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Abstract—On-device fine-tuning of large language models
(LLMs) has attracted a lot of attention because of its tailoring
personalized models while retaining user data locally on the
mobile device. However, it faces significant challenges due to
prohibitive memory requirements and slow training speeds. In
this paper, we propose MobiLLM, a novel scheme enabling
memory-efficient LLM fine-tuning on a single mobile device
via server-assisted side-tuning. Particularly, MobiLLM strategi-
cally offloads backpropagation computations to an edge server
while allowing the resource-constrained mobile device to retain
merely a pretrained backbone model with frozen parameters
during finetuning. It constructs a backpropagation bypass via
parallel adapters decoupled from the backbone. During forward
propagation, the device employs low bitwidth quantization for
transmitting intermediate activations to the server to reduce
communication overhead. The advantage of MobiLLM lies in:
1) confining training data strictly to the mobile device, and 2)
eliminating on-device backpropagation while overlapping local
computations with server execution. Collectively, MobiLLM en-
sures the data never leaves the local mobile device while sig-
nificantly reducing mobile memory and computational burdens.
We implement MobiLLM on several popular mobile devices,
including NVIDIA Jetson Xavier NX and CPU-only laptops.
Extensive experimental results demonstrate that MobiLLM can
enable a resource-constrained mobile device to fine-tune billion-
sized LLMs, achieving up to 4× memory reduction and 2.3×
faster convergence as compared to state-of-the-art baselines.

Index Terms—Large language model, Transformer, on-device
fine-tuning, memory efficiency.

I. INTRODUCTION

Transformer-based large language models (LLMs), like
BERT [1], LLaMa [2], and GPT [3], have led to significant
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progress in artificial intelligence (AI) by enabling unprece-
dented capabilities in natural language processing (NLP), com-
puter vision (CV), and beyond. These models typically follow
a pre-training then fine-tuning paradigm: they are first trained
on massive public datasets to learn general knowledge patterns,
then fine-tuned to specific downstream tasks. However, real-
world user data on mobile devices, such as private messages
and reviews, often differs substantially from public training
data and contains sensitive information. This combination of
data divergence and privacy concerns necessitates on-device
fine-tuning to tailor personalized models while ensuring the
user data never leaves the local mobile device.

Simultaneously, rapid advances in mobile hardware are
converging to make on-device computation increasingly vi-
able. Modern devices, such as the iPhone 17, NVIDIA AGX
platform, and MacBook Pro, coupled with mobile system-on-
chip innovations, now integrate dedicated AI acclerators, such
as NPUs and GPUs, explicitly optimized for complex machine
learning workloads [4], [5]. Recently, there have been great
hardware efforts specifically targeting LLM applications on
mobile devices. For example, Qualcomm’s Snapdragon 8 Elite
can execute LLMs at a remarkable speed of 70 tokens per
second [6], unlocking the potential for real-time on-device
LLM applications. Google is also revolutionizing its smart
home ecosystem by integrating Gemini AI - a multi-modal
LLM developed by DeepMind [7] - into Google Assistant,
Google Nest devices, and the Google Home APP [8]. These
hardware evolution paves the way for intelligent, personalized
mobile applications powered by on-device LLMs.

Despite the remarkable potential of mobile LLMs, con-
temporary LLMs have grown enormously in size, commonly
reaching billion-scale parameters (e.g., billions to hundreds
of billions), which presents substantial barriers to on-device
fine-tuning. The vast gap between stringent mobile resource
constraints - including memory, compute, and energy - and
the prohibitive demands of training these billion-sized models
renders conventional cloud-based fine-tuning solutions imprac-
tical for resource-limited mobile devices.

Recent research on parameter-efficient fine-tuning (PEFT)
aims to alleviate the computational burden by keeping most
of a pre-trained model frozen and updating only a minimal
set of parameters [9]. This is typically achieved either by
inserting lightweight trainable modules at various layers or
by selectively updating a portion of the original parameters.
Although PEFT techniques can reduce the required number
of trainable parameters by orders of magnitude versus full



2

fine-tuning methods [10]–[12], its residual computational and
memory demands remain prohibitive for billion-parameter
LLMs on a single mobile device. To overcome this limitation,
some pioneering approaches explore multi-device cooperative
training paradigms. These approaches distribute the resource-
intensive task of fine-tuning LLMs across an edge network of
connected mobile devices, thereby collectively alleviating the
computational and memory burden of any individual device.
For instance, the pipeline parallel training paradigm partitions
an LLM into a sequence of smaller sub-models. These sub-
models are then concatenated and deployed sequentially across
cooperating mobile devices [13], [14]. During training, ac-
tivations and gradients propagate through devices in multi-
stage relay patterns [15]–[17]. Such fundamental dependence
on multi-device orchestration renders these solutions infeasi-
ble for single-device scenarios while complicating practical
deployment.

