Cheaper and Faster: Distributed Deep Reinforcement Learning
with Serverless Computing

Hanfei Yu!, Jian Li’>, Yang Hua’, Xu Yuan*, Hao Wang'

'Louisiana State University 2Stony Brook University *Queen’s University Belfast *University of Delaware
{hyu25, haowang } @lsu.edu, jian.li.3@stonybrook.edu, Y.Hua@qub.ac.uk, xyuan @udel.edu

Abstract

Deep reinforcement learning (DRL) has gained immense suc-
cess in many applications, including gaming Al, robotics, and
system scheduling. Distributed algorithms and architectures
have been vastly proposed (e.g., actor-learner architecture) to
accelerate DRL training with large-scale server-based clus-
ters. However, training on-policy algorithms with the actor-
learner architecture unavoidably induces resource wasting
due to synchronization between learners and actors, thus re-
sulting in significantly extra billing. As a promising alterna-
tive, serverless computing naturally fits on-policy synchro-
nization and alleviates resource wasting in distributed DRL
training with pay-as-you-go pricing. Yet, none has leveraged
serverless computing to facilitate DRL training. This paper
proposes MINIONSRL, the first serverless distributed DRL
training framework that aims to accelerate DRL training-
and cost-efficiency with dynamic actor scaling. We prototype
MINIONSRL on top of Microsoft Azure Container Instances
and evaluate it with popular DRL tasks from OpenAl Gym.
Extensive experiments show that MINIONSRL reduces total
training time by up to 52% and training cost by 86% com-
pared to latest solutions.

Introduction

The success of AlphaGo (Silver et al. 2016) inspires vari-
ous deep reinforcement learning (DRL) applications, such
as gaming Al (Vinyals et al. 2019; Berner et al. 2019),
robotics (Ji et al. 2022; Thumm and Althoff 2022), system
scheduling (Mao et al. 2022; Qiu et al. 2023), bioinformat-
ics (Jumper et al. 2021), and large language model train-
ing (OpenAl 2023). DRL training is expensive, which takes
numerous trials and errors, consuming countless computing
resources and time. Thus, a few distributed DRL algorithms
are proposed to parallelize and accelerate the training with
multiple servers (Luo et al. 2020; Wijmans et al. 2019; Espe-
holt et al. 2018; Horgan et al. 2018; Kapturowski et al. 2018;
Hessel et al. 2018; Espeholt et al. 2020).

The actor-learner architecture represents one of the most
efficient distributed DRL training paradigms available (Luo
et al. 2020; Espeholt et al. 2018, 2020). This approach
decouples the DRL agent’s responsibilities into two dis-
tinct roles: actors for data sampling and learners for pol-
icy updates. On-policy algorithms (Schulman et al. 2017;

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Actor Learner Running =~ |dle but incur costs
c I)
2 IR = |
g =)
N)] — Idle —
g Trajectories .51 [sr77773
o >t
< ..
e Update (b) Server-based training
& RL Model A

Released

Relea?ed
L’t

(c) Serverless training

Distribute model

I_I—I

Round i+1

vy v

2]

(@) One-round on-policy training

Figure 1: Server-based v.s. serverless architectures.

Achiam et al. 2017; Wijmans et al. 2019) have emerged
as a prominent DRL algorithm family, fully leveraging the
actor-learner training architecture with distributed comput-
ing clusters (Gu et al. 2017).

To facilitate efficient learning in a distributed environment
with consistent DRL policies, on-policy algorithms enforce
a synchronization process between learners and actors after
every training round, as Fig. 1(a) shows. Due to the stochas-
tic environment dynamics (e.g., game environments), some
actors might have episodes that end sooner, leading them to
finish rounds earlier and wait in idle for other actors. Addi-
tionally, all actors remain idle during the policy update by
the learner as Fig. 1(b) shows. However, these idle actors
significantly waste computing resources, amplifying train-
ing costs with server-based clusters.

The dilemma of server-based DRL training. State-of-the-
art server-based approaches reserve a fixed number of work-
ers (e.g., physical or cloud servers) for distributed DRL
training. These methods face two primary challenges: 1)
their coarse-grained resource management (e.g., server-level
instead of CPU core-level) leaves idle actors’ resources
unreleased; and 2) the prolonged server startup process
(minute-level) prevents efficient mitigation of DRL actors’
idle time through frequent server toggling. Thus, we propose

----- Fixed - Decrease Increase

40 S %
e T 5 400
8 8
5 : ? 200
£ [H £ o

10 ‘ I PR b o= I ‘ I

0 20 40 0 20 40

of round
(b) Final rewards

of round
(a) Actor scheduling

Figure 2: Adjusting the number of actors when training Ope-
nAI Gym CartPole-v1 (Brockman et al. 2016) with Proximal
Policy Optimization (PPO) (OpenAl 2017).

to enable cheaper and faster distributed DRL with serverless
computing.

Serverless computing and how it fits distributed DRL?
Serverless Computing, also known as Function-as-a-Service
(FaaS), is a new cloud computing model that uses
lightweight containers as execution units. Unlike physical
clusters and traditional cloud computing that require tedious
configuration, serverless computing packages and executes
tasks (e.g., DRL actors and learner) as functions with in-
stant toggling (i.e., sub-second level) and auto-scaling. Thus,
serverless computing has been widely deployed to serve
computation-intensive applications, such as deep learn-
ing (Ali et al. 2020; Carreira et al. 2019; Wang, Niu, and Li
2019; Yu et al. 2021, 2022) and scientific computing (Chard
et al. 2020; Roy et al. 2022). Fig. 1(c) shows how server-
less functions naturally accommodate the on-policy training
process with on-and-off DRL actors and learners, which mit-
igates idle resources.

