouple the map search-
ing and expert prefetching from the inference process using
an asynchronous Publisher-Subscriber architecture (Figure 7).
The Expert Map Store is a message broker that keeps mes-
sages from both the inference process and the Expert Map
Searcher. As the inference proceeds, FineMoE’s inference pro-
cess continuously publishes and writes the inference contexts
(i.e., semantic embeddings and expert probability distribu-
tions) to the Expert Map Store. At the same time, the Expert
Map Searcher subscribes to the context data, searches expert
maps based on new context data, and prefetches experts to
the Expert Cache in an asynchronous manner.

4.4 Expert Map Store Management
Practically, we design FineMoE’s Expert Map Store to main-
tain a capacity 𝐶 for storing unique expert maps. To effec-
tively guide inference across diverse prompts, it makes sense
to identify and deduplicate redundant expert maps.

Expert map deduplication. Since FineMoE uses two ap-
proaches (i.e., semantic-based and trajectory-based) to com-
pute similarity, we unify the two similarity scores to compute
the pairwise redundancy scores between new iteration data
and historical iteration data:

RDY𝑥,𝑦 :=
𝑑

𝐿
· scoresem

𝑥,𝑦 + 𝐿 − 𝑑
𝐿

· scoretraj
𝑥,𝑦, 𝑥 ∈ [𝐵], 𝑦 ∈ [𝐶],

where scoresem
𝑥,𝑦 ∈ R𝐵×𝐶 and scoretraj

𝑥,𝑦 ∈ R𝐵×𝐶 are semantic-
based and trajectory-based pairwise similarity scores calcu-
lated from Equations 4 and 5, 𝑑 is the prefetch distance, 𝐿 is

the total number of layers, 𝐵 is the batch size of new interac-
tion data, and 𝐶 is the Expert Map Store capacity. Intuitively,
as shown in Figure 7, the semantic-based and trajectory-based
similarity scores contribute to the search expert map in pro-
portion to 𝑑

𝐿
and 𝐿−𝑑

𝐿
, respectively. Therefore, we follow the

same ratio to unify and compute the redundancy score. When-
ever new iterations’ context data arrive at the Expert Map
Store, we compute the pairwise redundancy score RDY𝑥,𝑦 to
determine which old iterations to drop. Hence, we update the
old iterations 𝑦 (columns in RDY𝑥,𝑦) with new iterations 𝑥
(corresponding rows in RDY𝑥,𝑦) in the Expert Map Store.

Theoretical analysis. The expert map deduplication can
be formulated as a Minimum Sphere Covering problem [17].
Each expert map is a vectorized patch, and the full sphere
represents all possible expert selections. The objective is to
cover as much of the sphere as possible using a small number
of maps, keeping storage overhead low. Studies [15, 46] have
proved that maintaining at least 2𝐿𝐽 expert maps guarantees a
lower bound of 75% expert map similarity (i.e., we can find an
expert map that is at least 75% similar to any new iterations),
and keeping 1

2𝐿𝐽 ln(𝐿𝐽) expert maps provides a lower bound
of 98% similarity, where 𝐿 and 𝐽 are the numbers of layers
and experts per layer in the MoE model, respectively. Given
that modern MoE-based LLMs generally have 𝐿 ∈ [8, 128]
and 𝐽 ∈ [24, 96], we can approximate the Expert Map Store’s
maximal requirement to be less than 50K expert maps with
200 MB CPU memory [58].

4.5 Expert Caching and Eviction
Similar to existing expert offloading solutions [16, 51, 58],
we design FineMoE to maintain an Expert Cache on GPUs to
reuse expert weights when serving different request prompts.
Given searched expert maps from §4.2, we guide FineMoE’s
Expert Cache to compute two priority scores for individual ex-
perts: 1) a prefetching priority to decide the orders to prefetch
experts in the searched maps, and 2) an eviction priority to
determine the orders to evict experts in the Expert Cache.

Expert prefetching priority. Recall the set of experts to
prefetch 𝐸prefetch is determined in Equation 6. For each expert
𝐸𝑙, 𝑗 ∈ 𝐸prefetch, we define the prefetching priority to be

𝑃𝑅𝐼
prefetch
𝑙, 𝑗

:=
𝑝𝑙, 𝑗

𝑙 − 𝑙now
, 𝑙 ∈ [𝐿], 𝑗 ∈ [𝐽],

where 𝑝𝑙, 𝑗 is the expert probability from the searched expert
map, and 𝑙now is the current layer that the inference process
stays at. Intuitively, experts with a higher probability 𝑝𝑙, 𝑗 to
be activated should be prefetched sooner, and experts that sit
closer to the current layer (i.e., smaller 𝑙 − 𝑙now) should also
be prioritized.

Expert eviction priority. Similar to MoE-Infinity [58],
FineMoE’s expert caching is based on the least frequently
used (LFU) caching algorithm. We integrate the searched
map to jointly determine the eviction priority. For each expert

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Hanfei Yu, Xingqi Cui, Hong Zhang, Hao Wang, and Hao Wang

𝐸𝑙, 𝑗 ∈ 𝐸cache, we define the eviction priority to be

PRIevict
𝑙, 𝑗

:=
1

𝑝𝑙, 𝑗 · freq𝑙, 𝑗
, 𝑙 ∈ [𝐿], 𝑗 ∈ [𝐽],

where freq𝑙, 𝑗 is the cache visit frequency and 𝑝𝑙, 𝑗 is the prob-
ability from the searched map for an expert 𝐸𝑙, 𝑗 ∈ 𝐸cache.
Intuitively, when reaching the Expert Cache limit, we want to
first evict experts who are less frequently hit and have lower
probabilities of being activated. Note that similar to exist-
ing works [51, 58], we do not consider the recent usage of
experts as opposed to the classic least recently used (LRU) al-
gorithm [16]. Since the expert usage is layer-wise sequential,
i.e., one layer following another, prioritizing recently used ex-
perts is against the nature of sequential forward computation.

