
25-29 April 2022 I Lyon, FranceIntelliSys Lab 1

Accelerating Serverless Computing by
Harvesting Idle Resources

Hanfei Yu1, Hao Wang1, Jian Li2, Xu Yuan3, Seung-Jong Park1

1Louisiana State University, 2SUNY-Binghamton University, 3University of Louisiana at Lafayette

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Serverless Computing

2

Code

User

Develop

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Serverless Computing

3

Code Function

User

Develop

Package

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Serverless Computing

4

Code Function

User
Serverless Computing Providers

Deploy

Develop

Package

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Serverless Computing

5

Code Function

User
Serverless Computing Providers

Deploy

Invoke

Develop

Package

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Function Static Configuration

6

FunctionUser

Static Config

2 CPU cores

: Busy core

: Idle core

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Varying Input Data Size

7

FunctionUser

Static Config

2 CPU cores

Invocation #1

User
Invoke

Large data

5 sec

Response Latency

: Busy core

: Idle core

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Varying Input Data Size

8

FunctionUser

Static Config

2 CPU cores

Invocation #1

User
Invoke

Large data

Small data Invocation #2

1 sec

Response Latency

: Busy core

: Idle core

5 sec

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Harvesting & Acceleration

9

Invocation #1
User

Invoke
Large data

Small data Invocation #2

: Busy core

: Idle core

Response Latency

1 sec

5 sec

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Harvesting & Acceleration

10

Invocation #1
User

Invoke
Large data

Small data Invocation #2

: Busy core

: Idle core

Response Latency

Harvest Reassign

1 sec

5 sec

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Harvesting & Acceleration

11

Invocation #1
User

Invoke
Large data

Small data Invocation #2

: Busy core

: Idle core

Response Latency

3 sec

1 sec

Harvest Reassign
Reduced!

#1

#2

1 sec

5 sec

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Realistic Applications

12

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

with diverse resource demands and dynamic input workloads. Third,
the resource provisioning for serverless functions is �ne-grained
spatially (i.e., small resource volumes) and temporally (i.e., short
available time).

In this paper, we address the aforementioned challenges by pre-
senting Freyr , a new serverless resource manager (RM) that dynam-
ically harvests idle resources to accelerate functions and maximize
resource utilization. Freyr estimates the CPU and memory satura-
tion points respectively of each function and identi�es whether
a function is over-provisioned or under-provisioned. For those
over-provisioned functions, Freyr harvests the wasted resources
according to their saturation points; for those under-provisioned
functions, Freyr tries to accelerate them by o�ering additional, and
just-in-need allocations to approach saturation points. We apply
an experience-driven algorithm to identify functions over-supplied
and under-supplied by monitoring a series of performance metrics
and resource footprints, including CPU utilization, memory utiliza-
tion, and function response latency to estimate the actual resource
demands of running functions. To deal with the highly volatile envi-
ronment of serverless computing and large numbers of concurrent
functions, we propose to apply the Proximal Policy Optimization
(PPO) algorithm [30] to learn from the realistic serverless system
and make per-invocation resource adjustments. Besides, we design
a safeguard mechanism for safely harvesting idle resources without
introducing any performance degradation to function executions
that have resource harvested.

We implement Freyr based on Apache OpenWhisk [4], a popular
open-source serverless computing platform. We develop a Deep
Reinforcement Learning (DRL) model and training algorithm using
PyTorch and enable multi-process support for concurrent function
invocations. We evaluate Freyr with the other three baselines on an
OpenWhisk cluster using realistic serverless workloads. Compared
to the default resource manager in OpenWhisk, Freyr reduces the
99th-percentile function response latency of invocations1 by 32.1%.
Particularly, Freyr harvests idle resources from 38.8% of function
invocations while accelerating 39.2% on the OpenWhisk cluster.
Notably, Freyr only degrades a negligible percentage of function
performance under the system performance variations of the Open-
Whisk cluster.

2 BACKGROUND AND MOTIVATION
This section �rst introduces the status quo of resource provisioning
and allocation in serverless computing. Then, we use real-world
experiments to demonstrate that serverless functions can easily
become under-provisioned or over-provisioned, and motivate the
necessity to accelerate under-provisioned functions and optimize
resource utilization by harvesting idle resources at runtime.

2.1 Resource Provisioning and Allocation in
Serverless Computing

Existing serverless computing platforms (e.g., AWS Lambda, Google
Cloud Functions, and Apache OpenWhisk) request users to de�ne
memory up limits for their functions and allocate CPU cores ac-
cording to a �xed proportion of the memory limits [4, 5, 13, 36].

1In this paper, a function denotes an executable code package deployed on serverless
platforms, and a function invocation is a running instance of the code package.

EG-L EG-S Saturation

La
te

nc
y

(s
)

0

2

4

CPU cores
2 4 6 8

La
te

nc
y

(s
)

0
1
2
3

Memory (MB)
500 1000

KNN-L KNN-S Saturation

La
te

nc
y

(s
)

0

5

CPU cores
2 4 6 8

La
te

nc
y

(s
)

2

4

Memory (MB)
500 1000

Figure 1: Saturation points of EG andKNNwith small (S) and
large (L) workload sizes. EG-S (L) generates 1K (10K) emails,
and KNN-S (L) inputs 2K (20K) data samples.

Obviously, the �xed proportion between CPU and memory alloca-
tions leaves serverless functions either under-provisioned or over-
provisioned because functions’ CPU and memory demands di�er
signi�cantly.

Further it is non-trivial for users to accurately allocate appropri-
ate amounts of resource for their functions [1, 32] due to various
function types, dependencies, and input sizes. Users are prone to
oversize their resource allocation to accommodate potential peak
workloads and failures [18, 32]. Finally, users’ inappropriate re-
source allocations and providers’ �xed CPU and memory provision-
ing proportion jointly degrade the resource utilization in serverless
computing as resources allocated to functions remain idle (more
discussion in Supplementary Materials E).

2.2 Resource Saturation Points
We further demonstrate how easily a serverless function becomes
under-provisioned or over-provisioned by introducing a new no-
tion of saturation points. Given a function and an input size, there
exists a resource allocation saturation point—allocating resource
beyond this point can no longer improve the function’s perfor-
mance, but allocating resource below this point severely degrades
the performance.

We pro�le the saturation points of two applications: email gen-
eration (EG) and K-nearest neighbors (KNN), representing two
popular serverless application categories: web applications and ma-
chine learning, respectively. We identify the allocation saturation
points of CPUs and memory separately by measuring the response
latency of functions allocated with di�erent number of CPU cores
and di�erent sizes of memory. When adjusting a function’s CPU
(memory) allocation, we �x its memory (CPU) allocation to 1,024
MB (8 cores).

Figure 1 shows that saturation points vary from functions and
input sizes. It is non-trivial for users to identify the saturation points
for every function with speci�c input sizes in their applications.
Particularly, serverless functions are typically driven by events
with varying input sizes. Without dynamic and careful resource
allocations, functions tend to become either over-provisioned or
under-provisioned.

2.3 The Need for Harvesting Idle Resources
Resource harvesting is a common methodology in virtual envi-
ronments that increases resource utilization by reallocating idle

EG: email generation
KNN: K nearest neighbors

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Realistic Applications

13

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

with diverse resource demands and dynamic input workloads. Third,
the resource provisioning for serverless functions is �ne-grained
spatially (i.e., small resource volumes) and temporally (i.e., short
available time).

In this paper, we address the aforementioned challenges by pre-
senting Freyr , a new serverless resource manager (RM) that dynam-
ically harvests idle resources to accelerate functions and maximize
resource utilization. Freyr estimates the CPU and memory satura-
tion points respectively of each function and identi�es whether
a function is over-provisioned or under-provisioned. For those
over-provisioned functions, Freyr harvests the wasted resources
according to their saturation points; for those under-provisioned
functions, Freyr tries to accelerate them by o�ering additional, and
just-in-need allocations to approach saturation points. We apply
an experience-driven algorithm to identify functions over-supplied
and under-supplied by monitoring a series of performance metrics
and resource footprints, including CPU utilization, memory utiliza-
tion, and function response latency to estimate the actual resource
demands of running functions. To deal with the highly volatile envi-
ronment of serverless computing and large numbers of concurrent
functions, we propose to apply the Proximal Policy Optimization
(PPO) algorithm [30] to learn from the realistic serverless system
and make per-invocation resource adjustments. Besides, we design
a safeguard mechanism for safely harvesting idle resources without
introducing any performance degradation to function executions
that have resource harvested.