Leveraging serverless computing’s fine-grained resource
provisioning and instant execution, a fundamental question
arises—how to achieve faster and cheaper DRL training with
an appropriate number of concurrent actors in each round?

To answer this question, we propose MINIONSRL, the
first serverless DRL training framework, which dynamically
adjusts the number of actors according to the DRL training
progress. As the training proceeds, it takes varying volumes
of training data to advance neural network model quality
in each round (Devarakonda, Naumov, and Garland 2017,
McCandlish et al. 2018). In the actor-learner architecture,
the number of actors in each round determines the volume
of sampled training data, thus impacting the policy network
quality. This intuition leads us to design an intelligent sched-
uler that learns to perform dynamic actor scaling for each
training round to optimize the DRL policy quality with min-
imal training time and costs. Our main contributions are as
follows:

* We propose MINIONSRL, the first distributed DRL train-
ing framework based on serverless computing.

* We design an intelligent scheduler that learns to scale out
actors dynamically and accelerate distributed DRL train-
ing with minimal costs.

* We evaluated MINTONSRL on an off-the-shelf serverless
testbed (i.e., Microsoft Azure). Experiments with Ope-
nAI Gym show that MINIONSRL reduces up to 52% to-
tal training time and 86% costs, respectively.

Preliminaries
Actor-learner architecture

The actor-learner architecture is one of the most performant
and efficient approaches that attempt to scale and accelerate
DRL training. A3C (Mnih et al. 2016) first introduced a sim-
ple actor-leaner prototype. IMPALA (Espeholt et al. 2018)
proposed a standard actor-learner architecture with V-trace
correction for off-policy training. IMPACT (Luo et al. 2020)
added a surrogate target network to the actor-learner archi-
tecture for stabilizing training performance. SEED RL (Es-
peholt et al. 2020) aimed to accelerate actor-learner archi-
tecture by centralizing actor inferences to GPUs.

Server-based v.s. Serverless DRL Training

Server-based training platforms provide users with an en-
tire server with coarse-grained resources packed together.
For example, the cheapest Azure cloud server equipped
with a V100 GPU is Standard_NC6s_v3, bundled with
6 CPU cores and 112GB memory. Instead, serverless com-
puting executes tasks with lightweight containers, thus al-
lowing fine-grained resource provisioning with instant func-
tion launch/release, which charges users by the amount of
resources (e.g., CPU/GPU and memory) only in actual exe-
cution (e.g., second). Due to the unique features, serverless
computing is particularly appealing for tasks that require
elasticity and high concurrency, such as scientific comput-
ing (Chard et al. 2020; Roy et al. 2022) and distributed train-
ing (Wang, Niu, and Li 2019; Guo et al. 2022; Thorpe et al.
2021; Yu et al. 2021, 2022).

Motivating Dynamic Actor Scaling for DRL

One of the fundamental differences between DRL and su-
pervised learning is the training data. In supervised learning
tasks, training data is collected offline before the training
starts, whereas DRL tasks sample the training data online
during the rollout of the current policy with actors. As the
training proceeds, neural networks tend to demand varying
volumes of training data in each round (Devarakonda, Nau-
mov, and Garland 2017; McCandlish et al. 2018). Hence, the
number of DRL actors dictates the amount of training data
sampled in each round, potentially influencing the efficiency
of DRL training and the quality of the policy.

Fig. 2 uses a real-world experiment to show the poten-
tial impact on policy quality when adjusting the number of
actors during DRL training. Fig. 2(a) shows the three ac-
tor dynamic scaling strategies: 1) Fixed, which uses a fixed
number of actors, 2) Decrease, which decreases ten actors
every ten training rounds, and 3) Increase, which increases
ten actors every ten rounds. Note that the three strategies
are under the same actor budget (i.e., the cumulative number
of total used actors is the same). Fig. 2(b) shows the differ-
ent final rewards achieved by the three actor scaling strate-
gies, raising a fundamental question—given the flexibility
and scalability of serverless computing, how to dynamically
scale out actors for faster and cheaper DRL training?

MINIONSRL’s Design
Overview

To answer this question, we propose MINIONSRL, which
refactors the actor-learner DRL architecture into indepen-
dent serverless functions with fine-grained resource man-
agement. MINIONSRL aims to instantly launch necessary
number of actors for faster DRL training, while promptly
releasing idle actor and learner functions to optimize cost-
efficiency. Serverless computing’s pay-as-you-run nature
frees MINTONSRL from expenses on stopped functions, thus
reducing unnecessary monetary costs throughout the train-
ing process. Serverless computing provides agile scalabil-
ity so that MINTIONSRL can dynamically scale the number
of actors in real-time as needed. Specifically, MINIONSRL
aims to address two primary challenges:

Incorporate characteristics of DRL tasks. DRL training
significantly differs from other ML training, for example, the
recurrent interaction and online data sampling. To achieve
high performance and low cost, it’s necessary to incorporate
MINIONSRL’s scheduling with awareness of DRL workload
characteristics. However, existing machine learning sched-
ulers are not designed for distributed DRL training (Guo
et al. 2022; Wang, Niu, and Li 2019; Carreira et al. 2019),
thus their tricks are not directly applicable.

Solution: The training process of MINIONSRL is de-

signed to be DRL objective and constraint-aware. To capture
unique characteristics of DRL workloads, we embed criti-
cal features into the states of MINTIONSRL’s agent, such as
the average final rewards and Kullback—Leibler (KL) diver-
gence. The reward function of MINIONSRL’s agent is also
crafted with awareness of the momentary budget and work-
load actor performance, guiding MINIONSRL to search for
optimal scheduling decisions through training.
Trade-off between training performance and cost. It’s
ambiguous to determine how many actors should be
launched in each round to hit a sweet spot between train-
ing performance and cost. Moreover, it’s difficult to infer
the complicated dependency between actor scheduling and
policy updates, further escalating the challenge.