On-demand expert loading. Mispredictions of expert
prefetching lead to expert miss in the Expert Cache, as the
MoE model cannot find available experts designated by the
gate networks. Whenever an expert miss occurs, FineMoE
pauses all expert prefetching tasks and immediately loads
missed experts from CPU to GPU memory for fast serving.

5 FineMoE’s Implementation
We prototype FineMoE on top of Huggingface Transform-
ers framework [55] using MoE-Infinity codebase [59]. The
implementation of FineMoE is described as follows.

Expert Map Store is implemented in Python using Py-
Torch [42] and NumPy [19] libraries. We store all semantic
embeddings and expert maps using ndarrays data struc-
ture for efficient array operations. The arrays are converted to
tensors to compute similarity for expert map searching.

Expert Map Searcher is implemented in Python using
PyTorch [42]. We implement the pairwise computations, in-
cluding similarity (§4.2) and redundancy (§ 4.4) scores, using
PyTorch native operations.

Expert Cache is implemented in C++ based on MoE-
Infinity codebase [59]. The expert management in GPUs is
implemented with the CUDA Runtime APIs [40]. We im-
plement prefetching and caching logic of FineMoE in the
MoE-Infinity codebase to enable expert offloading. Same
with MoE-Infinity, FineMoE supports multi-GPU inference
with expert parallelism (EP), where the experts are mapped
to different GPU devices for loading and offloading. We use
a hash map to assign expert IDs to different GPUs and re-
trieve them during inference. The expert assignment follows
a round-robin manner to balance the overall GPU load. Addi-
tionally, we use a task pool in the GPU space with asynchro-
nous threads to schedule and execute expert prefetching and
on-demand loading tasks.

6 Evaluation
6.1 Experimental Setup
We introduce our evaluation methodology in this section.

Testbed. We conduct all experiments on a six-GPU testbed,
where each GPU is an NVIDIA GeForce RTX 3090 with
24 GB GPU memory. All GPUs are interconnected using
pairwise NVLinks and connected to the CPU memory using
PCIe 4.0 with 32GB/s bandwidth. Additionally, the testbed
has an AMD Ryzen Threadripper PRO 3955WX CPU with
32 cores and 480 GB CPU memory.

Models. We employ three popular MoE-based LLMs in
our evaluation: Mixtral-8×7B [23], Qwen1.5-MoE [60], and
Phi-3.5-MoE [1]. Table 1 describes the parameters, number
of MoE layers, and number of experts per layer for the three
models. Following the evaluation of existing works [51], we
profile the models to set the optimal prefetch distance 𝑑 to
three before evaluation.

Datasets and traces. We employ two real-world prompt
datasets commonly used for LLM evaluation: LMSYS-Chat-
1M [64] and ShareGPT [49]. For most experiments, we split
the sampled datasets in a standard 7:3 ratio, where 70% of the
prompts’ context data (i.e., semantic embeddings and expert
maps) are stored in FineMoE’s Expert Map Store, and 30%
of the prompts are used for testing. For online serving exper-
iments, we empty the Expert Map Store and use real-world
LLM inference traces [43, 52] released by Microsoft Azure
to set input and generation lengths and drive invocations.

Baselines. We compare FineMoE against four SOTA MoE
serving baselines: 1) MoE-Infinity [58] uses coarse-grained
request-level expert activation patterns and synchronous ex-
pert prediction and prefetching for MoE serving. We pre-
pare the expert activation matrix collection for MoE-Infinity
before evaluation for a fair comparison. 2) ProMoE [51]
employs a stride-based speculative expert prefetching ap-
proach for MoE serving. Since the codebase of ProMoE is
not open-sourced and requires training predictors for each
MoE model, we reproduced a prototype of ProMoE on top of
MoE-Infinity in our best effort. 3) Mixtral-Offloading [16]
combines a layer-wise speculative expert prefetching and
a LRU-based expert cache. 4) DeepSpeend-Inference [4]
employs an expert-agnostic layer-wise parameter offloading
approach, which uses pure on-demand loading and does not
support prefetching. We implement the offloading logic of
DeepSpeed-Inference in the MoE-Infinity codebase and add
an expert cache for a fair comparison. We enable all baselines
to serve MoE models from HuggingFace Transformer [55].

Metrics. Following the standard evaluation methodology
of existing works [3, 51, 58, 65] on LLM serving, we report
the performance of the prefill and decode stages separately.
We measure Time-to-First-Token (TTFT) for the prefill stage
and Time-Per-Output-Token (TPOT) for the decode stage.
Additionally, we also report other system metrics, such as
expert hit rate and overheads, for detailed evaluation.

6.2 Offline Serving Performance
We first evaluate the offline serving performance of prefill and
decode stages when running FineMoE and other baselines

FineMoE : Taming Latency-Memory Trade-Off in MoE-Based LLM Serving EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

FineMoE
MoE-Infinity

ProMoE
Mixtral-Offload

DeepSpeed

Ex
pe

rt
hi

t r
at

e

0

0.5

1.0

TP
O

T
(s

)

0

2

TT
FT

 (s
)

0

10

LMSYS-Chat-1M
Mixtral Qwen Phi

ShareGPT
Mixtral Qwen Phi

Figure 10. Overall performance of prefill and decode stages.