We implement Freyr based on Apache OpenWhisk [4], a popular
open-source serverless computing platform. We develop a Deep
Reinforcement Learning (DRL) model and training algorithm using
PyTorch and enable multi-process support for concurrent function
invocations. We evaluate Freyr with the other three baselines on an
OpenWhisk cluster using realistic serverless workloads. Compared
to the default resource manager in OpenWhisk, Freyr reduces the
99th-percentile function response latency of invocations1 by 32.1%.
Particularly, Freyr harvests idle resources from 38.8% of function
invocations while accelerating 39.2% on the OpenWhisk cluster.
Notably, Freyr only degrades a negligible percentage of function
performance under the system performance variations of the Open-
Whisk cluster.

2 BACKGROUND AND MOTIVATION
This section �rst introduces the status quo of resource provisioning
and allocation in serverless computing. Then, we use real-world
experiments to demonstrate that serverless functions can easily
become under-provisioned or over-provisioned, and motivate the
necessity to accelerate under-provisioned functions and optimize
resource utilization by harvesting idle resources at runtime.

2.1 Resource Provisioning and Allocation in
Serverless Computing

Existing serverless computing platforms (e.g., AWS Lambda, Google
Cloud Functions, and Apache OpenWhisk) request users to de�ne
memory up limits for their functions and allocate CPU cores ac-
cording to a �xed proportion of the memory limits [4, 5, 13, 36].

1In this paper, a function denotes an executable code package deployed on serverless
platforms, and a function invocation is a running instance of the code package.

EG-L EG-S Saturation

La
te

nc
y

(s
)

0

2

4

CPU cores
2 4 6 8

La
te

nc
y

(s
)

0
1
2
3

Memory (MB)
500 1000

KNN-L KNN-S Saturation

La
te

nc
y

(s
)

0

5

CPU cores
2 4 6 8

La
te

nc
y

(s
)

2

4

Memory (MB)
500 1000

Figure 1: Saturation points of EG andKNNwith small (S) and
large (L) workload sizes. EG-S (L) generates 1K (10K) emails,
and KNN-S (L) inputs 2K (20K) data samples.

Obviously, the �xed proportion between CPU and memory alloca-
tions leaves serverless functions either under-provisioned or over-
provisioned because functions’ CPU and memory demands di�er
signi�cantly.

Further it is non-trivial for users to accurately allocate appropri-
ate amounts of resource for their functions [1, 32] due to various
function types, dependencies, and input sizes. Users are prone to
oversize their resource allocation to accommodate potential peak
workloads and failures [18, 32]. Finally, users’ inappropriate re-
source allocations and providers’ �xed CPU and memory provision-
ing proportion jointly degrade the resource utilization in serverless
computing as resources allocated to functions remain idle (more
discussion in Supplementary Materials E).

2.2 Resource Saturation Points
We further demonstrate how easily a serverless function becomes
under-provisioned or over-provisioned by introducing a new no-
tion of saturation points. Given a function and an input size, there
exists a resource allocation saturation point—allocating resource
beyond this point can no longer improve the function’s perfor-
mance, but allocating resource below this point severely degrades
the performance.

We pro�le the saturation points of two applications: email gen-
eration (EG) and K-nearest neighbors (KNN), representing two
popular serverless application categories: web applications and ma-
chine learning, respectively. We identify the allocation saturation
points of CPUs and memory separately by measuring the response
latency of functions allocated with di�erent number of CPU cores
and di�erent sizes of memory. When adjusting a function’s CPU
(memory) allocation, we �x its memory (CPU) allocation to 1,024
MB (8 cores).

Figure 1 shows that saturation points vary from functions and
input sizes. It is non-trivial for users to identify the saturation points
for every function with speci�c input sizes in their applications.
Particularly, serverless functions are typically driven by events
with varying input sizes. Without dynamic and careful resource
allocations, functions tend to become either over-provisioned or
under-provisioned.

2.3 The Need for Harvesting Idle Resources
Resource harvesting is a common methodology in virtual envi-
ronments that increases resource utilization by reallocating idle

EG: email generation
KNN: K nearest neighbors

Performance stops growing when supplying more resources!

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Realistic Harvesting & Acceleration

14

Accelerating Serverless Computing by Harvesting Idle Resources WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Saturation User-defined Greedy

harvesting

C
PU

 c
or

es

0

2

4

6

8

Function ID
EG IR ALU KNN

(a) CPU allocation
R

es
po

ns
e

La
te

nc
y

(s
)

0

2

4

6

Function ID
EG IR ALU KNN

(b) Function response latency

Figure 2: The CPU allocation and response latency of four
real-world functions: EG, image recognition (IR), arithmetic
logic units (ALU), and KNN, where the EG generates 100K
emails, the IR classi�es ten images, the ALU calculates 20M
loops, and the KNN inputs 20K data samples.

resources to under-provisioned services without degrading the per-
formance of services being harvested [2, 38, 40].

To motivate the need for dynamic resource harvesting in server-
less computing, we compare the function response latency achieved
by the default resource manager (Fixed RM) and greedy resource
manager (Greedy RM) when executing four real-world serverless
functions. The Fixed RM simply accepts and applies a �xed resource
allocation pre-de�ned by users, such as the RM in OpenWhisk and
AWS Lambda. The Greedy RM dynamically harvests CPU cores
from functions over-provisioned and assigns the harvested CPU
cores to functions under-provisioned in a �rst-come-�rst-serve
manner based on the estimated function saturation points learned
from functions’ recent resource utilization (details in Section 5). In
this experiment, we collect historical resource utilizations of four
functions and pro�le their saturation points.

Figure 2(a) shows the Greedy RM accelerates the ALU by harvest-
ing three CPU cores from the EG (i.e., the EG function invocation)
and one CPU core from the IR. Though the KNN is also under-
provisioned, the Greedy RM assigns all harvested CPU cores to the
ALU since the ALU is invoked before the KNN. As a comparison,
Figure 2 also plots the saturation points of each function invo-
cation and their response latency when allocated with saturated
resources. Figure 2(b) shows the Greedy RM can increase resource
utilization and accelerate under-provisioned functions without sac-
ri�cing over-provisioned functions’ performance in the motivation
scenario.

2.4 Deep Reinforcement Learning
Due to the volatility and burstiness of serverless computing, it is
non-trivial to accurately estimate the saturation points based on
functions’ recent resource utilization, and the greedy resource har-
vesting and re-assignment can hardly minimize the overall function
response latency. Thus, we propose to utilize reinforcement learn-
ing (RL) algorithms to learn the optimal resource harvesting and
re-assignment strategies.

At every timestep C , the agent is in a speci�c state BC , and evolves
to state BC+1 according to a Markov process with the transition prob-
ability P(BC ,0C , BC+1) when action 0C is taken [33]. The immediate
reward for the agent to take action 0C in state BC is denoted as AC .
The goal of the agent is to �nd a policy c that makes decisions
regarding what action to take at each timestep, 0C ⇠ c (·|BC), so as
to maximize the expected cumulative rewards, Ec [

Õ1
C=1 W

C�1AC],
where W 2 (0, 1] is a discount factor.

To capture the patterns of real-world systems and address the
curse-of-dimensionality, deep reinforcement learning (DRL) has
been introduced to solve scheduling and resource provisioning prob-
lems in distributed systems [23–26], where deep neural networks
serve as the function approximators that describe the relationship
between decisions, observations, and rewards.

3 OVERVIEW
3.1 Design Challenges
Unlike long-running VMs with substantial historical traces for de-
mand prediction and �exible time windows for resource harvesting,
function executions in serverless computing are highly concur-
rent, event-driven, and short-lived with bursty input workloads [9],
making it hardly practical to reuse the existing VM resource harvest-
ing methods. To enable e�cient and safe resource harvesting and
performance acceleration in serverless computing, Freyr’s design
tackles three key challenges:

Volatile and bursty serverless environments. The hetero-
geneity of serverless functions, the high concurrency of invocation
events, and the burstiness of input workloads jointly make it non-
trivial to accurately determine whether a function execution has
idle resources to be harvested. Besides, serverless functions are
sensitive to the latency introduced by resource harvesting and
re-assignment due to their short lifetime and event-driven nature.