On-device LLM fine-tuning faces three primary challenges.
Firstly, existing collaborative LLM fine-tuning schemes typ-
ically rely on layer-wise model partitioning and cross-device
pipeline training, which requires all devices to be within
a local area network with stable peer-to-peer links. It is,
however, often impractical in edge networks with limited
capable mobile devices and vulnerable to the failure of any
single device in the pipeline, not to mention high error rates
of multi-hop transmissions [18]. Secondly, training billion-
sized LLMs demands enormous memory usage, which often
exceeds the capacity of mobile devices (e.g., > 20 GB for
full fine-tuning OPT-1.3B model vs. typical 4–12 GB memory
of mobile devices). Although PEFT methods help to reduce
memory footprint up to 30% [19], they cannot fundamentally
resolve memory issues since gradients for backpropagation
still require passing through the entire pre-trained model. That
makes the PEFT schemes inadequate for enabling LLM fine-
tuning on the memory-constrained mobile device. Thirdly,
fine-tuning process typically follows an alternating forward
and backward propagation policy, where backward propaga-
tion is more computation-intensive. On-device accelerators,
e.g., Google Edge TPU or Qualcomm Hexagon, are typically
optimized for inference (i.e., forward propagation only) and
lack acceleration support for backpropagation-specific opera-
tions. That may significantly prolong training time or even
disable fine-tuning on resource-constrained mobile devices.

In this paper, we introduce MobiLLM, a novel scheme
and corresponding system implementation that enables LLM
fine-tuning on a single mobile device via server-assisted side-
tuning. Inspiring by the side-tuning concept [20], MobiLLM’s
core design principles are to: (i) divide LLM fine-tuning into
a frozen pre-trained backbone network and a side network
consisting of trainable modules; (ii) partition the LLM fine-
tuning workload between the mobile device and a server, i.e.,
deploying the frozen backbone model on the mobile device and
the trainable side network on the server; and (iii) facilitate the
exchange of inter-layer activations between the mobile device
and the server with low communication overhead. In this
way, MobiLLM ensures a memory- and computation-efficient
forwardpropagation using the LLM backbone on the resource-
constrained mobile device, while offloading the computation-

intensive and memory-heavy backpropagation to the high-
performance edge server, while keeping raw data on the
local mobile device. With these design innovations, MobiLLM
enables the fine-tuning of billion-sized LLMs on a mobile
device - even those relying solely on CPUs - with the help
of the server. It effectively leverages the established mobile
edge network architecture to decouple forward and backward
propagation, thereby overcoming fundamental memory and
computational barriers inherent to mobile devices. Our salient
contributions are summarized as follows:
• We propose MobiLLM, an on-device LLM fine-tuning

scheme that offloads dominant computational and mem-
ory burdens to an edge server while confining mobile de-
vices to forward propagation only. By executing mobile-
friendly computational operations on a frozen backbone
network, MobiLLM enables the mobile device to fine-
tune LLMs while keeping their data locally on the device.

• We develop a quantized adapter side-tuning method for
the MobiLLM system. It constructs a trainable side-
network by stacking a set of parallel adapter modules,
which is decoupled from the frozen pre-trained LLM
backbone and thereby creating a backpropagation by-
pass. During forward propagation, activations from each
backbone block undergo low-precision quantization and
propagate to the side-network, enabling task adaptation
through using user-specific intermediate representations.

• We implement MobiLLM on several popular mobile
devices, including NVIDIA Jetson Xavier NX and CPU-
only laptops, and evaluate its performance using both
sub-billion-sized LLM (e.g., OPT-350M) and billion-sized
LLM (e.g., OPT-1.3B), across various AI tasks and system
configurations. The results show that MobiLLM enables
billion-sized LLM fine-tuning on memory-constrained
mobile devices like NVIDIA Xavier (with 4.6 GB avail-
able memory only). Compared with SOTA methods,
MobiLLM remarkably reduces its memory usage by up
to 4× and convergence time by up to 2.3×.