Mixtral-
8×7B

Qwen1.5-
MoE

Phi-3.5
MoE

DeepSpeed
Mixtral-Offload

ProMoE
MoE-Infinity

FineMoE

C
D

F

0

0.5

1.0

150 200
End-to-end request latency (s)

40 60 80 60 80 100 120

Figure 11. CDF of request latency for MoE online serving.

with the three MoE models, where we report Time-To-First-
Token (TTFT) and Time-Per-Output-Token (TPOT). Simi-
lar to existing works [3, 65], we measure TTFT and TPOT
for individual prompts for each combination of model and
dataset. For evaluation with LMSYS-Chat-1M and ShareGPT
datasets, the input lengths are set to 37 and 43 tokens, and gen-
eration lengths to 127 and 122 tokens, which are the mean val-
ues calculated across datasets, respectively. For each dataset,
we randomly sample 64 prompts and report average results.

Figure 10 shows the TTFT, TPOT, and expert hit rate of
FineMoE and four baselines when serving three MoE mod-
els with LMSYS-Chat-1M and ShareGPT datasets, respec-
tively. DeepSpeed-Inference has both the worst TTFT and
TPOT due to expert-agnostic offloading and lacking expert
prefetching. While Mixtral-Offloading, ProMoE, and MoE-
Infinity perform better than DeepSpeed-Inference, they are
underperformed by FineMoE because of coarse-grained of-
floading designs. Compared to DeepSpeed-Inference, Mixtral-
Offloading, ProMoE, and MoE-Infinity, FineMoE reduces the
average TTFT by 74%, 67%, 56%, and 53%, and reduces the
average TPOT by 46%, 38%, 27%, and 22%, respectively.

For expert hit rate, DeepSpeed-Inference has no expert
misses because it fetches whole layers with full experts,
but with the worst latency due to pure on-demand loading.
Mixtral-Offloading achieves a higher hit rate than ProMoE
and MoE-Infinity because of its synchronous speculative

FineMoE
ProMoE
DeepSpeed

MoE-Infinity
Mixtral-Offload

Mixtral-8x7B

Qwen1.5-MoE

Phi-3.5-MoE

1
2
3
4

TP
O

T
(s

)

1
2
3

2

4

6

Expert cache limit (GB)
6 12 24 48 96

Figure 12. Performance under varying expert cache limits.

prefetching with a prefetch distance of 1. However, due to
synchronous prefetching, its TTFT and TPOT are worse than
others except DeepSpeed-Inference. Overall, FineMoE im-
proves the average expert hit rate by 14%, 37%, and 68% over
Mixtral-Offloading, ProMoE, and MoE-Infinity, respectively.

6.3 Online Serving Performance
Except for the offline evaluation (i.e., Expert Map Store in full
capacity before serving), we also evaluate FineMoE against
other baselines in online serving settings. We empty the Ex-
pert Map Store of FineMoE and the expert activation matrix
collection of MoE-Infinity for the online serving experiment.
The request traces are derived from Azure LLM inference
traces [43, 52], with randomly sampled 256 requests (2.91
requests per second), to drive LMSYS-Chat-1M prompts for
each MoE model serving. To ensure consistency, FineMoE
and all baselines input and generate the exact number of to-
kens specified in the traces. Figure 11 illustrates the CDF of
end-to-end request latency across three MoE models. The re-
sults demonstrate that FineMoE significantly reduces overall
request latency compared to other baselines in online serving.

6.4 Impact of Expert Cache Limits
We measure the TPOT of FineMoE and other baselines by
limiting the expert cache memory budget to investigate their
performance in the latency-memory trade-off (§2.3). We
mainly focus on TPOT to show the end-to-end performance
impacted by varying cache limits. Figure 12 shows the TPOT
of FineMoE and four baselines when serving three MoE mod-
els under different expert cache limits. We gradually increase
the GPU memory allocated for caching experts from 6 GB
to 96 GB while employing the same experimental setting in
§6.2. Similarly, DeepSpeed-Inference has the worst TPOT
due to being expert-agnostic. FineMoE consistently outper-
forms Mixtral-Offloading, ProMoE, and MoE-Infinity under
varying expert cache limits. As the cache limit increases, the
performance gap between all baselines narrows due to the

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Hanfei Yu, Xingqi Cui, Hong Zhang, Hao Wang, and Hao Wang

DeepSpeed
Mixtral-Offload
ProMoE

MoE-Infinity
FineMoE

Ex
pe

rt
hi

t r
at

e

0

0.5

1.0

TP
O

T
(s

)

0

0.5

1.0

TT
FT

 (s
)

0
2
4
6

Mixtral Qwen Phi

Figure 13. Performance on high-end GPU testbed.

Speculate
Hit count

Map (T)
Map (T+S)

Map (T+S+δ)

Ex
pe

rt
hi

t r
at

e

0

0.5

1.0

Mixtral Qwen Phi

(a) Expert pattern tracking approaches.

LRU
LFU

FineMoE

Ex
pe

rt
hi

t r
at

e

0

0.5

1.0

Mixtral Qwen Phi

(b) Prefetch and caching.

Figure 14. Ablation study of FineMoE.

increased availability of cached experts. Nevertheless, for
limited GPU memory sizes (e.g., 6GB), FineMoE reduces the
TPOT by 36%, 25%, 16%, and 29%, compared to DeepSpeed-
Inference, Mixtral-Offloading, ProMoE, and MoE-Infinity,
across three MoE models, respectively. With fine-grained
expert offloading, FineMoE significantly reduces the expert
on-demand loading latency while maintaining a lower GPU
memory footprint, therefore achieving a better spot in the
latency-memory trade-off of MoE serving.