Huge space of harvesting and re-assignment decisions.Un-
like the default resource managers that enforce a �xed proportion
between the CPU and memory allocations, we decouple the re-
source provisioning for CPU and memory for more accurate re-
source harvesting and re-assignment, leading to a two-dimensional
resource pool for Freyr to seek for the optimal resource allocation.
This is an immense action space for the DRL agent. For example,
AWS Lambda allows any memory sizes between 128 MB and 10,240
MB and up to 6 CPU cores—60,672 choices in total. Such a huge
action space complicates the DRL algorithm design and extensively
increases the computation complexity to train the DRL agent.

Potential performance degradation.While Freyr harvests re-
sources from functions deemed as over-provisioned and improves
the entire workload, one necessary requirement is to prevent the
performance of those functions from degrading. It is vital to guaran-
tee Service Level Objectives (SLOs) of each individual function, i.e.,
harvested functions have no signi�cant performance degradation.

3.2 Freyr’s Architecture
Freyr is a resource manager in serverless platforms that dynami-
cally harvests idle resources from over-provisioned function invo-
cations and reassign the harvested resources to accelerate under-
provisioned function invocations. It is located with the controller of
a serverless computing framework and interacts with the container
system (e.g., Docker [10]) that executes function invocations.

Figure 3 shows an overview of Freyr’s architecture. First, con-
current function requests arrive at the frontend to invoke speci�c
functions with user-de�ned resource allocations. The controller
admits the function requests, registers their con�gurations, and
schedules them to the invokers. Before the execution of functions,
Freyr inputs observations from serverless platform database and

EG: email generation
IR: image recognition
ALU: arithmetic logic units
KNN: K nearest neighbors

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Realistic Harvesting & Acceleration

15

Accelerating Serverless Computing by Harvesting Idle Resources WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Saturation User-defined Greedy

harvesting

C
PU

 c
or

es

0

2

4

6

8

Function ID
EG IR ALU KNN

(a) CPU allocation
R

es
po

ns
e

La
te

nc
y

(s
)

0

2

4

6

Function ID
EG IR ALU KNN

(b) Function response latency

Figure 2: The CPU allocation and response latency of four
real-world functions: EG, image recognition (IR), arithmetic
logic units (ALU), and KNN, where the EG generates 100K
emails, the IR classi�es ten images, the ALU calculates 20M
loops, and the KNN inputs 20K data samples.

resources to under-provisioned services without degrading the per-
formance of services being harvested [2, 38, 40].

To motivate the need for dynamic resource harvesting in server-
less computing, we compare the function response latency achieved
by the default resource manager (Fixed RM) and greedy resource
manager (Greedy RM) when executing four real-world serverless
functions. The Fixed RM simply accepts and applies a �xed resource
allocation pre-de�ned by users, such as the RM in OpenWhisk and
AWS Lambda. The Greedy RM dynamically harvests CPU cores
from functions over-provisioned and assigns the harvested CPU
cores to functions under-provisioned in a �rst-come-�rst-serve
manner based on the estimated function saturation points learned
from functions’ recent resource utilization (details in Section 5). In
this experiment, we collect historical resource utilizations of four
functions and pro�le their saturation points.

Figure 2(a) shows the Greedy RM accelerates the ALU by harvest-
ing three CPU cores from the EG (i.e., the EG function invocation)
and one CPU core from the IR. Though the KNN is also under-
provisioned, the Greedy RM assigns all harvested CPU cores to the
ALU since the ALU is invoked before the KNN. As a comparison,
Figure 2 also plots the saturation points of each function invo-
cation and their response latency when allocated with saturated
resources. Figure 2(b) shows the Greedy RM can increase resource
utilization and accelerate under-provisioned functions without sac-
ri�cing over-provisioned functions’ performance in the motivation
scenario.

2.4 Deep Reinforcement Learning
Due to the volatility and burstiness of serverless computing, it is
non-trivial to accurately estimate the saturation points based on
functions’ recent resource utilization, and the greedy resource har-
vesting and re-assignment can hardly minimize the overall function
response latency. Thus, we propose to utilize reinforcement learn-
ing (RL) algorithms to learn the optimal resource harvesting and
re-assignment strategies.

At every timestep C , the agent is in a speci�c state BC , and evolves
to state BC+1 according to a Markov process with the transition prob-
ability P(BC ,0C , BC+1) when action 0C is taken [33]. The immediate
reward for the agent to take action 0C in state BC is denoted as AC .
The goal of the agent is to �nd a policy c that makes decisions
regarding what action to take at each timestep, 0C ⇠ c (·|BC), so as
to maximize the expected cumulative rewards, Ec [

Õ1
C=1 W

C�1AC],
where W 2 (0, 1] is a discount factor.

To capture the patterns of real-world systems and address the
curse-of-dimensionality, deep reinforcement learning (DRL) has
been introduced to solve scheduling and resource provisioning prob-
lems in distributed systems [23–26], where deep neural networks
serve as the function approximators that describe the relationship
between decisions, observations, and rewards.

3 OVERVIEW
3.1 Design Challenges
Unlike long-running VMs with substantial historical traces for de-
mand prediction and �exible time windows for resource harvesting,
function executions in serverless computing are highly concur-
rent, event-driven, and short-lived with bursty input workloads [9],
making it hardly practical to reuse the existing VM resource harvest-
ing methods. To enable e�cient and safe resource harvesting and
performance acceleration in serverless computing, Freyr’s design
tackles three key challenges:

Volatile and bursty serverless environments. The hetero-
geneity of serverless functions, the high concurrency of invocation
events, and the burstiness of input workloads jointly make it non-
trivial to accurately determine whether a function execution has
idle resources to be harvested. Besides, serverless functions are
sensitive to the latency introduced by resource harvesting and
re-assignment due to their short lifetime and event-driven nature.

Huge space of harvesting and re-assignment decisions.Un-
like the default resource managers that enforce a �xed proportion
between the CPU and memory allocations, we decouple the re-
source provisioning for CPU and memory for more accurate re-
source harvesting and re-assignment, leading to a two-dimensional
resource pool for Freyr to seek for the optimal resource allocation.
This is an immense action space for the DRL agent. For example,
AWS Lambda allows any memory sizes between 128 MB and 10,240
MB and up to 6 CPU cores—60,672 choices in total. Such a huge
action space complicates the DRL algorithm design and extensively
increases the computation complexity to train the DRL agent.

Potential performance degradation.While Freyr harvests re-
sources from functions deemed as over-provisioned and improves
the entire workload, one necessary requirement is to prevent the
performance of those functions from degrading. It is vital to guaran-
tee Service Level Objectives (SLOs) of each individual function, i.e.,
harvested functions have no signi�cant performance degradation.

3.2 Freyr’s Architecture
Freyr is a resource manager in serverless platforms that dynami-
cally harvests idle resources from over-provisioned function invo-
cations and reassign the harvested resources to accelerate under-
provisioned function invocations. It is located with the controller of
a serverless computing framework and interacts with the container
system (e.g., Docker [10]) that executes function invocations.

Figure 3 shows an overview of Freyr’s architecture. First, con-
current function requests arrive at the frontend to invoke speci�c
functions with user-de�ned resource allocations. The controller
admits the function requests, registers their con�gurations, and
schedules them to the invokers. Before the execution of functions,
Freyr inputs observations from serverless platform database and

Latency can be reduced with supplying harvested resources!

EG: email generation
IR: image recognition
ALU: arithmetic logic units
KNN: K nearest neighbors

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Realistic Harvesting & Acceleration

16

Accelerating Serverless Computing by Harvesting Idle Resources WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Saturation User-defined Greedy

harvesting

C
PU

 c
or

es

0

2

4

6

8

Function ID
EG IR ALU KNN

(a) CPU allocation
R

es
po

ns
e

La
te

nc
y

(s
)

0

2

4

6

Function ID
EG IR ALU KNN

(b) Function response latency

Figure 2: The CPU allocation and response latency of four
real-world functions: EG, image recognition (IR), arithmetic
logic units (ALU), and KNN, where the EG generates 100K
emails, the IR classi�es ten images, the ALU calculates 20M
loops, and the KNN inputs 20K data samples.

resources to under-provisioned services without degrading the per-
formance of services being harvested [2, 38, 40].