Solution: We formulate the actor scheduling of dis-
tributed DRL training as a sequential decision problem and
analyze the complexity. We devise a DRL-based scheduler
to dynamically scale actors by learning from experiences.

Problem Formulation

We consider a general RL training setting—an agent contin-
uously interacts with the environment to learn a policy that
maximizes cumulative rewards. The training proceeds in the
actor-learner fashion as shown in Fig. 3. The training is ter-
minated when the agent achieves target final rewards J or
runs out of a monetary budget B. Let f, ; be the actor func-
tion ¢ scheduled for sampling trajectories in round k, where
ie{l,.... Iy}, k € {1,..., K} that I;; and K denote the
total number of training rounds to reach final reward J and
the total number of actor functions in round k, respectively.
When all actor functions are terminated after sampling, one
learner function is launched to learn and update the policy

MinionsRL Scheduler
State St—»
[—
Action a;

St+1
l Reward ¢ At+1 Tt+1

Scheduler Policy "

i T —— o T
- ft Policy : - Policy
Ti—1— Sampled \0/Ve|ghts + 7y Sampled \g/e'ghts

Data7i | ' i Data 71 0t
Tl m‘ o =
> 7r;” ||
Actor function

Learner function

Figure 3: MINIONSRL’s architecture.

based on the sampled data. At the end of round k, the cumu-
lative reward achieved by the agent is represented as j;. Let
P, and P}, denote the execution time of the i*" actor and
learner function in round k, where each actor and learner
function is allocated with d* and d' resources, respectively.
We use c to represent the unit price of executing a function
with a unit resource for one second. Thus, the duration P,
and cost C; of round k in on-policy training is given by

Py == P} + max{P{,}, (1)
3
Iy,
Cy = c(Pld' + > Pfd*). 2)

i=1

The goal is to minimize the training duration Zszl Py

via Eq. 1 while the cost Zszl C, via Eq. 2 subjects to a
monetary budget B, by deciding I in each round:

K
. ! a
H}chn; (Pk + miaX{Pk,i}), 3)
st K>1, 5> J

Iy
c(Pid +> pgd*) < B. 4)

i=1
The optimization problem is a challenging sequential de-
cision problem with an exponential complexity of O(I)
for searching optima. Exhaustively enumerating the optimal
solution is unrealistic due to the need for countless retrain-
ing. What’s more, the complex correlation between actor
scheduling and policy update further escalates the difficulty
of solving the problem. Therefore, we resort to DRL itself—
using a DRL agent to learn how to optimally schedule actors

for distributed DRL training workloads.

DRL-based Actor Scheduler

Fig. 3 depicts the architecture of MINIONSRL with a two-
fold workflow: 1) the DRL workload that trains in actor-
learner fashion, and 2) the DRL-based actor scheduler that
manages the DRL workload training. At the beginning of

Table 1: Hyperparameters of PPO used in the training work-
loads and the search ranges of the scheduler.

Parameter Workload Scheduler
Learning rate 0.00005 [0.001, 0.005, 0.01]
Discount factor (vy) 0.99 0.99
Mini-batch size 256 [1,2,4]

Clip parameter 0.3 [0.1, 0.2, 0.3]
KL coefficient 0.2 0.0

KL target 0.01 [0.005, 0.01, 0.015]
Entropy coefficient 0.0 [0.005, 0.01, 0.015]
Value function coefficient 1.0 [0.1, 0.3, 0.5, 0.7]

each round k, the scheduler takes an action on deciding how
many actors Ij, should be launched for evaluation and data
sampling, based on the state collected from the leaner up-
date. The action made by the scheduler is judged by a per-
round reward from the actors. We describe the design of
states, actions, and rewards in our actor scheduler as follows:
State. The state is represented by a flat vector s, =
(k,Lg—1, Ri—1, DX, P P& | Py 1,by). Specifically,
Lj_1 and Ry,_1 are the loss value of the learner and average
final rewards of actors evaluated from the previous round.

DEL =% mi(als) log (M) denotes the KL diver-

T—1(als)
gence of two consecutive workload policies 7}’ and 7}’ 4,
which is commonly employed to measure the difference be-
tween two policies (Achiam et al. 2017; Schulman et al.
2017, 2015). We include Lj_1, Ri_1, and DX" in the state
to provide the scheduler insights about how the learner pol-
icy updates. Recall that P,L1 and Pj_, represent the ex-
ecution time of the learner and the total duration of train-
ing round k — 1, respectively. Additionally, P{’_; represents
the execution time averaged over actors from the previous
round, and by, represents the budget remaining after training
of the current round. The scheduler leverages the above met-
rics to adjust the decisions during the scheduling process.
Action. At the beginning of round k, the scheduler out-
puts an action aj := Ij, a scalar value selected within
[1, Imaz] € 7%, where I, is the maximum number of ac-
tors that we can allocate per round. The scheduler chooses
action ay, under the guidance of its policy 7" (#).
Reward. The reward returned at the end of round £ is de-
fined as r, := —fS Py, where 5 € (0,1) is a reward coef-
ficient. The cumulative reward through K rounds is given
by — Zszl y! B Py, where v € (0, 1). Intuitively, the longer
the workload takes to finish training (either actor evaluation
reaching target final reward J or running out of budget B),
the more we will penalize the scheduler. Additionally, we
define the reward of the end round K as

_) —BPk B Ry > Jand b, > 0,
T 8Pk + (maxy Ry — J) otherwise.