6.5 Impact of GPU Performance
To evaluate the impact of GPU performance on offloading
methods, we repeat the experiments using LMSYS-Chat-1M
on an NVIDIA A100 testbed equipped with 80 GB of HBM2e
memory and a peak memory bandwidth of 2 TB/s. Figure 13
presents the serving performance of FineMoE and the base-
lines across the three MoE models. FineMoE achieves smaller
performance gains on the A100 than on the 6×3090 testbed,
since high-end GPUs and the lack of EP yield faster inference
and lower offloading overhead. Nevertheless, FineMoE con-
sistently outperforms all baselines. The expert hit rate remains
largely unaffected, as GPU performance has less impact on
expert predictions.

6.6 Ablation Study
We present the ablation study of FineMoE’s design.

Effectiveness of expert map search. One of FineMoE’s
key designs is the expert map, which tracks expert selection

Mixtral-8×7B
Qwen1.5-MoE

Phi-3.5-MoE

TP
O

T
(s

)

0

2

4

TT
FT

 (s
)

0

5

10

1 2 3 4 5 6 7 8
Prefetch distance

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 15. Performance with different prefetch distances.

Mixtral-8×7B
Phi-3.5-MoE

Qwen1.5-MoE

M
ea

n
tra

j.
/

0.8
1.0

 s
em

. s
co

re
s

0.8
1.0

Expert Map Store capacity
500 1000 1500

Mixtral-Off.
ProMoE

MoE-Inf.
FineMoE

TP
O

T
(s

)

0

5

TT
FT

 (s
)

0
10

Inference batch size
1 2 4 8

(a) (b)

Figure 16. Sensitivity analysis of FineMoE.

preferences in fine granularity. We evaluate the effectiveness
of the expert map against five expert pattern-tracking ap-
proaches as follows. 1) Speculate: speculative prediction used
by Mixtral-Offloading [16] and ProMoE [51], 2) Hit count:
request-level expert hit count used by MoE-Infinity [58], 3)
Map (T): expert map with only trajectory similarity search,
4) Map (T+S): expert map with both trajectory and seman-
tic similarity search but statically select top-K experts to
prefetch, and 5) Map (T+S+𝛿): expert map with full features
enabled, including trajectory and semantic similarity search
(§4.2) and dynamically selecting experts to prefetch (§4.3).
We implement the above methods in FineMoE’s Expert Map
Searcher for a fair comparison. Figure 14a shows the expert
hit rate of the above expert pattern tracking methods. Specu-
lative prediction is effective due to the widespread presence
of residual connections in Transformer blocks. However, its
effectiveness decreases drastically as prefetch distance in-
creases [51]. The request-level expert activation count has the
worst performance due to coarse granularity. As features are
incrementally restored to FineMoE’s expert map, the expert
hit rate gradually increases, demonstrating its effectiveness.

Effectiveness of expert prefetching and caching. We eval-
uate FineMoE’s expert prefetching and caching against two
caching algorithms: 1) LRU used by Mixtral-Offloading [16]
and 2) LFU used by MoE-Infinity [58]. Figure 14b depicts
the expert hit rate of FineMoE and two baselines. The results
show that LRU performs poorly in expert offloading scenarios.
Though LFU achieves a higher hit rate than LRU, FineMoE
surpasses both, achieving the highest expert hit rate.

6.7 Sensitivity Analysis
We analyze the sensitivity of prefetch distance of MoE mod-
els, Expert Map Store capacity, and inference batch size.

FineMoE : Taming Latency-Memory Trade-Off in MoE-Based LLM Serving EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

Collect context
Inference

Map match
Expert prefetch

Expert load
Map update

Phi-3.5-MoE

Qwen1.5-MoE

Mixtral-8×7B

Latency (ms)
0 500 1000

Figure 17. Latency breakdown of FineMoE’s one iteration.

Prefetch distance of MoE models. Figure 15 shows the
TTFT and TPOT of FineMoE when serving three MoE mod-
els with different prefetch distances. We have demonstrated
that the expert hit rate decreases when gradually increasing
the prefetch distance (Figure 4). When the prefetch distance
is small, FineMoE cannot perfectly hide its system delay from
the inference process, such as the map searching and expert
prefetching, leading to an increase in inference latency. With
larger prefetch distances, FineMoE has worse expert hit rates
that also degrade performance. Therefore, we set the prefetch
distance 𝑑 to 3, 6, and 4 for Mixtral-8×7B, Qwen1.5-MoE,
and Phi-3.5-MoE, respectively.

Capacity of Expert Map Store. We measure the mean se-
mantic and trajectory similarity scores searched in FineMoE’s
expert map searching for MoE model serving. Figure 16(a)
presents the mean semantic and trajectory similarity scores
of FineMoE with different Expert Map Store capacity sizes.
Both semantic and trajectory similarity scores improve as the
store capacity increases. While the similarity scores exhibit a
significant increase with capacities below 1K, further capacity
expansion yields diminishing similarity gains. To minimize
FineMoE’s memory overhead, we set FineMoE’s Expert Map
Store capacity to 1K in evaluation.

Inference batch size. We investigate the impact of in-
ference batch size on FineMoE and three baselines using
Mixtral-8×7B with LMSYS-Chat-1M. Figure 16(b) presents
the performance of FineMoE, Mixtral-Offloading, ProMoE,
and MoE-Infinity as the batch size increases from one to eight.
FineMoE achieves the lowest TTFT and TPOT in most cases.

6.8 System Overheads
We measure and report the system overheads of FineMoE.

Latency overheads of FineMoE’s operations. Figure 17
shows the latency breakdown of one inference iteration in
FineMoE when serving the three MoE models. We report op-
eration overheads of FineMoE, including context collection,
map searching, expert on-demand loading, expert prefetching,
and map update after the iteration completes. Qwen1.5-MoE
has lower end-to-end iteration latency than Mixtral-8×7B
and Phi-3.5-MoE because of significantly fewer parameters.
Note that expert prefetching, map searching, and map update
tasks are executed asynchronously, aside from the inference
process. Hence, they do not contribute to the end-to-end iter-
ation latency. Excluding three asynchronous tasks, the total

Qwen1.5-MoE
Phi-3.5-MoE
Mixtral-8×7B

M
em

or
y

fo
ot

pr
in

t (
M

B)

10

100

Expert Map Store capacity
1K 2K 4K 8K 16K 32K

Figure 18. CPU memory footprint of FineMoE’s Expert Map
Store with different capacity.

delay incurred by other operations is consistently less than
50ms (1% of the iteration) across three MoE models, which
is negligible compared to the inference latency.