The remainder of the paper is organized as follows. Sec-
tion II reviews related work. Section III unveils the core
motivation and challenges driving our design. Section IV
proposes the MobiLLM scheme, detailing its modular ar-
chitecture, runtime workflow, and fundamental benefits. Sec-
tion V presents the system implementation, and Section VI
comprehensively evaluates performance against state-of-the-
art benchmarks. Section VII finally concludes the paper with
contributions and future directions.

II. RELATED WORK

A. Parameter-Efficient Fine-Tuning

PEFT is a feasible direction that adapts a pre-trained
model to a downstream task by only training a few trainable
parameters, instead of updating all parameters [9]. Current
research streams primarily adopt two paradigms: modular
augmentation and sparse parameter update. In modular aug-
mentation, lightweight trainable components are integrated
into the frozen backbone. Initial work proposed Adapters,
which insert bottleneck layers, typically two linear layers with
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a nonlinearity, within transformer blocks. This requires only
3-4% additional parameters per layer to match full fine-tuning
accuracy when trained with layer normalization [10]. LoRA
adopts a matrix decomposition perspective, injecting trainable
low-rank matrices to approximate weight updates without
altering original parameters [11]. Contrastingly, prompt-based
methods (e.g., prefix tuning) embed trainable tokens into input
sequences, steering frozen model behavior through learned
soft prompts [21]. Sparse update strategies exploit parameter
redundancy by selectively updating subsets of existing pa-
rameters. BitFit, for instance, updates only bias terms while
freezing all weights [12]. While PEFT methods aim to achieve
competitive results with minimal parameter updates, they still
require significant GPU memory and can be slow during the
fine-tuning process. This is because the updated parameters
are inside the pre-trained large model, necessitating a full
backward pass through the model to compute gradients for
backpropagation. This prevents PEFT methods from being
directly applied to many real-world applications with limited
computational resources, and thus does not help to fit for
fine-tuning a large language model on a GPU of a resource-
constrained mobile device.

B. LLM Fine-Tuning on Mobile Devices

On-device fine-tuning of personal data is a powerful solution
for adapting LLMs to user-specific tasks while maintaining
privacy, as all data storage and computation occur locally
without any data leaving the device [22]. To overcome severe
resource constraints and fit an LLM on mobile devices, two
primary research directions have evolved: model compression
and collaborative fine-tuning. Model compression compresses
a backbone network to a smaller one, making it more man-
ageable for training. Techniques like pruning and quantization
reduce the number of weights and the bit-width needed to
represent these weights, respectively [23]. However, excessive
compression can lead to significant drops in performance,
necessitating a careful balance between resource savings and
model accuracy. Collaborative fine-tuning enables resource-
constrained devices to distribute the computational and mem-
ory load of LLM fine-tuning by leveraging available com-
putational nodes, which may include other mobile devices
or edge/cloud servers, by establishing direct communication
links [24], [25]. This is often based on exchanging necessary
intermediate activations during training. For example, multi-
device pipeline parallelism splits the LLM by layers into
smaller sub-models that are deployed across different devices,
where forward and backward propagation computations are
performed in a relay fashion across these devices [13], [14].
This pipeline can be further accelerated by partitioning input
data into micro-batches and feeding them continuously across
devices to enhance parallelism [15], [17]. This collaborative
fine-tuning paradigm effectively leverages the computational
and transmission capabilities of neighboring nodes within
a network, allowing flexible task deployment and execution
under individual computational and memory constraints.
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Fig. 1: Peak memory footprint of different methods.

TABLE I: The breakdown of memory footprint. (Model:
OPT-1.3B; batch size: 16; sequence length: 256; Full-FT: full
fine-tuning.)

Method
Trainable

Para.
Memory Footprint (GB)

Model Act. Opt. Total
Full-FT 1.3B 2.509 10.859 7.527 20.895

BitFit 0.52M 2.509 10.859 0.003 13.371

LoRA 12.35M 2.533 11.964 0.072 14.569

Inference — 2.509 1.894 — 4.403

III. MOTIVATION

In this section, we identify three core difficulties in on-
device LLM fine-tuning through preliminary experiments,
motivating our key improvements for practical deployment.