We add an additional term to the reward at round K to judge
the overall performance of MINIONSRL’s scheduler. If the
scheduler fails, i.e., actor evaluation always fails to reach
target final reward J and runs out of budget B, the term
(maxy Rr—J < 0)penalizes the scheduler with negative re-
turns. Further, lower actor evaluation performance gets more

Table 2: Total training time and costs for six tasks.

Environment Baseline Time (s) Cost ($)

MINIONSRL 241 £24 1.2 +£0.2
Azure ML 277 +£ 21 45405
Hopper IMPACT 291 £ 26 4.6 £0.38
MINIONSRL-Adapt 403 £+ 45 44+0.6
MINIONSRL-Max 232 +19 1.7£03
MINIONSRL 334 +£42 1.3+ 04
Humanoid Azure ML 464 + 56 93+1.2
IMPACT 436 £ 57 29+0.7
MINIONSRL 220 +29 1.1+£03
HalfCheetah Azure ML 458 + 49 29+0.6
IMPACT 193 + 12 3.0+0.8
MINIONSRL 2295 +337 6.6 +0.9
Gravitar Azure ML 2902 +481 114+1.5
IMPACT 3375+ 714 120+ 1.7
MINIONSRL 1787 £229 7.8+1.2
Spacelnvaders Azure ML 2260 £343 269 +£3.1
IMPACT 2628 £402 25.8+2.4
MINIONSRL 506 + 59 234+0.8
Azure ML 872 4+ 68 6.0+ 1.0
Qbert IMPACT 768 + 66 64+ 1.3
MINIONSRL-Adapt 750 & 61 2.0 +0.7
MINIONSRL-Max 484 +33 50+1.2

penalties. Thus, we guide MINIONSRL’s scheduler to over-
come failures by minimizing the gap (maxy Ry — J) while
aiming to speed up the workload training.

Note that both training time and cost are considered in
the problem formulation, where training time is our direct
optimization objective (Eq. 3), and training cost is a hard
constraint for MINIONSRL (Eq. 4). MINIONSRL supports
minimizing cost by slightly changing the reward function.
We assume the common practice is to optimize training per-
formance under a given monetary budget.

Training MINIONSRL’s Scheduler

We employ the famous PPO algorithm (Schulman et al.
2017) to train MINIONSRL’s scheduler. Table 1 character-
izes the hyperparameters and search ranges of PPO used in
MINTONSRL. We employed Ray-Tune (Liaw et al. 2018)
to efficiently search for optimal hyperparameters within the
ranges. The lightweight policy and critic networks in MIN-
IONSRL’s scheduler are constructed by two fully-connected
layers of 64 hidden units with Tanh activation. We follow
existing DRL-driven scheduling works (Mao et al. 2019; Qiu
et al. 2020, 2022, 2023) to use Tanh for simple neural archi-
tectures. MinioinsRL also supports other activation units.

We update the parameters of the scheduler policy using the
Adam optimizer (Kingma and Ba 2014) with a learning rate
of 0.005. MINIONSRL is trained with 100 episodes per task.

Evaluation
We prototype and evaluate MINIONSRL on top of

ACI (Azure Container Instances 2022) and Ray li-
brary (Moritz et al. 2018).

g 600 - g 600
$ 400! g
% 400 i 5 400
g 200 E 200
[T E L
0 | | 0 =i FE S NN
0 20 40 0 100 200
of round Wall clock time (s)
(a) Hopper-v3
g 600 - g 600
$ 400! S 400!
5 400 3 400
200 g 200
ic ; i g
0 ‘ 0 ‘
0 50 0 200 400
of round Wall clock time (s)
(b) Humanoid-v3
€ 5001 B 500
[F © L
2 r 2 r
o oF o ok
© [© [
£ [£ [
L 500 ‘ ‘ W 500 - ‘ ‘
0 20 40 60 0 100 200
of round Wall clock time (s)

(c) HalfCheetah-v3

Final rewards Final rewards

Final rewards

400 |- B 4001
[
200 [l=""" = 200
L ®©
£
0 ‘ w 0 :
50 2000
of round Wall clock time (s)

(d) GravitarNoFrameskip-v4

W o 300
2 2
R g 200
e
< 100
c
T o0
TR Y TR SR R AR SR |
0 50 0 1000
of round Wall clock time (s)
(e) SpacelnvadersNoFrameskip-v4
300 - /f\//\;\q/“ 8 300 sems
200/~ g 200
100 o — MinionsRL
L T 100 == Azure ML
0 i 0 IMPACT
C | I |
0 20 1000
of round Wall clock time (s)

(f) QbertNoFrameskip-v4

Figure 4: MINIONSRL outperforms baselines on statistical and time efficiency for continuous and discrete control tasks.

Experimental Setup

Testbeds. We deploy all server-based baselines to a clus-
ter of Azure VMs: one Standard_NC6s_v3 virtual ma-
chine (VM) and four Standard E16-8s_v5 VMs. The
cluster contains one NVIDIA V100 GPU and four 8-core In-
tel Xeon Platinum CPUs (in total 32 cores) for training DRL
workloads. MINIONSRL is prototyped on Azure Container
Instances (ACI) (Azure Container Instances 2022). When
training DRL workloads with MINTONSRL, according to
our workload profiling, each learner container is configured
with one V100 GPU and each actor container is with one
CPU core, respectively. We limit the actor allocation range
of MINIONSRL within [1, 32] during every training round.