Memory overheads of FineMoE’s Expert Map Store.
Figure 18 shows the CPU memory footprint of FineMoE’s
Expert Map Store when varying the store capacity from 1K
to 32K maps. The memory needed to store expert maps for
Qwen1.5-MoE is more than Mixtral-8×7B and Phi-3.5-MoE
because it has more experts per layer over the other two mod-
els, which increases the map shape. Even for the largest ca-
pacity (32K), the Expert Map Store requires less than 200MB
of memory to store the maps, which is trivial since mod-
ern GPU servers usually have abundant CPU memory (e.g.,
p4d.24xlarge on AWS EC2 [5] has over 1100 GB of
CPU memory). In evaluation, FineMoE’s map store capac-
ity with 1K maps is sufficient for maintaining performance
(§6.7), resulting in minimal memory overhead.

7 Discussion
In this section, we compare the heuristic-based FineMoE with
Neural Network (NN)-based predictors, analyze the impact
of model parallelism on FineMoE’s performance, and discuss
how FineMoE can be extended to other MoE architectures.

NN-based predictors. NN-based predictors for expert of-
floading are impractical due to multiple sources of overhead.
First, they often introduce sub-second inference latency, com-
parable to MoE inference latency itself. Second, they require
extensive data collection, hour-long per-layer training, and
frequent retraining to adapt to workload shifts. Third, they
consume substantial GPU memory, as prior work [51] re-
ports millions of parameters per MoE layer. Moreover, they
are incompatible with FineMoE ’s fine-grained design: train-
ing on fine-grained data hinders convergence, while storing
iteration-level probabilities generates large volumes that fur-
ther prolong training and limit feasibility. Therefore, we adopt
a heuristic-based design rather than NN-based approaches.

Impact of EP and tensor parallelism (TP). Higher EP
distributes experts across more devices and enables greater ex-
pert replication, which can increase FineMoE ’s offloading op-
portunities and memory savings. In contrast, higher TP raises
the overhead of offloading operations, since dense model
components are split across devices and require coordinated
offloading and reloading. As noted in prior work [11, 35],

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Hanfei Yu, Xingqi Cui, Hong Zhang, Hao Wang, and Hao Wang

production MoE systems generally avoid high TP because
its communication costs outweigh performance benefits. In
large-scale deployments (e.g., DeepSeek [35]), MoE systems
usually use low EP during prefill to maximize throughput,
while adopting high EP during decode to enable higher expert
redundancy. Though high-EP decode reduces per-GPU expert
occupancy, the larger number of expert replicas (e.g., 2× more
than prefill in DeepSeek [35]) creates additional offloading
opportunities by allowing experts to be compacted onto fewer
devices.

Adaptation to other MoE architectures.. FineMoE can
be easily integrated with different MoE architectures. For
shared experts, we treat them as always-hit during expert
prediction. One of our evaluated models, Qwen1.5-MoE, in-
cludes shared experts that are used by all tokens. For multi-
gating MoE, we can extend the expert map search by record-
ing each gate’s probability distribution and flattening the out-
puts into a single vector for efficient similarity computation.
This enables unified handling across diverse routing schemes.

8 Related Work
In this section, we provide a brief overview of recent studies
and related works on MoE serving.

Lossless MoE serving. Recent studies on lossless MoE
serving have been widely proposed. DeepSpeed Inference [4]
offloads layer-wise parameters without considering expert
awareness and does not provide expert prefetching or caching
capabilities. Mixtral-Offloading [16] employs LRU expert
caching and introduces speculative prediction to enable ex-
pert prefetching. MoE-Infinity [58] proposes the request-level
expert activation matrix to guide offloading in coarse gran-
ularity. SwapMoE [47] maintains a set of critical experts in
GPU memory and adjusts them based on workload changes to
minimize offloading overhead. ProMoE [51] trains predictors
per MoE layer to achieve high speculative prediction accu-
racy and low inference latency. Lina [32] exports unpopular
experts to host memory while focusing on MoE training. Liu
et al. [36] partitions and serves MoE models on serverless
computing. Fiddler [26] serves MoE inference on CPU and
GPU collaboratively. MoEShard [6] shards experts to achieve
balanced expert loads. Unlike existing coarse-grained offload-
ing solutions, FineMoE tracks fine-grained expert patterns
from both trajectory and semantic aspects and outperforms
SOTA baselines.

Lossy MoE serving. Expert pruning [13] reduces memory
usage by removing under-utilized experts. Expert compres-
sion [21, 44, 53, 56, 66] compresses less-popular experts
to reduce models’ memory footprint. Expert load rerout-
ing [18, 20, 62] balances tokens to under-loaded experts in-
stead of following the outputs of gate networks. Specifically,
Hobbit [53] uses low precision to serve less-critical experts.

He et al. [20] drops and reroutes tokens from overloaded ex-
perts to others to reduce the straggler effect. Samoyeds [56]
serves MoE models with sparsity computing. Lynx [18] se-
lects experts based on batch-level expert importance instead of
gate network outputs. DAOP [62] performs computations with
predicted experts directly and cannot guarantee full genera-
tion quality. FLoE [66] compresses experts on-the-fly during
inference. However, lossy serving impacts the model quality
and is orthogonal to FineMoE.