Observation 1: Limitations of pipeline-based cooper-
ative fine-tuning. Most of SOTA cooperative LLM fine-
tuning schemes rely on layer-wise model partitioning-whether
across multiple devices or between a device and a server-
combined with sequential pipeline training. For those cross-
device schemes, they typically require stable end-to-end multi-
hop transmission links among participating mobile devices
within a local area network. However, in real-world networks,
there may not be enough capable mobile devices to form a
stable collaboration loop, and single-device failures in the
chain can disrupt the system or even ruin the overall LLM
fine-tuning. Besides, multi-hop transmissions are notorious for
the low delivery ratio and high error rates [26]–[29]. Even
under ideal network conditions, the sequential nature of such
pipeline execution inevitably introduces idle time at each stage,
as devices (or the server) must wait for intermediate results
from preceding devices in the pipeline. While some parallel
training methods may mitigate devices’ idle time by using
stale model parameters for concurrent computation, this can
impair model convergence and incur significant coordination
overhead. Furthermore, since each device in the pipeline
maintains only a local portion of the LLM, individual mobile
device cannot employ the entire fine-tuned model to perform
inference independently, which hinders local on-device LLM
service provisioning.
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Fig. 2: Comparative illustration of on-device LLM fine-tuning schemes. (a) Conventional LoRA: Trainable LoRA modules
integrated throughout the backbone network require full-model backpropagation. (b) Our MobiLLM design: Decoupling the
frozen backbone from the trainable side-network enables backpropagation-free on-device computation, utilizing only forward
propagation with one-way activation offloading to the server.

Observation 2: Challenges imposed by memory bottle-
necks. Figure 1 shows the peak memory usage in training
various LLMs with a batch size of 16. Table I further provides
a detailed breakdown of the memory footprint for fine-tuning
an OPT-1.3B model. The observed memory requirements are
often unaffordable for mobile devices (e.g., more than 70 GB
for OPT-6.7B model vs. typical 4–12 GB DRAM of mobile
devices). For smartphones, this situation is even worse, since
only a fraction of the memory can be allocated to training tasks
without affecting the user’s experiences. In contrast, inference
(forward propagation only) consumes much less memory (e.g.,
4.4GB) because it does not need to store intermediate activa-
tions for all layers, which are necessary for backpropagation
during training. In fine-tuning, those activations take up most
of the memory, and this memory usage quickly scales up with
batch size, sequence length, hidden layer dimensions, and the
number of layers. Consequently, given the fact that LLMs
typically have large dimensions and numerous layers, a slight
increase in sequence length may lead to memory overflow
for mobile devices, which can support LLM fine-tuning with
smaller sequence-length data samples. Those harsh memory
challenges result in unreliable on-device LLM fine-tuning,
where tasks may occasionally succeed or fail. It is also difficult
to assess whether a particular mobile device can support local
LLM fine-tuning.

Observation 3: Inefficiency of on-device backprop-
agation computing. Fine-tuning process typically follows
an alternating forward and backward propagation policy,
where backward propagation is more computation-intensive —
roughly twice the cost of forward propagation. While pipeline
parallel training [15] enables multi-batch parallel processing,
concurrent forward and backward computation on each device
can lead to competition for computational resources. These
factors can severely prolong processing time or even cause
task failure on resource constrained mobile devices. Advanced
mobile devices may be equipped with powerful and fast-
evolving DNN accelerators (NPUs), e.g., Google Edge TPU

and Qualcomm Hexagon, but these accelerators are tailored
for inference rather than training. They lack good support
for backpropagation-specific operations like dynamic gradient
updating [30], which limits their accelerating performance for
LLM fine-tuning tasks.

In summary, current mobile devices are incapable of
handling LLM fine-tuning tasks due to the prohibitively
high demands on hardware resources. Simply freezing pre-
trained model parameters or distributing computational work-
loads yields limited improvements. Achieving practical and
resource-efficient on-device LLM fine-tuning necessitates co-
designing model architecture, training paradigms, and network
support - an integrated approach we pioneer in MobiLLM.

IV. MOBILLM DESIGN

A. MobiLLM Overview

MobiLLM is a device-server collaborative framework de-
signed to enable memory-efficient LLM fine-tuning on the
mobile device. The key idea is to create a backpropagation
bypass parallel to the frozen backbone LLM, and split the
LLM fine-tuning between the mobile device (the fixed forward
propagation) and the server (the memory and computation
intensive backward propagation), while keeping local data on
the device.