To motivate the need for dynamic resource harvesting in server-
less computing, we compare the function response latency achieved
by the default resource manager (Fixed RM) and greedy resource
manager (Greedy RM) when executing four real-world serverless
functions. The Fixed RM simply accepts and applies a �xed resource
allocation pre-de�ned by users, such as the RM in OpenWhisk and
AWS Lambda. The Greedy RM dynamically harvests CPU cores
from functions over-provisioned and assigns the harvested CPU
cores to functions under-provisioned in a �rst-come-�rst-serve
manner based on the estimated function saturation points learned
from functions’ recent resource utilization (details in Section 5). In
this experiment, we collect historical resource utilizations of four
functions and pro�le their saturation points.

Figure 2(a) shows the Greedy RM accelerates the ALU by harvest-
ing three CPU cores from the EG (i.e., the EG function invocation)
and one CPU core from the IR. Though the KNN is also under-
provisioned, the Greedy RM assigns all harvested CPU cores to the
ALU since the ALU is invoked before the KNN. As a comparison,
Figure 2 also plots the saturation points of each function invo-
cation and their response latency when allocated with saturated
resources. Figure 2(b) shows the Greedy RM can increase resource
utilization and accelerate under-provisioned functions without sac-
ri�cing over-provisioned functions’ performance in the motivation
scenario.

2.4 Deep Reinforcement Learning
Due to the volatility and burstiness of serverless computing, it is
non-trivial to accurately estimate the saturation points based on
functions’ recent resource utilization, and the greedy resource har-
vesting and re-assignment can hardly minimize the overall function
response latency. Thus, we propose to utilize reinforcement learn-
ing (RL) algorithms to learn the optimal resource harvesting and
re-assignment strategies.

At every timestep C , the agent is in a speci�c state BC , and evolves
to state BC+1 according to a Markov process with the transition prob-
ability P(BC ,0C , BC+1) when action 0C is taken [33]. The immediate
reward for the agent to take action 0C in state BC is denoted as AC .
The goal of the agent is to �nd a policy c that makes decisions
regarding what action to take at each timestep, 0C ⇠ c (·|BC), so as
to maximize the expected cumulative rewards, Ec [

Õ1
C=1 W

C�1AC],
where W 2 (0, 1] is a discount factor.

To capture the patterns of real-world systems and address the
curse-of-dimensionality, deep reinforcement learning (DRL) has
been introduced to solve scheduling and resource provisioning prob-
lems in distributed systems [23–26], where deep neural networks
serve as the function approximators that describe the relationship
between decisions, observations, and rewards.

3 OVERVIEW
3.1 Design Challenges
Unlike long-running VMs with substantial historical traces for de-
mand prediction and �exible time windows for resource harvesting,
function executions in serverless computing are highly concur-
rent, event-driven, and short-lived with bursty input workloads [9],
making it hardly practical to reuse the existing VM resource harvest-
ing methods. To enable e�cient and safe resource harvesting and
performance acceleration in serverless computing, Freyr’s design
tackles three key challenges:

Volatile and bursty serverless environments. The hetero-
geneity of serverless functions, the high concurrency of invocation
events, and the burstiness of input workloads jointly make it non-
trivial to accurately determine whether a function execution has
idle resources to be harvested. Besides, serverless functions are
sensitive to the latency introduced by resource harvesting and
re-assignment due to their short lifetime and event-driven nature.

Huge space of harvesting and re-assignment decisions.Un-
like the default resource managers that enforce a �xed proportion
between the CPU and memory allocations, we decouple the re-
source provisioning for CPU and memory for more accurate re-
source harvesting and re-assignment, leading to a two-dimensional
resource pool for Freyr to seek for the optimal resource allocation.
This is an immense action space for the DRL agent. For example,
AWS Lambda allows any memory sizes between 128 MB and 10,240
MB and up to 6 CPU cores—60,672 choices in total. Such a huge
action space complicates the DRL algorithm design and extensively
increases the computation complexity to train the DRL agent.

Potential performance degradation.While Freyr harvests re-
sources from functions deemed as over-provisioned and improves
the entire workload, one necessary requirement is to prevent the
performance of those functions from degrading. It is vital to guaran-
tee Service Level Objectives (SLOs) of each individual function, i.e.,
harvested functions have no signi�cant performance degradation.

3.2 Freyr’s Architecture
Freyr is a resource manager in serverless platforms that dynami-
cally harvests idle resources from over-provisioned function invo-
cations and reassign the harvested resources to accelerate under-
provisioned function invocations. It is located with the controller of
a serverless computing framework and interacts with the container
system (e.g., Docker [10]) that executes function invocations.

Figure 3 shows an overview of Freyr’s architecture. First, con-
current function requests arrive at the frontend to invoke speci�c
functions with user-de�ned resource allocations. The controller
admits the function requests, registers their con�gurations, and
schedules them to the invokers. Before the execution of functions,
Freyr inputs observations from serverless platform database and

Latency can be reduced with supplying harvested resources!

EG: email generation
IR: image recognition
ALU: arithmetic logic units
KNN: K nearest neighbors

Careful harvesting does not degrade performance

25-29 April 2022 I Lyon, FranceIntelliSys Lab 17

Serverless Cluster

Idle memory

Idle core

#1 #1
*2*1

Within the same function
Both donator and receiver

* Invocation index

Function index

Case 1

General Rebalance Cases

25-29 April 2022 I Lyon, FranceIntelliSys Lab 18

Serverless Cluster

Idle memory

Idle core

#1 #1
*2*1

Within the same function
Both donator and receiver

* Invocation index

Function index

Case 1 Case 2

Within the same function
One donator and one receiver

#1 #1
*2*1

General Rebalance Cases

25-29 April 2022 I Lyon, FranceIntelliSys Lab 19

Serverless Cluster

Idle memory

Idle core

#1 #1
*2*1

Within the same function
Both donator and receiver

* Invocation index

Function index

Case 1 Case 2

Within the same function
One donator and one receiver

#1 #1
*2*1

#1 #2
*1*1

Between two functions
Both donator and receiver

Case 3

General Rebalance Cases

25-29 April 2022 I Lyon, FranceIntelliSys Lab

General Rebalance Cases

20

Serverless Cluster

Idle memory

Idle core

#1 #1
*2*1

Within the same function
Both donator and receiver

* Invocation index

Function index

Case 1 Case 2

Within the same function
One donator and one receiver

#1 #1
*2*1

#1 #2
*1*1

Between two functions
Both donator and receiver

Case 3 Case 4

#1 #2
*1*1

Between two functions
One donator and one receiver

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Dynamic Decisions

21

Perspective of a serverless platform:
- Varying functions

25-29 April 2022 I Lyon, FranceIntelliSys Lab 22

Perspective of a serverless platform:
- Varying functions
- Varying invocations per functions

Dynamic Decisions

25-29 April 2022 I Lyon, FranceIntelliSys Lab 23

Perspective of a serverless platform:
- Varying functions
- Varying invocations per functions
- Varying input data per invocation

Dynamic Decisions

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Dynamic Decisions

24

Perspective of a serverless platform:
- Varying functions
- Varying invocations per functions
- Varying input data per invocation
- Every invocation requires an allocation decision

25-29 April 2022 I Lyon, FranceIntelliSys Lab 25

Perspective of a serverless platform:
- Varying functions
- Varying invocations per functions
- Varying input data per invocation
- Every invocation requires an allocation decision

A series of sequential allocation decisions

Dynamic Decisions

25-29 April 2022 I Lyon, FranceIntelliSys Lab 26

Perspective of a serverless platform:
- Varying functions
- Varying invocations per functions
- Varying input data per invocation
- Every invocation requires an allocation decision

A series of sequential allocation decisions

Markov Decision Process (MDP)

Dynamic Decisions

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Deep Reinforcement Learning

27

Perspective of a serverless platform:
- Varying functions
- Varying invocations per functions
- Varying input data per invocation
- Every invocation requires an allocation decision

A series of sequential allocation decisions

Markov Decision Process (MDP)