MoE refactorization. Some works propose to redesign
and refactor the current MoE architecture, such as decoupling
gate networks from inference process [14, 22] or building
activation-efficient MoE models [8, 25]. This line of work
requires model training or fine-tuning before serving. Pre-
gated MoE [22] trains pre-gate functions to eliminate the
sequential dependencies between expert selection and exe-
cution. SiDA [14] proposes a sparsity-inspired data-aware
inference system that decouples the expert routing from infer-
ence. READ-ME [8] refactors pre-trained dense LLMs into
specialized MoE models. MoLE [25] replaces inputs of all
MoE layers with embedding tokens to avoid sparse expert
activation. In contrast, FineMoE requires zero training to
serve MoE models.

9 Conclusion
This paper proposes FineMoE, a fine-grained expert offload-
ing system for MoE serving that achieves low inference la-
tency without incurring significant model memory footprints.
FineMoE tracks iteration-level expert probability distribu-
tions from the MoE model using expert map and analyzes
input semantic embeddings from individual request prompts.
Based on the input semantic and expert trajectory information,
FineMoE searches the most accurate expert map to carefully
guide the expert prefetching, caching, and offloading deci-
sions tailored to every inference iteration. FineMoE is proto-
typed on top of HugginFace Transformers and deployed to
a six-GPU testbed. Extensive experiments with open-source
MoE models and real-world workloads show that FineMoE
reduces inference latency by 47% and improves expert hit
rate by 39% compared to state-of-the-art solutions.

Acknowledgments
We thank anonymous reviewers and our shepherd, Dr. Yaniv
David, for their valuable feedback. The work of Hanfei Yu and
Hao Wang was supported in part by NSF 2527416, 2534241,
and 2523997, and the AWS Cloud Credit for Research pro-
gram. The work of Hao Wang (Rutgers CS) was supported
in part by Amazon Faculty Research Award, Microsoft AI
& Society Fellowship, NSF CAREER Award IIS-2340125,
NIH grant R01CA297832, and NSF grant IIS-2127918. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

FineMoE : Taming Latency-Memory Trade-Off in MoE-Based LLM Serving EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk

References
[1] Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Am-

mar Ahmad Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jian-
min Bao, Harkirat Behl, et al. 2024. Phi-3 Technical Report: A Highly
Capable Language Model Locally on Your Phone. arXiv preprint
arXiv:2404.14219 (2024).

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, et al. 2023. GPT-4 Technical Report.
arXiv preprint arXiv:2303.08774 (2023).

[3] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun
Kwatra, Bhargav Gulavani, Alexey Tumanov, and Ramachandran Ram-
jee. 2024. Taming Throughput-Latency Tradeoff in LLM Inference
with Sarathi-Serve. In 18th USENIX Symposium on Operating Systems
Design and Implementation (OSDI).

[4] Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan,
Cheng Li, Du Li, Elton Zheng, Olatunji Ruwase, Shaden Smith, Min-
jia Zhang, Jeff Rasley, et al. 2022. DeepSpeed-Inference: Enabling
Efficient Inference of Transformer Models at Unprecedented Scale.
In SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis.

[5] AWS. 2006. AWS EC2: Secure and Resizable Compute Capacity in
the Cloud. https://aws.amazon.com/ec2/.

[6] Oana Balmau, Anne-Marie Kermarrec, Rafael Pires, André Loureiro Es-
pírito Santo, Martijn de Vos, and Milos Vujasinovic. 2025. Accelerating
MoE Model Inference with Expert Sharding. In Proceedings of the 5th
Workshop on Machine Learning and Systems (EuroMLSys).

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language Models are Few-Shot
Learners. Advances in neural information processing systems (2020).

[8] Ruisi Cai, Yeonju Ro, Geon-Woo Kim, Peihao Wang, Babak Ehte-
shami Bejnordi, Aditya Akella, and Zhangyang Wang. 2024. Read-ME:
Refactorizing LLMs as Router-Decoupled Mixture of Experts with
System Co-Design. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems (NeurIPS).

[9] Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Ben-
esty, Jingdong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson
Correlation Coefficient. Noise Reduction in Speech Processing (2009).

[10] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. 2022. Introduction to Algorithms. MIT press.

[11] Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao,
Deli Chen, Jiashi Li, Wangding Zeng, Xingkai Yu, Y Wu, et al. 2024.
DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-
Experts Language Models. arXiv preprint arXiv:2401.06066 (2024).

[12] Sunhao Dai, Yuqi Zhou, Liang Pang, Weihao Liu, Xiaolin Hu, Yong
Liu, Xiao Zhang, Gang Wang, and Jun Xu. 2024. Neural Retrievers are
Biased Towards LLM-Generated Content. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

[13] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen,
Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, Zhifeng
Chen. 2021. GShard: Scaling Giant Models with Conditional Computa-
tion and Automatic Sharding. In International Conference on Learning
Representations (ICLR).

[14] Zhixu Du, Shiyu Li, Yuhao Wu, Xiangyu Jiang, Jingwei Sun, Qilin
Zheng, Yongkai Wu, Ang Li, Hai Li, and Yiran Chen. 2024. SiDA:
Sparsity-Inspired Data-Aware Serving for Efficient and Scalable Large
Mixture-of-Experts Models. Proceedings of Machine Learning and
Systems (MLSys) (2024).

[15] Ilya Dumer. 2007. Covering Spheres with Spheres. Discrete & Compu-
tational Geometry (2007).

[16] Artyom Eliseev and Denis Mazur. 2023. Fast Inference of Mixture-
of-Experts Language Models with Offloading. arXiv preprint
arXiv:2312.17238 (2023).

[17] D Jack Elzinga and Donald W Hearn. 1972. The Minimum Covering
Sphere Problem. Management Science (1972).