Figure 2 presents an overview of the MobiLLM system.
MobiLLM allows the mobile device to retain the local training
dataset and pre-trained LLM backbone. Meanwhile, a side-
network is deployed and trained on the server connected
to the mobile device via stable wireless transmission links.
During the fine-tuning, the mobile device performs only for-
ward propagation on the backbone model, where intermediate
activations are extracted and served as the inputs for the
side-network via shortcut connections. In this way, MobiLLM
completely separates the mobile device from those expensive
backpropagation computations and saves substantial on-device
memory (intermediate activations and optimizer states) during
LLM fine-tuning. As a potential cost, MobiLLM introduces
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some communication overheads and transmission latencies
due to the transfer of activation values from the mobile
device to the server. To tackle those issues, we provide a
communication-efficient side-tuning method using activation
quantization (Sec. IV-B) and optimize the device-server train-
ing procedures (Sec. IV-C) to effectively reduce transmission
latencies in the proposed MobiLLM system, ensuring memory-
friendly, computation-light and time-efficient LLM fine-tuning
on the mobile device.

B. Quantized Adapter Side-Tuning

In Fig. 2, the blue boxes are the original transformer-based
LLM backbone, and the green boxes outline the side-network
that is composed of a set of trainable modules. Specifically,
we separate the trainable modules from the backbone network
rather than plug them in, thus providing a dedicated “highway”
where all trainable parameters are on this highway. The
remainder of this subsection elaborates on the design of the
side-network and its connection with the backbone.

1) Parallel adapter based side-network: MobiLLM estab-
lishes a side-network parallel to the main backbone, which
refines the backbone output to produce more accurate rep-
resentations. In particular, we design our side-network by
using stacked parallel adapter modules. The input to each
adapter combines the intermediate activation output of the
transformer layer in the backbone and the activation of the
previous adapter. This ensures that our parallel adapters can
refine the feature representations from the original backbone
when fine-tuning towards a new task.

Each adapter contains down-projection matrix Wdown ∈
Rd∗r to project the input to a lower-dimensional space,
followed by a non-linear activation function σ(·), and an
up-projection matrix Wup ∈ Rr∗d. Here, d represents the
dimension of the hidden layer, and r serves as the adapter
bottleneck dimension, a hyperparameter used in configuring
the adapters. Denoting hin as the input to the adapter, the
computation within the adapter module (with residual) can be
summarized as follows:

hin ← hin + σ(hinWdown)Wup. (1)

Compared with previous side-tuning methods using
lightweight transformer structures pruned from the backbone
as the side network, our side-network design eliminates multi-
head attention mechanisms and feed-forward networks. As a
result, it further reduce amount of trainable parameters and
increase the fine-tuning overhead.

2) Shortcut connection with quantized activation: Mo-
biLLM utilizes shortcut connections from the intermediate
activations of the backbone model to the side network. The
outputs of the frozen backbone’s final layer and the side
network are combined and fed in the LLM head to predict.

MobiLLM allows the transformer layers of the pre-trained
backbone to be grouped into M blocks, with each block con-
nected to a parallel adapter in the task-specific side network.
Accordingly, there are M shortcuts that feed intermediate
activations from the backbone to the corresponding adapters in
the side network. Let a1, . . . ,am, . . . ,aM , where am ∈ Rn×d,

denote the activation outputs with each consisting of n tokens
with a hidden dimension of d. To reduce communication over-
head, MobiLLM applies low-precision quantization on these
intermediate activations before feeding in the side-network.
This process involves converting the original data format of
activations (e.g., 32-bit or 16-bit floating-point) into a lower-
bit data type. Typically, the input data is normalized by the
absolute maximum value of its elements to fit within the range
of the target data type. Taking FP4 quantization as an example,
a 16-bit floating-point tensor is quantized into a 4-bit format
with a range of [0, 15] through

XFP4 = round

(
15

absmax (XFP16)
XFP16

)
, (2)

where XFP16 is the floating-point tensor, X4bit is the quan-
tized counterpart with INT4 data type. Alternatively, by using
NF4 data type, MobiLLM also allows for the following
quantization process:

XNF4 = T

(
XFP16

absmax(XFP16)

)
. (3)

Here, the XFP16 is first normalized using its maximum
absolute value, and then the 4-bit quantized counterpart is
obtained by mapping to a quantile table (denoted by T(·)).
The quantile table T(·) is well constructed to ensure that
each quantization bin has an equal number of values assigned
from the input tensor [31]. MobiLLM is potentially compatible
with various quantization techniques and data formats, which
may help mitigate information distortion by leveraging the
distribution characteristics of activation values. We tested both
FP4 and NF4 data types in our experiments and empirically
demonstrated that NF4 achieves better performance (Section
6.4).