Workloads. Six environments from OpenAl Gym are used
to evaluate MINIONSRL and other baselines, including
three continuous-action MuJoCo environments (Hopper-
v3, Humanoid-v3, and HalfCheetah-v3) and three discrete-
action Atari environments (SpacelnvadersNoFrameskip-v4,
QbertNoFrameskip-v4, and GravitarNoFrameskip-v4). For
MuJoCo, the policy network consists of two fully-connected
layers of 256 hidden units with Tanh activation. For Atari,
the policy network consists of three convolutional layers of
8x8,4x4,and 11 x 11 kernel sizes with ReLU activation, re-
spectively. The input sampled from Atari games is a stack of
three 84 x 84 images. In both cases, the critic networks share
the same architecture as the policy networks. Due to superior
performance and popularity (OpenAl 2017), we use PPO as
the learner policy optimizer (shown in Fig. 3) for the above
workloads in the evaluation. Table 1 describes the hyper-

parameter settings of PPO used in training workloads. We
used the default hyperparameters from Ray-RLIib (Liang
et al. 2018) for Mujoco and Atari tasks. It is fair to compare
baselines as long as using the same tasks. While evaluating
on the six tasks, our solution is broadly applicable to DRL
workloads with any reinforcement learning (RL) training al-
gorithms and environments.

Comparisons with Baselines

We compare MINTONSRL with two server-based baselines:
1) Azure ML (Azure Machine Learning 2022) is a state-of-
the-practice, ML-as-a-Service platform that provides rapid
model deployment and training. Despite waiving the deploy-
ment and startup costs of DRL workloads, users are still
charged with resource idle time during workload training,
as demonstrated in Fig. 1. We implement the distributed
PPO training method using the testbed cluster on Azure ML.
2) IMPACT (Luo et al. 2020) is a state-of-the-art actor-
learner training architecture. It builds on a long list of im-
provements over PPO and combines various tricks for asyn-
chronous training, such as V-trace importance sampling (Es-
peholt et al. 2018) and the surrogate target network (Lillicrap
et al. 2015). We consider IMPACT to investigate how Min-
ionsRL compares with off-policy architectures.

Final rewards. Fig. 4 shows the final rewards averaged over
five times of repeated experiments, each with a different ran-
dom seed, for three continuous and three discrete control
tasks, respectively. MINIONSRL and baselines are stopped
if reaching the same target final reward or running out of

w 12}
E ESOO*
%6007 % r
o 400 - e 2001
= £100 |-
S 200 - 3 0;
€ £ L
= 0, =
o O
40~ A B C 40-A B C
T T T 1 a1 1
g 20HiN e te il € 20k e e
(¢ LJ : e e « ® © . '.' .
k) e e of it ks . TR
e . ¢ & L)
= 0 AT | . = oltoen ot Tl
0 20 40 0 10 20 30
of round # of round
(a) Hopper-v3 (b) QbertNoFrameskip-v4

Figure 5: MINIONSRL’s actor scheduling decisions on two
tasks. MINIONSRL dynamically schedules actors to balance
training performance and cost.

the same budget. The performance variation is subtle from
the beginning and gradually increases as training proceeds.
The variation drops at the final parts because some of the
five experiments have ended earlier (either reaching desired
rewards or running out of budget). Thus, only one or two
experiments proceed to further rounds/timestamps, leaving
less variation—zero variation at the end if only one experi-
ment remains. The results show that MINIONSRL is more
efficient in transforming the monetary budget into train-
ing time. Under the same budget, MINIONSRL trains much
faster than Azure ML and IMPACT in statistical efficiency
and wall clock time with similar or better performance.
Training cost. Table 2 reports the total training time and
costs when baselines reached the same final rewards. Com-
pared to Azure ML and IMPACT, MINIONSRL reduces
training time and costs up to 52% and 86%, respectively.

Actor Scheduling

We record and report how MINIONSRL makes actor
scheduling decisions to investigate the rationale behind the
performance gain compared with the baselines. Fig. 5 de-
picts the number of actors MINIONSRL schedules and final
rewards per round on Hopper-v3 and QbertNoFrameSkip-
v4, respectively. We use A, B, and C for convenience when
referring to the three phases of decisions made by MIN-
IONSRL in Fig. 5. For Hopper-v3, MINIONSRL launches
more actors at the beginning of Phase A to boost training
and gradually decreases the number of actors to save cost
when performance steadies in Phase B and C. More actors
are launched by MINIONSRL at the end of Phase C to ex-
plore optimal performance. We observe similar results on
QbertNoFrameSkip-v4, where MINTIONSRL boosts training
with more actors in Phase A and B, and reduces actors in
steady Phase C to save cost.

In contrast to two baselines (i.e., Azure ML and IMPACT)
that launch a fixed number of actors for every round, MIN-
IONSRL dynamically schedules actors throughout the train-
ing process to strike a balance between training performance
and cost, thus completing training tasks cheaper and faster.

g 600 g 600
§ 400 AL § 4000 Al
— V4 —_ i
& 200 & 200+
[H [H
ol Loy i O' L L L L | L
0 100 0 500
of rounds Wall clock time (s)
(a) Hopper-v3
o 300 e S w 300
B MY alh aaa B 7
% 200 [VinionshL % 200 T/
2 ool — Minions 2 i
€ || - MinionsRL-Adapt| ® 100
ic 0 MinionsRL-Max | iC 0
L. PR R . I
0 50 2000
of round Wall clock time (s)

(b) QbertNoFrameskip-v4

Figure 6: Ablation study of MINIONSRL with its two vari-
ants: MINTONSRL-Adapt and MINTONSRL-Max.