[18] Vima Gupta, Kartik Sinha, Ada Gavrilovska, and Anand Padmanabha
Iyer. 2024. Lynx: Enabling Efficient MoE Inference through Dy-
namic Batch-Aware Expert Selection. arXiv preprint arXiv:2411.08982
(2024).

[19] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array
Programming with NumPy. Nature (2020).

[20] Shwai He, Weilin Cai, Jiayi Huang, and Ang Li. 2025. Capacity-Aware
Inference: Mitigating the Straggler Effect in Mixture of Experts. arXiv
preprint arXiv:2503.05066 (2025).

[21] Shwai He, Daize Dong, Liang Ding, and Ang Li. 2024. Towards Effi-
cient Mixture of Experts: A Holistic Study of Compression Techniques.
arXiv preprint arXiv:2406.02500 (2024).

[22] Ranggi Hwang, Jianyu Wei, Shijie Cao, Changho Hwang, Xiaohu
Tang, Ting Cao, and Mao Yang. 2024. Pre-gated MoE: An Algorithm-
System Co-Design for Fast and Scalable Mixture-of-Expert Inference.
In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA).

[23] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch,
Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, et al. 2024. Mixtral of
Experts. arXiv preprint arXiv:2401.04088 (2024).

[24] Zhihan Jiang, Jinyang Liu, Zhuangbin Chen, Yichen Li, Junjie Huang,
Yintong Huo, Pinjia He, Jiazhen Gu, and Michael R Lyu. 2024. LILAC:
Log Parsing using LLMs with Adaptive Parsing Cache. Proceedings of
the ACM on Software Engineering (2024).

[25] Shibo Jie, Yehui Tang, Kai Han, Yitong Li, Duyu Tang, Zhi-Hong Deng,
and Yunhe Wang. 2025. Mixture of Lookup Experts. In International
Conference on Machine Learning (ICML).

[26] Keisuke Kamahori, Tian Tang, Yile Gu, Kan Zhu, and Baris Kasikci.
2025. Fiddler: CPU-GPU Orchestration for Fast Inference of Mixture-
of-Experts Models. In International Conference on Learning Represen-
tations (ICLR).

[27] Young Jin Kim, Raffy Fahim, and Hany Hassan Awadalla. 2023. Mix-
ture of Quantized Experts (MoQE): Complementary Effect of Low-bit
Quantization and Robustness. arXiv preprint arXiv:2310.02410 (2023).

[28] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
2023. Efficient Memory Management for Large Language Model
Serving with PagedAttention. In Proceedings of the 29th Symposium
on Operating Systems Principles (SOSP).

[29] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. 2012. When Prefetch-
ing Works, When It Doesn’t, and Why. ACM Transactions on Architec-
ture and Code Optimization (TACO) (2012).

[30] Jaeseong Lee, Aurick Qiao, Daniel F Campos, Zhewei Yao, Yuxiong
He, et al. 2024. STUN: Structured-Then-Unstructured Pruning for
Scalable MoE Pruning. arXiv preprint arXiv:2409.06211 (2024).

[31] Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. 2024.
InfiniGen: Efficient Generative Inference of Large Language Models
with Dynamic KV Cache Management. In 18th USENIX Symposium
on Operating Systems Design and Implementation (OSDI).

[32] Jiamin Li, Yimin Jiang, Yibo Zhu, Cong Wang, and Hong Xu. 2023.
Accelerating Distributed MoE training and inference with Lina. In 2023
USENIX Annual Technical Conference (USENIX ATC 23).

[33] Yichen Li, Yintong Huo, Renyi Zhong, Zhihan Jiang, Jinyang Liu,
Junjie Huang, Jiazhen Gu, Pinjia He, and Michael R Lyu. 2024. Go
Static: Contextualized Logging Statement Generation. Proceedings of

https://aws.amazon.com/ec2/

EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland Uk Hanfei Yu, Xingqi Cui, Hong Zhang, Hao Wang, and Hao Wang

the ACM on Software Engineering (2024).
[34] Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei,

and Tat-Seng Chua. 2024. Data-efficient Fine-tuning for LLM-based
Recommendation. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval.

[35] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu,
Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong
Ruan, et al. 2024. DeepSeek-V3 Technical Report. arXiv preprint
arXiv:2412.19437 (2024).

[36] Mengfan Liu, Wei Wang, and Chuan Wu. 2025. Optimizing Distributed
Deployment of Mixture-of-Experts Model Inference in Serverless Com-
puting. In IEEE Conference on Computer Communications (INFO-
COM).

[37] Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang,
Qizheng Zhang, Kuntai Du, Jiayi Yao, Shan Lu, Ganesh Anantha-
narayanan, et al. 2024. CacheGen: KV Cache Compression and Stream-
ing for Fast Large Language Model Serving. In Proceedings of the
ACM SIGCOMM 2024 Conference.

[38] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Efficient Estimation of Word Representations in Vector Space. (2013).

[39] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu,
and Brad Myers. 2024. Using an LLM to Help with Code Understand-
ing. In Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering.

[40] NVIDIA. 2024. CUDA Runtime API :: CUDA Toolkit Documentation.
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html.

[41] Ollama. 2024. Get Up and Running with Large Language Models.
https://ollama.com/.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. Advances in Neural Information
Processing Systems (NIPS) (2019).

[43] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo
Goiri, Saeed Maleki, and Ricardo Bianchini. 2024. Splitwise: Ef-
ficient Generative LLM Inference Using Phase Splitting. In 2024
ACM/IEEE 51st Annual International Symposium on Computer Ar-
chitecture (ISCA).

[44] Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mo-
hit Bansal, Tianlong Chen. 2024. Merge, Then Compress: Demystify
Efficient SMoE with Hints from Its Routing Policy. In International
Conference on Learning Representations (ICLR).