We note that it is not mandatory to partition the backbone
into blocks with an identical number of transformer layers.
A practical approach is to group the top layers (near the
backbone’s output) more finely, while grouping the bottom
layers more coarsely. The rationale is that the bottom layers
of the pre-trained backbone often learn general low-level
feature representations shared across downstream tasks, re-
quiring minimal adjustment during fine-tuning. This eliminates
the need for attaching tunable adapters to every transformer
layer, further reducing communication overhead for uploading
activations to the server. Moreover, this design enhances data
privacy, as the activation outputs from each backbone block
almost distort the input embeddings, making it difficult to infer
the original input samples.

C. MobiLLM Procedure

This subsection details the training procedure of the pro-
posed MobiLLM. We start with MobiLLM training within
each iteration, and then present MobiLLM overlapping train-
ing strategy across iterations for better time efficiency.

1) MobiLLM partitions the training computations within
each iteration between the mobile device and the edge server:
For each iteration, MobiLLM splits the training workloads
between the mobile device and the server. Traditional split
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Fig. 3: Schematic diagram of the quantized adapter
side-tuning structure.

learning involves device-side forward propagation, server-side
forward and backward propagation, and device-side backward
propagation, requiring bidirectional exchanges of smashed
data at the cut layer. Different from the traditional one,
MobiLLM simplifies this process by delegating backpropa-
gation computations entirely to the server, thanks to its design
separating the trainable side network from the frozen backbone
network as shown in Fig. 2 and Fig. 3. Therefore, MobiLLM
only requires a one-way transfer of intermediate activations
(i.e., smashed data) from the mobile device to the server during
the forward pass. Without loss of generality, we present the
detailed training process of MobiLLM within an iteration as
follows:

1) Initialization (mobile device & server): The mobile de-
vice retrieves a pre-trained LLM backbone that is suitable
for its local computational and memory capabilities.
Then, the server initializes a side-network, where the
weights in the adapter modules were drawn from a zero-
mean Gaussian with a well-selected standard deviation.

2) Local backbone forward propagation (mobile device):
The mobile device samples a mini-batch of data from its
local dataset and performs forward propagation through
the frozen backbone model, generating intermediate acti-
vation outputs corresponding to each transformer block.

3) Activation transmission (mobile device → server): The
mobile device quantizes the intermediate activation out-
puts of the backbone model (a1, . . . ,am, . . . ,aM ) into a
compressed format. The mobile device then transmits the
quantized activations along with the corresponding labels
and metadata (e.g., batch indices) to the server.

4) Forward propagation (server): Upon receiving the ac-
tivations, the server integrates them with the input to
its adapter modules, which serve as the side-network.
The server performs forward propagation through the
side-network, generating outputs needed for the training
process.

5) Loss calculation (server): The server computes the train-
ing loss by comparing the side-network’s output with the
ground-truth labels received from the mobile device. The
loss metric depends on the specific downstream task (e.g.,
cross-entropy loss for classification or mean squared error
for regression).

6) Backward propagation and model updates (server): The
server performs backward propagation to update the side-
network.

7) The mobile device continues sampling new data batches
and feeding them into the local backbone model. The
above steps are repeated iteratively to tune the side-
network until it converges.

Figure 3 illustrates the MobiLLM’s forward propagation
process, using a GPT-style transformer architecture [3] as an
example. For simplicity, key components within each trans-
former layer are denoted as follows: Multi-Head Self-Attention
(MSA) is fB1

, and Feed Forward Network (FFN) is fB3
. The

two Normalization (LN2) layers are denoted by fB2
and fB4

,
respectively. In the side-network, the down/up projections and
non-linear layer in an adapter module are simplified as fA1 ,
while Layer Normalization is represented by fA2 . In the l-th
transformer layer, the model generates two distinct outputs -
one for the backbone and one for the side-network, which can
be expressed as

bl+1 = fB4
(fB3

(fB2
(fB1

(bl)+bl))+fB2
(fB1

(bl)+bl)), (4)

and
sl+1 = fA2(fA1(sl + bl+1) + sl +Q(bl+1)). (5)

Here, Q(·) denotes the quantization operator for the shortcut
activation connections.