Deep Reinforcement Learning

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Deep Reinforcement Learning

28

Environment

Invoke

Allocation

Latency

Agent

Rewards

Actions

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Freyr

29

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Freyr Workflow

30

C
on

ca
te

na
te

Alloc
option 1

Platform

Inflight invocations

Available CPU

Available Memory

Function

Avg CPU peak

Avg memory peak

Baseline exec time
…

…

…

Actor network

…

…

Critic network

Score network

So
ftm

ax… …

Best Alloc
Option

Safeguard

SelectionScoringEmbedding

State vector
<latexit sha1_base64="b0Zg0oKODwx5iBCr99W9Nvdm8nA=">AAAB+XicbVDLSgMxFL1TX7W+Rl26GSyCqzJTirosuHElFewD2rFkMpk2NJMMSaZQhv6JGxeKuPVP3Pk3ZtpZaOuBkMM595KTEySMKu2631ZpY3Nre6e8W9nbPzg8so9POkqkEpM2FkzIXoAUYZSTtqaakV4iCYoDRrrB5Db3u1MiFRX8Uc8S4sdoxGlEMdJGGtr2IBAsVLPYXJmaP90P7apbcxdw1olXkCoUaA3tr0EocBoTrjFDSvU9N9F+hqSmmJF5ZZAqkiA8QSPSN5SjmCg/WySfOxdGCZ1ISHO4dhbq740MxSoPZyZjpMdq1cvF/7x+qqMbP6M8STXhePlQlDJHCyevwQmpJFizmSEIS2qyOniMJMLalFUxJXirX14nnXrNu6rVHxrVZqOoowxncA6X4ME1NOEOWtAGDFN4hld4szLrxXq3PpajJavYOYU/sD5/ABzBk+4=</latexit>

sN

State vector
<latexit sha1_base64="cE2URrL8ycYa26UWbQu3Cd4WODw=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjOlqMuCG5cV7APasWQyaRuaSYYkUyhD/8SNC0Xc+ifu/Bsz7Sy09UDI4Zx7yckJE8608bxvZ2Nza3tnt7RX3j84PDp2T07bWqaK0BaRXKpuiDXlTNCWYYbTbqIojkNOO+HkLvc7U6o0k+LRzBIaxHgk2JARbKw0cN1+KHmkZ7G9Mj1/8gduxat6C6B14hekAgWaA/erH0mSxlQYwrHWPd9LTJBhZRjhdF7up5ommEzwiPYsFTimOsgWyefo0ioRGkpljzBoof7eyHCs83B2MsZmrFe9XPzP66VmeBtkTCSpoYIsHxqmHBmJ8hpQxBQlhs8swUQxmxWRMVaYGFtW2Zbgr355nbRrVf+6WnuoVxr1oo4SnMMFXIEPN9CAe2hCCwhM4Rle4c3JnBfn3flYjm44xc4Z/IHz+QPwvpPR</latexit>

s1

…… …

<latexit sha1_base64="G/33BeKgAB2rDHxdmZ+PEojSKc8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY8kXjxilEcCK5kdZmHC7Ow602tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMrmd+64lrI2J1j+OE+xEdKBEKRtFKd48PXq9YcsvuHGSVeBkpQYZ6r/jV7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/mp07JmVX6JIy1LYVkrv6emNDImHEU2M6I4tAsezPxP6+TYnjlT4RKUuSKLRaFqSQYk9nfpC80ZyjHllCmhb2VsCHVlKFNp2BD8JZfXiXNStm7KFduq6VaNYsjDydwCufgwSXU4Abq0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz/9ho2R</latexit>

q1

<latexit sha1_base64="KR2nMYDnT2svv59723j6Blo5pgE=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0Q1GPAiyeJaB6QrGF20psMmZ1dZ2aFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777aysrq1vbOa28ts7u3v7hYPDho5TxbDOYhGrVkA1Ci6xbrgR2EoU0igQ2AyGV1O/+YRK81jem1GCfkT7koecUWOlu8eHm26h6JbcGcgy8TJShAy1buGr04tZGqE0TFCt256bGH9MleFM4CTfSTUmlA1pH9uWShqh9sezUyfk1Co9EsbKljRkpv6eGNNI61EU2M6ImoFe9Kbif147NeGlP+YySQ1KNl8UpoKYmEz/Jj2ukBkxsoQyxe2thA2ooszYdPI2BG/x5WXSKJe881L5tlKsVrI4cnAMJ3AGHlxAFa6hBnVg0IdneIU3RzgvzrvzMW9dcbKZI/gD5/MHKYmNrg==</latexit>

qN

M
ea

n…

<latexit sha1_base64="db8O+O3QOth+qkcVAK+fcPUuFZU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWNF+wFtLJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuLaiFg94CThfkSHSoSCUbTSffDo9Utlt+LOQVaJl5My5Gj0S1+9QczSiCtkkhrT9dwE/YxqFEzyabGXGp5QNqZD3rVU0YgbP5ufOiXnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2naEPwll9eJa1qxbusVO9q5Xotj6MAp3AGF+DBFdThFhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwDmrI2C</latexit>

b1

<latexit sha1_base64="ficGjazwQbPMzRATQlTjhSdk+Bw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxJRPOAZA2zk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXc/81hMqzWP5YMYJ+hEdSB5yRo2V7oPH216x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9i3LlrlqqVbM48nACp3AOHlxCDW6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDEq+Nnw==</latexit>

bN

<latexit sha1_base64="KXZ8tkiq9BAWix0xeTT81HfGYv8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR4LXjxWsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i387hPXRsTqEWcJ9yM6ViIUjKKVuoOA6iyYD8sVt+ouQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOydXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/F8NbPhEpS5IqtFoWpJBiTxe9kJDRnKGeWUKaFvZWwCdWUoU2oZEPw1l/eJJ1a1WtUaw/1SrOex1GEC7iEa/DgBppwDy1oA4MpPMMrvDmJ8+K8Ox+r1oKTz5zDHzifP4Cej6Q=</latexit>

b̄

<latexit sha1_base64="wq2j3T4SEPVSmG/YS0lK5d4oC5M=">AAACAnicbVDLSsNAFJ34rPUVdSVuBotQNyUpRV0W3LisYB/QhDKZTtqhkwczN2IJwY2/4saFIm79Cnf+jZM2C209cOFwzr3ce48XC67Asr6NldW19Y3N0lZ5e2d3b988OOyoKJGUtWkkItnziGKCh6wNHATrxZKRwBOs602uc797z6TiUXgH05i5ARmF3OeUgJYG5rETEBh7XtrKqg6wB0ijOHey84FZsWrWDHiZ2AWpoAKtgfnlDCOaBCwEKohSfduKwU2JBE4Fy8pOolhM6ISMWF/TkARMuenshQyfaWWI/UjqCgHP1N8TKQmUmgae7swPVoteLv7n9RPwr9yUh3ECLKTzRX4iMEQ4zwMPuWQUxFQTQiXXt2I6JpJQ0KmVdQj24svLpFOv2Re1+m2j0mwUcZTQCTpFVWSjS9REN6iF2oiiR/SMXtGb8WS8GO/Gx7x1xShmjtAfGJ8/4FSXsw==</latexit>

P(option)

…

C
on

ca
te

na
te

Alloc
option N

Function Function info…

Platform info…Platform

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Freyr Workflow

31

C
on

ca
te

na
te

Alloc
option 1

Platform

Inflight invocations

Available CPU

Available Memory

Function

Avg CPU peak

Avg memory peak

Baseline exec time
…

…

…

Actor network

…

…

Critic network

Score network

So
ftm

ax… …

Best Alloc
Option

Safeguard

SelectionScoringEmbedding

State vector
<latexit sha1_base64="b0Zg0oKODwx5iBCr99W9Nvdm8nA=">AAAB+XicbVDLSgMxFL1TX7W+Rl26GSyCqzJTirosuHElFewD2rFkMpk2NJMMSaZQhv6JGxeKuPVP3Pk3ZtpZaOuBkMM595KTEySMKu2631ZpY3Nre6e8W9nbPzg8so9POkqkEpM2FkzIXoAUYZSTtqaakV4iCYoDRrrB5Db3u1MiFRX8Uc8S4sdoxGlEMdJGGtr2IBAsVLPYXJmaP90P7apbcxdw1olXkCoUaA3tr0EocBoTrjFDSvU9N9F+hqSmmJF5ZZAqkiA8QSPSN5SjmCg/WySfOxdGCZ1ISHO4dhbq740MxSoPZyZjpMdq1cvF/7x+qqMbP6M8STXhePlQlDJHCyevwQmpJFizmSEIS2qyOniMJMLalFUxJXirX14nnXrNu6rVHxrVZqOoowxncA6X4ME1NOEOWtAGDFN4hld4szLrxXq3PpajJavYOYU/sD5/ABzBk+4=</latexit>