[45] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. 2019. Language Models are Unsupervised Multi-
task Learners. OpenAI blog (2019).

[46] Robert Alexander Rankin. 1947. On the Closest Packing of Spheres in
N Dimensions. Annals of Mathematics (1947).

[47] Rui Kong, Yuanchun Li, Qingtian Feng, Weijun Wang, Xiaozhou Ye,
Ye Ouyang, Linghe Kong, Yunxin Liu. 2023. SwapMoE: Serving Off-
the-shelf MoE-based Large Language Models with Tunable Memory
Budget. arXiv preprint arXiv:2308.15030 (2023).

[48] Claude Elwood Shannon. 1948. A Mathematical Theory of Communi-
cation. The Bell System Technical Journal (1948).

[49] ShareGPT. 2022. ShareGPT: Share Your Wildest ChatGPT Conversa-
tions. https://sharegpt.com/.

[50] Snowflake. 2024. Snowflake Arctic: The Best LLM for Enterprise AI.
https://www.snowflake.com/en/data-cloud/arctic/.

[51] Xiaoniu Song, Zihang Zhong, and Rong Chen. 2024. ProMoE: Fast
MoE-based LLM Serving using Proactive Caching. arXiv preprint
arXiv:2410.22134 (2024).

[52] Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, and Esha
Choukse. 2025. DynamoLLM: Designing LLM Inference Clusters for
Performance and Energy Efficiency. In International Symposium on
High-Performance Computer Architecture (HPCA).

[53] Peng Tang, Jiacheng Liu, Xiaofeng Hou, Yifei Pu, Jing Wang, Pheng-
Ann Heng, Chao Li, and Minyi Guo. 2024. Hobbit: A Mixed Precision
Expert Offloading System for Fast MoE Inference. arXiv preprint
arXiv:2411.01433 (2024).

[54] A Vaswani. 2017. Attention is all you need. Advances in Neural
Information Processing Systems (2017).

[55] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Hugging-
Face’s Transformers: State-of-the-Art Natural Language Processing. In
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations.

[56] Chenpeng Wu, Qiqi Gu, Heng Shi, Jianguo Yao, and Haibing Guan.
2025. Samoyeds: Accelerating MoE Models with Structured Spar-
sity Leveraging Sparse Tensor Cores. In Proceedings of the Twentieth
European Conference on Computer Systems (EuroSys).

[57] xAI. 2023. Announcing Grok. https://x.ai/blog/grok.
[58] Leyang Xue, Yao Fu, Zhan Lu, Luo Mai, and Mahesh Marina. 2024.

MoE-Infinity: Efficient MoE Inference on Personal Machines with
Sparsity-Aware Expert Cache. arXiv preprint arXiv:2401.14361
(2024).

[59] Xue, Leyang and Fu, Yao and Lu, Zhan and Mai, Luo and Marina, Ma-
hesh. [n. d.]. MoE-Infinity Codebase. https://github.com/TorchMoE/
MoE-Infinity.

[60] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, et al.
2024. Qwen2 Technical Report. arXiv preprint arXiv:2407.10671
(2024).

[61] Seniha Esen Yuksel, Joseph N Wilson, and Paul D Gader. 2012. Twenty
Years of Mixture of Experts. IEEE Transactions on Neural Networks
and Learning Systems (TNNLS) (2012).

[62] Yujie Zhang, Shivam Aggarwal, and Tulika Mitra. 2025. DAOP: Data-
Aware Offloading and Predictive Pre-Calculation for Efficient MoE
Inference. In Design Automation and Test in Europe (DATE).

[63] Yuyue Zhao, Jiancan Wu, Xiang Wang, Wei Tang, Dingxian Wang, and
Maarten de Rijke. 2024. Let Me Do It for You: Towards LLM Empow-
ered Recommendation via Tool Learning. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development
in Information Retrieval.

[64] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zhuohan Li, Zi Lin, Eric P
Xing, et al. 2023. LMSYS-Chat-1M: A Large-Scale Real-World LLM
Conversation Dataset. arXiv preprint arXiv:2309.11998 (2023).

[65] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xu-
anzhe Liu, Xin Jin, and Hao Zhang. 2024. DistServe: Disaggregating
Prefill and Decoding for Goodput-optimized Large Language Model
Serving. In 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

[66] Yuxin Zhou, Zheng Li, Jun Zhang, Jue Wang, Yiping Wang, Zhongle
Xie, Ke Chen, and Lidan Shou. 2025. FloE: On-the-Fly MoE Inference
on Memory-constrained GPU. In International Conference on Machine
Learning (ICML).

https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://ollama.com/
https://sharegpt.com/
https://www.snowflake.com/en/data-cloud/arctic/
https://x.ai/blog/grok
https://github.com/TorchMoE/MoE-Infinity
https://github.com/TorchMoE/MoE-Infinity

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 LLM Serving
	2.2 MoE-based LLM Serving
	2.3 Latency-Memory Trade-Off
	2.4 Existing MoE Offloading Solutions
	2.5 Problems of Coarse-Grained Offloading

	3 FineMoE's Overview
	3.1 Objectives and Challenges
	3.2 Architecture and Workflow
	3.3 Problem Formulation

	4 FineMoE's Design
	4.1 Expert Maps
	4.2 Expert Map Search
	4.3 Expert Prefetching
	4.4 Expert Map Store Management
	4.5 Expert Caching and Eviction

	5 FineMoE's Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Offline Serving Performance
	6.3 Online Serving Performance
	6.4 Impact of Expert Cache Limits
	6.5 Impact of GPU Performance
	6.6 Ablation Study
	6.7 Sensitivity Analysis
	6.8 System Overheads

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