In our MobiLLM, the forward propagation calculations in
Eq. 4 and Eq. 5 are executed by the mobile device and
server, respectively. Importantly, we observe the updates to
the adapters are decoupled from the backpropagation of the
backbone (i.e., Eq. 4 operates independently of Eq. 5), because
the adapters are not embedded within the backbone layers.
Besides, the adapters take the intermediate activations from the
backbone as their inputs, which ensures that the side-network
benefits from the pre-trained representations during training.

Next, we present the gradient calculation for the trainable
parameters θl of the l-th adapter, where θl = {θ1l , θ2l , ..., θnl }.
We use al+1 to denote the concatenation l-th layer output of
the backbone (i.e., bl+1) and the side-network (i.e., sl+1). In
backpropagation with loss L, the gradient with respect to θl
is:

∂L

∂θl
=

∂L

∂al+1

∂al+1

∂fA

∂fA
∂θl

=
∂L

∂sl+1

(
∂sl+1

∂f1l

∂f1l
∂f2l

∂f2l
∂f3l
· · · ∂f

m
l

∂fA

) n∑
k=1

∂fA
∂θkl

,
(6)

where fml is the intermediate process from the output of the
l-the layer to fA. Most of existing PEFT methods only reduce
the number of trainable parameters θl, i.e.,

∣∣∣∑n
k=1

∂fA
∂θkl

∣∣∣,
resulting in a slight reduction in memory usage. In contrast,
MobiLLM takes a step further. It simplifies the intermediate
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Algorithm 1 MobiLLM Training Procedure

1: Input: Local dataset D, pre-trained backbone fB with
frozen weights, quantization function Q, learning rate η

2: Initialization:
3: Device: Load fB parameters and send backbone config

to server
4: Server: Initialize trainable side-network fS with param-

eters θ
5: while convergence criterion not met do . Training loop
6: On Mobile Device: . Executed per mini-batch
7: Sample data batch: (xt, yt) ∼ D
8: Backbone network forward propagation: at =
fB(xt)

9: Quantize activations: ãt = Q(at)
10: Transmit (ãt, yt) to server
11: Proceed to next data batch . Non-blocking pipeline
12: On Edge Server: . Concurrent with device
13: On receive (ãt, yt):
14: Side-network forward propagation: ŷt = fS(ãt)
15: Compute loss: Lt = L(ŷt, yt)
16: Update parameters: θ ← θ − η∇θLt
17: Model deployment:
18: Server → Device: Transfer fS parameters
19: Device: Assemble joint model: fjoint = {fB , fS} for

local LLM inference

process ∂al+1

∂fA
and offloads the necessary gradient calculations

to the memory-rich server along a parallel gradient highway.
Therefore, MobiLLM saves considerable memory and com-
putation time for the mobile device. In addition, MobiLLM
effectively bypasses the inefficiencies of mobile accelerators
in handling training-specific operations and ensures high uti-
lization of available hardware resources on the mobile device.
Since the server has much higher processing speeds than the
mobile device, the server-side operations also speed up the
LLM fine-tuning for resource-constrained mobile devices.

2) MobiLLM overlaps device-side and server-side training
across iterations: MobiLLM diverges from the conventional
one-forward-one-backward interleaved updating rule by en-
abling uninterrupted forward pass computations on the mobile
device. In parallel with intermediate activation transmission
and side-network training, the mobile device overlaps the
process by continuously feeding data batches into the back-
bone for successive training iterations. This is grounded in
the fact that the device-side backbone model remains fixed
throughout the fine-tuning process, eliminating the need to
wait for parameter updates. As a result, multi-batch parallelism
is achieved without introducing model staleness, which is
a common drawback in other overlapping training methods.
Besides, the server-side side-network training, powered by
high-performance computation, typically outpaces the device’s
execution and transmission speeds by several times. This
streamlined workflow guarantees the timely reception of up-
to-date intermediate outputs by the server, eliminating unnec-
essary waiting times and accelerating collaborative fine-tuning.
We summarize the procedure in Algorithm 1, which outlines

Algorithm 2 Adaptive Activation Quantization Algorithm.