sN

State vector
<latexit sha1_base64="cE2URrL8ycYa26UWbQu3Cd4WODw=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjOlqMuCG5cV7APasWQyaRuaSYYkUyhD/8SNC0Xc+ifu/Bsz7Sy09UDI4Zx7yckJE8608bxvZ2Nza3tnt7RX3j84PDp2T07bWqaK0BaRXKpuiDXlTNCWYYbTbqIojkNOO+HkLvc7U6o0k+LRzBIaxHgk2JARbKw0cN1+KHmkZ7G9Mj1/8gduxat6C6B14hekAgWaA/erH0mSxlQYwrHWPd9LTJBhZRjhdF7up5ommEzwiPYsFTimOsgWyefo0ioRGkpljzBoof7eyHCs83B2MsZmrFe9XPzP66VmeBtkTCSpoYIsHxqmHBmJ8hpQxBQlhs8swUQxmxWRMVaYGFtW2Zbgr355nbRrVf+6WnuoVxr1oo4SnMMFXIEPN9CAe2hCCwhM4Rle4c3JnBfn3flYjm44xc4Z/IHz+QPwvpPR</latexit>

s1

…… …

<latexit sha1_base64="G/33BeKgAB2rDHxdmZ+PEojSKc8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY8kXjxilEcCK5kdZmHC7Ow602tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMrmd+64lrI2J1j+OE+xEdKBEKRtFKd48PXq9YcsvuHGSVeBkpQYZ6r/jV7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/mp07JmVX6JIy1LYVkrv6emNDImHEU2M6I4tAsezPxP6+TYnjlT4RKUuSKLRaFqSQYk9nfpC80ZyjHllCmhb2VsCHVlKFNp2BD8JZfXiXNStm7KFduq6VaNYsjDydwCufgwSXU4Abq0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz/9ho2R</latexit>

q1

<latexit sha1_base64="KR2nMYDnT2svv59723j6Blo5pgE=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0Q1GPAiyeJaB6QrGF20psMmZ1dZ2aFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777aysrq1vbOa28ts7u3v7hYPDho5TxbDOYhGrVkA1Ci6xbrgR2EoU0igQ2AyGV1O/+YRK81jem1GCfkT7koecUWOlu8eHm26h6JbcGcgy8TJShAy1buGr04tZGqE0TFCt256bGH9MleFM4CTfSTUmlA1pH9uWShqh9sezUyfk1Co9EsbKljRkpv6eGNNI61EU2M6ImoFe9Kbif147NeGlP+YySQ1KNl8UpoKYmEz/Jj2ukBkxsoQyxe2thA2ooszYdPI2BG/x5WXSKJe881L5tlKsVrI4cnAMJ3AGHlxAFa6hBnVg0IdneIU3RzgvzrvzMW9dcbKZI/gD5/MHKYmNrg==</latexit>

qN

M
ea

n…

<latexit sha1_base64="db8O+O3QOth+qkcVAK+fcPUuFZU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWNF+wFtLJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuLaiFg94CThfkSHSoSCUbTSffDo9Utlt+LOQVaJl5My5Gj0S1+9QczSiCtkkhrT9dwE/YxqFEzyabGXGp5QNqZD3rVU0YgbP5ufOiXnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2naEPwll9eJa1qxbusVO9q5Xotj6MAp3AGF+DBFdThFhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwDmrI2C</latexit>

b1

<latexit sha1_base64="ficGjazwQbPMzRATQlTjhSdk+Bw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxJRPOAZA2zk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXc/81hMqzWP5YMYJ+hEdSB5yRo2V7oPH216x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9i3LlrlqqVbM48nACp3AOHlxCDW6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDEq+Nnw==</latexit>

bN

<latexit sha1_base64="KXZ8tkiq9BAWix0xeTT81HfGYv8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR4LXjxWsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i387hPXRsTqEWcJ9yM6ViIUjKKVuoOA6iyYD8sVt+ouQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOydXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/F8NbPhEpS5IqtFoWpJBiTxe9kJDRnKGeWUKaFvZWwCdWUoU2oZEPw1l/eJJ1a1WtUaw/1SrOex1GEC7iEa/DgBppwDy1oA4MpPMMrvDmJ8+K8Ox+r1oKTz5zDHzifP4Cej6Q=</latexit>

b̄

<latexit sha1_base64="wq2j3T4SEPVSmG/YS0lK5d4oC5M=">AAACAnicbVDLSsNAFJ34rPUVdSVuBotQNyUpRV0W3LisYB/QhDKZTtqhkwczN2IJwY2/4saFIm79Cnf+jZM2C209cOFwzr3ce48XC67Asr6NldW19Y3N0lZ5e2d3b988OOyoKJGUtWkkItnziGKCh6wNHATrxZKRwBOs602uc797z6TiUXgH05i5ARmF3OeUgJYG5rETEBh7XtrKqg6wB0ijOHey84FZsWrWDHiZ2AWpoAKtgfnlDCOaBCwEKohSfduKwU2JBE4Fy8pOolhM6ISMWF/TkARMuenshQyfaWWI/UjqCgHP1N8TKQmUmgae7swPVoteLv7n9RPwr9yUh3ECLKTzRX4iMEQ4zwMPuWQUxFQTQiXXt2I6JpJQ0KmVdQj24svLpFOv2Re1+m2j0mwUcZTQCTpFVWSjS9REN6iF2oiiR/SMXtGb8WS8GO/Gx7x1xShmjtAfGJ8/4FSXsw==</latexit>

P(option)

…

C
on

ca
te

na
te

Alloc
option N

Function Function info…

Platform info…Platform

State information from the platform and the function

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Freyr Workflow

32

C
on

ca
te

na
te

Alloc
option 1

Platform

Inflight invocations

Available CPU

Available Memory

Function

Avg CPU peak

Avg memory peak

Baseline exec time
…

…

…

Actor network

…

…

Critic network

Score network

So
ftm

ax… …

Best Alloc
Option

Safeguard

SelectionScoringEmbedding

State vector
<latexit sha1_base64="b0Zg0oKODwx5iBCr99W9Nvdm8nA=">AAAB+XicbVDLSgMxFL1TX7W+Rl26GSyCqzJTirosuHElFewD2rFkMpk2NJMMSaZQhv6JGxeKuPVP3Pk3ZtpZaOuBkMM595KTEySMKu2631ZpY3Nre6e8W9nbPzg8so9POkqkEpM2FkzIXoAUYZSTtqaakV4iCYoDRrrB5Db3u1MiFRX8Uc8S4sdoxGlEMdJGGtr2IBAsVLPYXJmaP90P7apbcxdw1olXkCoUaA3tr0EocBoTrjFDSvU9N9F+hqSmmJF5ZZAqkiA8QSPSN5SjmCg/WySfOxdGCZ1ISHO4dhbq740MxSoPZyZjpMdq1cvF/7x+qqMbP6M8STXhePlQlDJHCyevwQmpJFizmSEIS2qyOniMJMLalFUxJXirX14nnXrNu6rVHxrVZqOoowxncA6X4ME1NOEOWtAGDFN4hld4szLrxXq3PpajJavYOYU/sD5/ABzBk+4=</latexit>

sN

State vector
<latexit sha1_base64="cE2URrL8ycYa26UWbQu3Cd4WODw=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjOlqMuCG5cV7APasWQyaRuaSYYkUyhD/8SNC0Xc+ifu/Bsz7Sy09UDI4Zx7yckJE8608bxvZ2Nza3tnt7RX3j84PDp2T07bWqaK0BaRXKpuiDXlTNCWYYbTbqIojkNOO+HkLvc7U6o0k+LRzBIaxHgk2JARbKw0cN1+KHmkZ7G9Mj1/8gduxat6C6B14hekAgWaA/erH0mSxlQYwrHWPd9LTJBhZRjhdF7up5ommEzwiPYsFTimOsgWyefo0ioRGkpljzBoof7eyHCs83B2MsZmrFe9XPzP66VmeBtkTCSpoYIsHxqmHBmJ8hpQxBQlhs8swUQxmxWRMVaYGFtW2Zbgr355nbRrVf+6WnuoVxr1oo4SnMMFXIEPN9CAe2hCCwhM4Rle4c3JnBfn3flYjm44xc4Z/IHz+QPwvpPR</latexit>

s1

…… …

<latexit sha1_base64="G/33BeKgAB2rDHxdmZ+PEojSKc8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY8kXjxilEcCK5kdZmHC7Ow602tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMrmd+64lrI2J1j+OE+xEdKBEKRtFKd48PXq9YcsvuHGSVeBkpQYZ6r/jV7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/mp07JmVX6JIy1LYVkrv6emNDImHEU2M6I4tAsezPxP6+TYnjlT4RKUuSKLRaFqSQYk9nfpC80ZyjHllCmhb2VsCHVlKFNp2BD8JZfXiXNStm7KFduq6VaNYsjDydwCufgwSXU4Abq0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz/9ho2R</latexit>