Ablation Study

To verify the effectiveness of two key components: server-
less functions and DRL-based scheduler, we compare MIN-
IONSRL with two variants of itself: 1) MINIONSRL-Max
statically launches all 32 actors in every training round, and
2) MINIONSRL-Adapt schedules actors with a naive, re-
ward ratio-based scheduler. Let J be the target final reward
and I,,,,, be the maximum number of available actors per

round. Let J; denote approximated final reward that the
learner policy can achieve at round k, which is computed us-
ing a moving window averaged over the last n rounds given

by J = Zk_l J. MINIONSRL-Adapt schedules a

—k—n— x
set of actor flfnC’%iOT;lS 1[& proportional to the ratio of reward
J and J, which is given by I := clip(1, %[m(m, Lnaz)-
This naive scheduler follows the intuition that a better policy
may produce better data, so we proportionally allocate more
actors when the policy quality is higher. We set the moving
window size n = 5 in the evaluation.

Final rewards. Fig. 6 shows the final rewards averaged
over five times of repeated experiments for Hopper-v3 and
QbertNoFrameskip-v4, respectively. By comparing MIN-
IONSRL with MINIONSRL-Max, we can observe that MIN-
IONSRL’s DRL-based scheduler can preserve similar or
better training efficiency while saving actor costs. Note
that MINTIONSRL-Max also runs the same DRL tasks with
serverless functions. When comparing MINIONSRL with
MINIONSRL-Adapt, the results demonstrate that MINION-
SRL’s DRL-guided scheduler makes better decisions on ac-
tor scheduling than the naive ratio-based scheduler.

Training cost. Table 2 shows MINIONSRL’s the total train-
ing time and costs and the two variants when reaching the
same final rewards. Compared to MINIONSRL-Max, MIN-
IONSRL significantly reduces training cost by up to 44%
while completing training with a similar duration.

O —e— Hopper HalfCheetah Spacelnvaders
aEJ —4— Humanoid —* Gravitar Qbert

= 50 - L -

NG S = : :

T 20 r=

=3 > <

I3 10?{% gy g . —F

(@] [

O 5p¢

o IR EREN ERRI BRI VI RN R
3 0 5 10 15 20 25 30 35
oo # of actors

Figure 7: Scalability of MINIONSRL with respect to the
number of actors in six environments.

g Actor g Actor
g 3 Learner
T | Learner 15}

(2}
- Actor g Etanu;t)_
S xecution
g g Actor Communication
§ Learner E
T 8 Learner
< %)
‘g Actor € Actor
= e
% Learner (¢} Learner

P R PR I L

To 2 4 6 8 0 10 20 30

Wall clock time (s)
(b) Discrete Environments

Wall clock time (s)
(a) Continuous Environments

Figure 8: Latency breakdown of interaction between actor
and learner function in MINIONSRL’s one-round training.

§ 600 - _!g:_ 600 -
£ 400] £ 400]
3 400 LT B 400
8 200 — Scratch .| '8 200
[5 --- Fine-tune | iC
0 L L L L | L 0 L | L |
0 50 0 200 400
of round Wall clock time (s)
(a) Humanoid-v3
%) [%) [
© 400+ - 2 400
] I 1]
% | D ot %
2200 1, gt AT A 2200
© Lv ©
f= c
i 0 i 0
P B I
0 50 0 1000 2000

of round Wall clock time (s)
(b) SpacelnvadersNoFrameskip-v4

Figure 9: Training the scheduler from scratch v.s. fine-tuning
the scheduler trained from a different task.

Scalability

Fig. 7 illustrates MINTONSRL’s scalability using the same
testbed. The total completion time of one-round DRL train-
ing increases as the number of actors increases. Training
time for Atari environments (i.e., GravitarNoFrameskip-v4,
SpacelnvadersNoFrameskip-v4, and QbertNoFrameskip-
v4) has a larger increase rate than Mujoco environments
(i.e., Hopper-v3, Humanoid-v3, HalfCheetah-v3), because
processing stacked frames brings significantly more compu-

tation load to the learner.

Breakdown

Latency breakdown. Fig. 8(a) and (b) characterize the la-
tency breakdown of interaction between actor and learner
function in MINIONSRL’s one-round training. Launching
an actor and learner function takes around 300 and 1500 ms
(attaching GPUs to the learner container takes more time),
respectively. We further eliminate the startup overhead by
function pre-warming.

Communication overheads. MINIONSRL uses the efficient
gRPC library to enable lightweight communication between
actor and learner functions . Fig. 8(a) and (b) show the com-
munication overhead between actor and learner functions.
For (continuous) Mujoco environments, transferring 65,536
timesteps between actor and learner function incurs less than
100 ms communication overhead. For (discrete) Atari envi-
ronments, the overhead is less than 800 ms for 6,144 stacked
frames. The communication overheads are trivial compared
to the end-to-end training time per round.

Scheduler Training Overhead Mitigation

MINIONSRL trains the scheduler for each DRL task,
which may lead to high overheads. For example, training
a scheduler for Humanoid-v3/SpacelnvadersNoFrameskip-
v4 from scratch took around 10/50 hours. We further in-
vestigate mitigating such overheads by fine-tuning a trained
scheduler of one task to other tasks. Fine-tuning MIN-
IONSRL is feasible since different DRL tasks have the
same observation and action shapes as input and out-
put sizes to MINIONSRL’s scheduler networks. Fig. 9
presents the performance of training MINTIONSRL from
scratch and fine-tuning from another task. We fine-tune
trained schedulers of Hopper-v3 and QbertNoFrameskip-
v4 to Humanoid-v3 and SpacelnvadersNoFrameskip-v4, re-
spectively. Fine-tuning each scheduler took ten episodes
while achieving similar or better performance than training
from scratch. More importantly, fine-tuning drastically re-
duces scheduler training time and cost. It only took around
one/four hours to fine-tune a scheduler for Humanoid-
v3/SpacelnvadersNoFrameskip-v4, reducing the scheduler
training time and cost by 90%.