q1

<latexit sha1_base64="KR2nMYDnT2svv59723j6Blo5pgE=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0Q1GPAiyeJaB6QrGF20psMmZ1dZ2aFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777aysrq1vbOa28ts7u3v7hYPDho5TxbDOYhGrVkA1Ci6xbrgR2EoU0igQ2AyGV1O/+YRK81jem1GCfkT7koecUWOlu8eHm26h6JbcGcgy8TJShAy1buGr04tZGqE0TFCt256bGH9MleFM4CTfSTUmlA1pH9uWShqh9sezUyfk1Co9EsbKljRkpv6eGNNI61EU2M6ImoFe9Kbif147NeGlP+YySQ1KNl8UpoKYmEz/Jj2ukBkxsoQyxe2thA2ooszYdPI2BG/x5WXSKJe881L5tlKsVrI4cnAMJ3AGHlxAFa6hBnVg0IdneIU3RzgvzrvzMW9dcbKZI/gD5/MHKYmNrg==</latexit>

qN

M
ea

n…

<latexit sha1_base64="db8O+O3QOth+qkcVAK+fcPUuFZU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWNF+wFtLJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuLaiFg94CThfkSHSoSCUbTSffDo9Utlt+LOQVaJl5My5Gj0S1+9QczSiCtkkhrT9dwE/YxqFEzyabGXGp5QNqZD3rVU0YgbP5ufOiXnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2naEPwll9eJa1qxbusVO9q5Xotj6MAp3AGF+DBFdThFhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwDmrI2C</latexit>

b1

<latexit sha1_base64="ficGjazwQbPMzRATQlTjhSdk+Bw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxJRPOAZA2zk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXc/81hMqzWP5YMYJ+hEdSB5yRo2V7oPH216x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9i3LlrlqqVbM48nACp3AOHlxCDW6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDEq+Nnw==</latexit>

bN

<latexit sha1_base64="KXZ8tkiq9BAWix0xeTT81HfGYv8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR4LXjxWsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i387hPXRsTqEWcJ9yM6ViIUjKKVuoOA6iyYD8sVt+ouQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOydXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/F8NbPhEpS5IqtFoWpJBiTxe9kJDRnKGeWUKaFvZWwCdWUoU2oZEPw1l/eJJ1a1WtUaw/1SrOex1GEC7iEa/DgBppwDy1oA4MpPMMrvDmJ8+K8Ox+r1oKTz5zDHzifP4Cej6Q=</latexit>

b̄

<latexit sha1_base64="wq2j3T4SEPVSmG/YS0lK5d4oC5M=">AAACAnicbVDLSsNAFJ34rPUVdSVuBotQNyUpRV0W3LisYB/QhDKZTtqhkwczN2IJwY2/4saFIm79Cnf+jZM2C209cOFwzr3ce48XC67Asr6NldW19Y3N0lZ5e2d3b988OOyoKJGUtWkkItnziGKCh6wNHATrxZKRwBOs602uc797z6TiUXgH05i5ARmF3OeUgJYG5rETEBh7XtrKqg6wB0ijOHey84FZsWrWDHiZ2AWpoAKtgfnlDCOaBCwEKohSfduKwU2JBE4Fy8pOolhM6ISMWF/TkARMuenshQyfaWWI/UjqCgHP1N8TKQmUmgae7swPVoteLv7n9RPwr9yUh3ECLKTzRX4iMEQ4zwMPuWQUxFQTQiXXt2I6JpJQ0KmVdQj24svLpFOv2Re1+m2j0mwUcZTQCTpFVWSjS9REN6iF2oiiR/SMXtGb8WS8GO/Gx7x1xShmjtAfGJ8/4FSXsw==</latexit>

P(option)

…

C
on

ca
te

na
te

Alloc
option N

Function Function info…

Platform info…Platform

Proximal Policy Optimization (PPO)

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Freyr Workflow

33

C
on

ca
te

na
te

Alloc
option 1

Platform

Inflight invocations

Available CPU

Available Memory

Function

Avg CPU peak

Avg memory peak

Baseline exec time
…

…

…

Actor network

…

…

Critic network

Score network

So
ftm

ax… …

Best Alloc
Option

Safeguard

SelectionScoringEmbedding

State vector
<latexit sha1_base64="b0Zg0oKODwx5iBCr99W9Nvdm8nA=">AAAB+XicbVDLSgMxFL1TX7W+Rl26GSyCqzJTirosuHElFewD2rFkMpk2NJMMSaZQhv6JGxeKuPVP3Pk3ZtpZaOuBkMM595KTEySMKu2631ZpY3Nre6e8W9nbPzg8so9POkqkEpM2FkzIXoAUYZSTtqaakV4iCYoDRrrB5Db3u1MiFRX8Uc8S4sdoxGlEMdJGGtr2IBAsVLPYXJmaP90P7apbcxdw1olXkCoUaA3tr0EocBoTrjFDSvU9N9F+hqSmmJF5ZZAqkiA8QSPSN5SjmCg/WySfOxdGCZ1ISHO4dhbq740MxSoPZyZjpMdq1cvF/7x+qqMbP6M8STXhePlQlDJHCyevwQmpJFizmSEIS2qyOniMJMLalFUxJXirX14nnXrNu6rVHxrVZqOoowxncA6X4ME1NOEOWtAGDFN4hld4szLrxXq3PpajJavYOYU/sD5/ABzBk+4=</latexit>

sN

State vector
<latexit sha1_base64="cE2URrL8ycYa26UWbQu3Cd4WODw=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjOlqMuCG5cV7APasWQyaRuaSYYkUyhD/8SNC0Xc+ifu/Bsz7Sy09UDI4Zx7yckJE8608bxvZ2Nza3tnt7RX3j84PDp2T07bWqaK0BaRXKpuiDXlTNCWYYbTbqIojkNOO+HkLvc7U6o0k+LRzBIaxHgk2JARbKw0cN1+KHmkZ7G9Mj1/8gduxat6C6B14hekAgWaA/erH0mSxlQYwrHWPd9LTJBhZRjhdF7up5ommEzwiPYsFTimOsgWyefo0ioRGkpljzBoof7eyHCs83B2MsZmrFe9XPzP66VmeBtkTCSpoYIsHxqmHBmJ8hpQxBQlhs8swUQxmxWRMVaYGFtW2Zbgr355nbRrVf+6WnuoVxr1oo4SnMMFXIEPN9CAe2hCCwhM4Rle4c3JnBfn3flYjm44xc4Z/IHz+QPwvpPR</latexit>

s1

…… …

<latexit sha1_base64="G/33BeKgAB2rDHxdmZ+PEojSKc8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY8kXjxilEcCK5kdZmHC7Ow602tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMrmd+64lrI2J1j+OE+xEdKBEKRtFKd48PXq9YcsvuHGSVeBkpQYZ6r/jV7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/mp07JmVX6JIy1LYVkrv6emNDImHEU2M6I4tAsezPxP6+TYnjlT4RKUuSKLRaFqSQYk9nfpC80ZyjHllCmhb2VsCHVlKFNp2BD8JZfXiXNStm7KFduq6VaNYsjDydwCufgwSXU4Abq0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz/9ho2R</latexit>

q1

<latexit sha1_base64="KR2nMYDnT2svv59723j6Blo5pgE=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0Q1GPAiyeJaB6QrGF20psMmZ1dZ2aFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777aysrq1vbOa28ts7u3v7hYPDho5TxbDOYhGrVkA1Ci6xbrgR2EoU0igQ2AyGV1O/+YRK81jem1GCfkT7koecUWOlu8eHm26h6JbcGcgy8TJShAy1buGr04tZGqE0TFCt256bGH9MleFM4CTfSTUmlA1pH9uWShqh9sezUyfk1Co9EsbKljRkpv6eGNNI61EU2M6ImoFe9Kbif147NeGlP+YySQ1KNl8UpoKYmEz/Jj2ukBkxsoQyxe2thA2ooszYdPI2BG/x5WXSKJe881L5tlKsVrI4cnAMJ3AGHlxAFa6hBnVg0IdneIU3RzgvzrvzMW9dcbKZI/gD5/MHKYmNrg==</latexit>

qN

M
ea

n…

<latexit sha1_base64="db8O+O3QOth+qkcVAK+fcPUuFZU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWNF+wFtLJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuLaiFg94CThfkSHSoSCUbTSffDo9Utlt+LOQVaJl5My5Gj0S1+9QczSiCtkkhrT9dwE/YxqFEzyabGXGp5QNqZD3rVU0YgbP5ufOiXnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2naEPwll9eJa1qxbusVO9q5Xotj6MAp3AGF+DBFdThFhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwDmrI2C</latexit>

b1

<latexit sha1_base64="ficGjazwQbPMzRATQlTjhSdk+Bw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxJRPOAZA2zk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXc/81hMqzWP5YMYJ+hEdSB5yRo2V7oPH216x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9i3LlrlqqVbM48nACp3AOHlxCDW6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDEq+Nnw==</latexit>

bN

<latexit sha1_base64="KXZ8tkiq9BAWix0xeTT81HfGYv8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR4LXjxWsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i387hPXRsTqEWcJ9yM6ViIUjKKVuoOA6iyYD8sVt+ouQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOydXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/F8NbPhEpS5IqtFoWpJBiTxe9kJDRnKGeWUKaFvZWwCdWUoU2oZEPw1l/eJJ1a1WtUaw/1SrOex1GEC7iEa/DgBppwDy1oA4MpPMMrvDmJ8+K8Ox+r1oKTz5zDHzifP4Cej6Q=</latexit>

b̄

<latexit sha1_base64="wq2j3T4SEPVSmG/YS0lK5d4oC5M=">AAACAnicbVDLSsNAFJ34rPUVdSVuBotQNyUpRV0W3LisYB/QhDKZTtqhkwczN2IJwY2/4saFIm79Cnf+jZM2C209cOFwzr3ce48XC67Asr6NldW19Y3N0lZ5e2d3b988OOyoKJGUtWkkItnziGKCh6wNHATrxZKRwBOs602uc797z6TiUXgH05i5ARmF3OeUgJYG5rETEBh7XtrKqg6wB0ijOHey84FZsWrWDHiZ2AWpoAKtgfnlDCOaBCwEKohSfduKwU2JBE4Fy8pOolhM6ISMWF/TkARMuenshQyfaWWI/UjqCgHP1N8TKQmUmgae7swPVoteLv7n9RPwr9yUh3ECLKTzRX4iMEQ4zwMPuWQUxFQTQiXXt2I6JpJQ0KmVdQj24svLpFOv2Re1+m2j0mwUcZTQCTpFVWSjS9REN6iF2oiiR/SMXtGb8WS8GO/Gx7x1xShmjtAfGJ8/4FSXsw==</latexit>

P(option)

…

C
on

ca
te

na
te

Alloc
option N

Function Function info…

Platform info…Platform

Safeguard
- Filter invalid allocation options
- Return resources when detecting a potential full usage

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Freyr Architecture

34

Freyr

KV Storage

Invoker

Frontend

…

DRL Agent

state

CPU
Mem

Waiting Queue

Container

(((

(

Database

allocation

Controller
Load Balancer Safeguard

(CPU, mem) allocation

(results, usage)

Func req 1

Distributed Message Queue
(Pub/Sub)

Func req N

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Freyr Architecture

35

Freyr

KV Storage

Invoker

Frontend

…

DRL Agent

state

CPU
Mem

Waiting Queue

Container

(((

(

Database

allocation

Controller
Load Balancer Safeguard

(CPU, mem) allocation

(results, usage)

Func req 1

Distributed Message Queue
(Pub/Sub)

Func req N

Frontend receives function
invocations from users

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Freyr Architecture

36

Freyr

KV Storage

Invoker

Frontend

…

DRL Agent

state

CPU
Mem

Waiting Queue

Container

(((

(

Database

allocation

Controller
Load Balancer Safeguard

(CPU, mem) allocation

(results, usage)

Func req 1

Distributed Message Queue
(Pub/Sub)

Func req N

Controller collects
and sends states to
the DRL agent

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Freyr Architecture

37

Freyr

KV Storage

Invoker

Frontend

…

DRL Agent

state

CPU
Mem

Waiting Queue

Container

(((

(

Database

allocation

Controller
Load Balancer Safeguard

(CPU, mem) allocation

(results, usage)

Func req 1

Distributed Message Queue
(Pub/Sub)

Func req N

Agent predicts an
allocation and sends it
back to controller

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Freyr Architecture

38

Freyr

KV Storage

Invoker

Frontend

…

DRL Agent

state

CPU
Mem

Waiting Queue

Container

(((

(

Database

allocation

Controller
Load Balancer Safeguard

(CPU, mem) allocation

(results, usage)

Func req 1

Distributed Message Queue
(Pub/Sub)

Func req N

Controller then
forwards the function
invocation with its
decision to an Invoker

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Freyr Architecture

39

Freyr

KV Storage

Invoker

Frontend

…

DRL Agent

state

CPU
Mem

Waiting Queue

Container

(((

(

Database

allocation

Controller
Load Balancer Safeguard

(CPU, mem) allocation

(results, usage)

Func req 1

Distributed Message Queue
(Pub/Sub)

Func req N

Invoker executes
the function

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Freyr Architecture

40

Freyr

KV Storage

Invoker

Frontend

…

DRL Agent

state

CPU
Mem

Waiting Queue

Container

(((

(

Database

allocation

Controller
Load Balancer Safeguard

(CPU, mem) allocation

(results, usage)

Func req 1

Distributed Message Queue
(Pub/Sub)

Func req N

Invoker submits the
results and usage to
database for further
predictions

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Experiment
Setup

- 13 VMs, each with 8 CPUs and 32 GB memory
- One user client, one frontend, one controller
- 10 Worker nodes

Baselines
- Fixed RM
- Greedy RM
- ENSURE

41

Fixed RM: default OpenWhisk as well as in existing serverless platforms
Greedy RM: heuristic
ENSURE: Suresh, Amoghavarsha, et al.
"Ensure: Efficient scheduling and autonomous resource management in serverless environments."
(ACSOS 2020)

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Function Execution Speedup

42

Fixed
Greedy
ENSURE
Freyr

C
D

F
(%

)

0

50

100

Response Latency (s)
10 20 30

C
D

F
(%

)

0

50

100

Slowdown
1 2 3

Response latency: function invocation end-to-end latency
Slowdown: relative performance compared to user-defined resources.
Larger than1.0 means degradation, less than 1.0 means speedup

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Function Execution Speedup

43

Fixed
Greedy
ENSURE
Freyr

C
D

F
(%

)

0

50

100

Response Latency (s)
10 20 30

C
D

F
(%

)

0

50

100

Slowdown
1 2 3

Fastest!

Fastest!

Response latency: function invocation end-to-end latency
Slowdown: relative performance compared to user-defined resources.
Larger than1.0 means degradation, less than 1.0 means speedup

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Function Execution Speedup

44

Fixed
Greedy
ENSURE
Freyr

C
D

F
(%

)

0

50

100

Response Latency (s)
10 20 30

C
D

F
(%

)

0

50

100

Slowdown
1 2 3

Fastest!

Fastest!

Negligible performance impact

Response latency: function invocation end-to-end latency
Slowdown: relative performance compared to user-defined resources. Larger than1.0 means
degradation, less than 1.0 means speedup.

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Resource Allocation

45

Slowdown: relative performance compared to user-defined resources. Larger than1.0 means
degradation, less than 1.0 means speedup.

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Resource Allocation

46

Slowdown: relative performance compared to user-defined resources. Larger than1.0 means
degradation, less than 1.0 means speedup.

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Resource Allocation

47

Slowdown: relative performance compared to user-defined resources. Larger than1.0 means
degradation, less than 1.0 means speedup.

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Resource Allocation

48

Slowdown: relative performance compared to user-defined resources. Larger than1.0 means
degradation, less than 1.0 means speedup.

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Resource Allocation

49

Safeguard guarantees SLOs of
harvested function invocations!

Slowdown: relative performance compared to user-defined resources. Larger than1.0 means
degradation, less than 1.0 means speedup.

25-29 April 2022 I Lyon, FranceIntelliSys Lab

Thank You
Hanfei Yu: hyu25@lsu.edu

IntelliSys Lab: https://intellisys.haow.ca

50

mailto:hyu25@lsu.edu