Conclusion

We proposed MINIONSRL, the first distributed DRL train-
ing framework based on serverless computing. By leverag-
ing serverless computing, MINIONSRL enables agile auto-
scaling and fine-grained resource provisioning to exten-
sively mitigate resource wasting during distributed DRL
training. To accelerate training- and cost-efficiency, we de-
signed a DRL-driven scheduler to seek the optimal num-
ber of actors by learning the fundamental trade-off between
training performance and cost. We evaluated MINIONSRL
on realistic clusters with popular tasks from OpenAl Gym.
Experimental results show that MINIONSRL outperforms
state-of-the-art and state-of-the-practice solutions by reduc-
ing up to 52% total training time and 86% training cost.

Acknowledgements

The work of H. Yu and H. Wang was supported in part
by the National Science Foundation (NSF) grants 2153502,
2315612, 2327480, and the AWS Cloud Credit for Research
program. The work of J. Li was supported in part by the NSF
grants 2148309 and 2315614, and the U.S. Army Research
Office (ARO) grant W911NF-23-1-0072. The work of X.
Yuan was supported in part by the NSF grants 2019511,
2348452, and 2315613. Results presented in this paper were
obtained using CloudBank (Norman et al. 2021), supported
by the NSF award 1925001. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the funding agencies.

References

Achiam, J.; Held, D.; Tamar, A.; and Abbeel, P. 2017. Con-
strained Policy Optimization. In International Conference
on Machine Learning (ICML).

Ali, A.; Pinciroli, R.; Yan, F.; and Smirni, E. 2020. BATCH:
Machine Learning Inference Serving on Serverless Plat-
forms with Adaptive Batching. In International Conference
for High Performance Computing, Networking, Storage and
Analysis (SC). IEEE.

Azure Container Instances. 2022. Azure Con-
tainer Instances. https://azure.microsoft.com/en-
us/products/container-instances/. [Online; accessed
1-Jan-2022].

Azure Machine Learning. 2022. Azure Machine Learn-
ing. https://azure.microsoft.com/en-us/products/machine-
learning/. [Online; accessed 1-Jan-2022].

Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Debiak, P.;
Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse, C.;
et al. 2019. Dota 2 with Large Scale Deep Reinforcement
Learning. arXiv preprint arXiv:1912.06680.

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAl
Gym. arXiv preprint arXiv:1606.01540.

Carreira, J.; Fonseca, P.; Tumanov, A.; Zhang, A.; and Katz,
R. 2019. Cirrus: a Serverless Framework for End-to-end
ML Workflows. In Proceedings of the ACM Symposium on
Cloud Computing (SoCC).

Chard, R.; Babuji, Y.; Li, Z.; Skluzacek, T.; Woodard, A.;
Blaiszik, B.; Foster, I.; and Chard, K. 2020. FuncX: A Fed-
erated Function Serving Fabric for Science. In Proc. of the
29th International Symposium on High-performance Paral-
lel and Distributed Computing (HPDC), 65-76.
Devarakonda, A.; Naumov, M.; and Garland, M. 2017. Ad-
aBatch: Adaptive Batch Sizes for Training Deep Neural Net-
works. arXiv preprint arXiv:1712.02029.

Espeholt, L.; Marinier, R.; Stanczyk, P.; Wang, K.; and
Michalski, M. 2020. Seed RL: Scalable and Efficient Deep-
RL with Accelerated Central Inference. In International
Conference on Learning Representations (ICLR).

Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih,
V.; Ward, T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning, I.;

et al. 2018. IMPALA: Scalable Distributed Deep-RL with
Importance Weighted Actor-Learner Architectures. In In-
ternational Conference on Machine Learning (ICML).

Gu, S. S.; Lillicrap, T.; Turner, R. E.; Ghahramani, Z.;
Scholkopf, B.; and Levine, S. 2017. Interpolated Policy Gra-
dient: Merging On-Policy and Off-Policy Gradient Estima-
tion for Deep Reinforcement Learning. Advances in Neural
Information Processing Systems (NIPS).

Guo, R.; Guo, V.; Kim, A.; Hildred, J.; and Daudjee, K.
2022. Hydrozoa: Dynamic Hybrid-Parallel DNN Training
on Serverless Containers. Proceedings of Machine Learn-
ing and Systems (MLSys).

Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostro-
vski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; and Sil-
ver, D. 2018. Rainbow: Combining Improvements in Deep
Reinforcement Learning. In Thirty-second AAAI conference
on artificial intelligence (AAAI).

Horgan, D.; Quan, J.; Budden, D.; Barth-Maron, G.; Hessel,
M.; Van Hasselt, H.; and Silver, D. 2018. Distributed Priori-
tized Experience Replay. arXiv preprint arXiv:1803.00933.
Ji, Y;; Li, Z.; Sun, Y.; Peng, X. B.; Levine, S.; Berseth, G.;
and Sreenath, K. 2022. Hierarchical Reinforcement Learn-
ing for Precise Soccer Shooting Skills using a Quadrupedal
Robot. In 2022 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS).

Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek,

A.; Potapenko, A.; et al. 2021. Highly Accurate Protein
Structure Prediction with AlphaFold. Nature.

Kapturowski, S.; Ostrovski, G.; Quan, J.; Munos, R.; and
Dabney, W. 2018. Recurrent Experience Replay in Dis-
tributed Reinforcement Learning. In International Confer-
ence on Learning Representations (ICLR).

Kingma, D. P.; and Ba, J. 2014. Adam: A Method for
Stochastic Optimization. arXiv preprint arXiv:1412.6980.
Liang, E.; Liaw, R.; Nishihara, R.; Moritz, P.; Fox, R.; Gold-
berg, K.; Gonzalez, J.; Jordan, M.; and Stoica, I. 2018. RL-
lib: Abstractions for Distributed Reinforcement Learning. In
International Conference on Machine Learning (ICML).
Liaw, R.; Liang, E.; Nishihara, R.; Moritz, P.; Gonzalez,
J. E.; and Stoica, I. 2018. Tune: A Research Platform for
Distributed Model Selection and Training. arXiv preprint
arXiv:1807.05118.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
Control with Deep Reinforcement Learning. arXiv preprint
arXiv:1509.02971.

Luo, M.; Yao, J.; Liaw, R.; Liang, E.; and Stoica, 1. 2020.
IMPACT: Importance Weighted Asynchronous Architec-
tures with Clipped Target Networks. In International Con-
ference on Learning Representations (ICLR).

Mao, H.; Schwarzkopf, M.; Venkatakrishnan, S. B.; Meng,
Z.; and Alizadeh, M. 2019. Learning Scheduling Algo-
rithms for Data Processing Clusters. In Proceedings of the
ACM Special Interest Group on Data Communication (SIG-
COMM,).

Mao, W.; Qiu, H.; Wang, C.; Franke, H.; Kalbarczyk, Z.;
Iyer, R.; and Basar, T. 2022. A Mean-field Game Approach
to Cloud Resource Management with Function Approxima-

tion. Advances in Neural Information Processing Systems
(NIPS).

McCandlish, S.; Kaplan, J.; Amodei, D.; and Team, O. D.
2018. An Empirical Model of Large-batch Training. arXiv
preprint arXiv:1812.06162.

Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. In In-
ternational Conference on Machine Learning (ICML).
Moritz, P.; Nishihara, R.; Wang, S.; Tumanov, A.; Liaw, R.;
Liang, E.; Elibol, M.; Yang, Z.; Paul, W.; Jordan, M. L.; et al.
2018. Ray: A Distributed Framework for Emerging Al Ap-
plications. In 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI).

Norman, M.; Kellen, V.; Smallen, S.; DeMeulle, B.; Strande,
S.; Lazowska, E.; Alterman, N.; Fatland, R.; Stone, S.; Tan,
A.; et al. 2021. CloudBank: Managed Services to Simplify
Cloud Access for Computer Science Research and Educa-
tion. In Practice and Experience in Advanced Research
Computing (PEARC).

OpenAl. 2017. Proximal Policy Optimization. https://
openai.com/blog/openai-baselines-ppo/. [Online; accessed
1-Jan-2022].

OpenAl. 2023. GPT-4 Technical Report. arXiv:2303.08774.
Qiu, H.; Banerjee, S. S.; Jha, S.; Kalbarczyk, Z. T.; and Iyer,
R. K. 2020. FIRM: An Intelligent Fine-grained Resource
Management Framework for SLO-Oriented Microservices.
In /4th USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

Qiu, H.; Mao, W.; Patke, A.; Wang, C.; Franke, H.; Kalbar-
czyk, Z. T.; Basar, T.; and Iyer, R. K. 2022. SIMPPO: A
Scalable and Incremental Online Learning Framework for
Serverless Resource Management. In Proceedings of the
13th Symposium on Cloud Computing.

Qiu, H.; Mao, W.; Wang, C.; Franke, H.; Youssef, A
Kalbarczyk, Z. T.; Basar, T.; and Iyer, R. K. 2023.
AWARE: Automate Workload Autoscaling with Reinforce-
ment Learning in Production Cloud Systems. In 2023
USENIX Annual Technical Conference (USENIX ATC).

Roy, R. B.; Patel, T.; Gadepally, V.; and Tiwari, D. 2022.
Mashup: Making Serverless Computing Useful for HPC
Workflows via Hybrid Execution. In Proceedings of the 27th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 46—60.

Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust Region Policy Optimization. In International
Conference on Machine Learning (ICML).

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv preprint arXiv:1707.06347.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the

Game of Go with Deep Neural Networks and Tree Search.
Nature.

Thorpe, J.; Qiao, Y.; Eyolfson, J.; Teng, S.; Hu, G.; Jia,
Z.; Wei, J.; Vora, K.; Netravali, R.; Kim, M.; et al. 2021.
Dorylus: Affordable, Scalable, and Accurate GNN Training
with Distributed CPU Servers and Serverless Threads. In
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI).

Thumm, J.; and Althoff, M. 2022. Provably Safe Deep Rein-
forcement Learning for Robotic Manipulation in Human En-
vironments. In 2022 International Conference on Robotics
and Automation (ICRA).

Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P; et al. 2019. Grandmaster Level in StarCraft 11
Using Multi-agent Reinforcement Learning. Nature.

Wang, H.; Niu, D.; and Li, B. 2019. Distributed Machine
Learning with a Serverless Architecture. In IEEE 2019 Con-
ference on Computer Communications (INFOCOM).
Wijmans, E.; Kadian, A.; Morcos, A.; Lee, S.; Essa, L;
Parikh, D.; Savva, M.; and Batra, D. 2019. DD-PPO:
Learning Near-Perfect PointGoal Navigators from 2.5 Bil-
lion Frames. arXiv preprint arXiv:1911.00357.

Yu, H.; Wang, H.; Li, J.; Yuan, X.; and Park, S.-J. 2022.
Accelerating serverless computing by harvesting idle re-
sources. In Proceedings of the ACM Web Conference 2022,
1741-1751.

Yu, M.; Jiang, Z.; Ng, H. C.; Wang, W.; Chen, R.; and Li,
B. 2021. Gillis: Serving Large Neural Networks in Server-
less Functions with Automatic Model Partitioning. In 2021
IEEE 415t International Conference on Distributed Comput-
ing Systems (ICDCS). IEEE.