1: Input: Bt (current bandwidth), τ (latency threshold),
{I(m)} (layer importance)

2: Dmax ← Bt · τ . Transmission budget
3: for each layer m do
4: Q(m) ← Qmin . Minimum precision initialization
5: Dremain ← Dmax −

∑
m Size(Q(m))

6: while Dremain > 0 ∧ ∃Q(m) < Qmax do
7: ∆Umax ← 0, k∗ ← ∅
8: for each layer m where Q(k) < Qmax do
9: δε← ε(Q(m))− ε(Q(m)+1)

10: ∆U ← δε× I(m)

11: if ∆U > ∆Umax then
12: ∆Umax ← ∆U, m∗ ← m

13: ∆D ← Size(Q(m∗)+1)− Size(Q(m∗))
14: if ∆D ≤ Dremain then
15: Q(m∗) ← Q(m∗) + 1
16: Dremain ← Dremain −∆D
17: else
18: Break
19: Output: Quantization bitwidths {Q(m)}∀m

the parallel execution across the device and server.

D. Importance-Aware Adaptive Activation Quantization

The transmission of intermediate activations from mobile
devices to the server may constitute a potential bottleneck
in MobiLLM’s collaborative fine-tuning paradigm, particu-
larly under poor network conditions with fluctuated channel
quality [32]. To mitigate this limitation, we introduce an
online adaptive quantization method that optionally replaces
the fixed-precision quantization scheme in the vanilla Mo-
biLLM implementation. Its core idea is to strategically adjust
quantization precision across backbone transformer blocks.
This method dynamically adjusts bitwidth assignments in real-
time, responsively adapting to both instantaneous network
conditions and layer-specific feature sensitivity.

Mechanistically, the system initiates each iteration by pro-
filing current uplink bandwidth Bt through periodic probe
packets, establishing a transmissible data budget as:

Dmax = Btτ. (7)

Here, τ represents a configurable latency threshold that
accommodates side-network computation at the server by
scaling the transmission windows. Importance characterization
employs a generalized metric I(m), applicable to various
importance measures (e.g., Fisher information, gradient mag-
nitude, or attention entropy), to quantify the sensitivity of layer
m’s activations to precision distortion.

The bitwidth allocation algorithm optimizes within budget
constraints through marginal utility maximization. Starting
from minimal bitwidth for all layers (Q(m) = Qmin,∀m),
the algorithm iteratively upgrades precision through utility
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maximization. The marginal utility ∆U (m) for upgrading layer
m combines precision gain and importance:

∆U (m) =
[
ε(Q(m))− ε(Q(m) + 1)

]
· L(m), (8)

where ε(Q(m)) represents the quantization error at bitwidth
Q. The optimization terminates when transmission budget
exhaustion occurs (i.e., Dremain ≤ 0) or all layers reach
maximum precision (i.e., Q(m) = Qmax,∀m).

The above adaptive quantization method prioritizes preci-
sion allocation to sensitivity-critical layers, thereby preserving
high-information features. The calibrated latency thresholds
maintain minimal computational idle time at the server, while
dynamically adapting to network conditions. Collectively, the
system achieves an optimal balance between quantization error
suppression and transmission efficiency.

E. Advantages of MobiLLM

In this subsection, we first analyze how MobiLLM helps to
save memory of LLM fine-tuning on the mobile device, and
then discuss MobiLLM’s other merits.

1) Analysis of memory saving: MobiLLM restricts device-
side operations to forward propagation only, drastically reduc-
ing the mobile device’s memory usage. Specifically, MobiLLM
reduces two main contributors of the memory footprint for the
mobile device during the fine-tuning process, i.e., intermedi-
ate activations, optimizer states and model states, which are
analyzed as follows.

(i) Intermediate activations: During forward propagation,
only the activations of a few selected layers are temporarily
stored on the device and can be discarded after transmission
to the server. Consider an L-layer LLM, where the activation
size of each layer is denoted by A = SBH . Here, S, B,
and H represent the sequence length, batch size, and hidden-
layer dimension, respectively. Traditional fine-tuning methods
require storing activations for all layers on the mobile device,
which consumes approximately LA of memory. In contrast,
MobiLLM requires only γA, where γ (γ � L) is the number
of selected layers for temporary storage. This reduces memory
usage for activations by approximately L/γ-fold.

(ii) Optimizer state: Classical optimization algorithms like
Adam require storing additional states (e.g., momentum and
second-order statistics), typically doubling or tripling the
memory needed for trainable model parameters. In MobiLLM,
these computations and states are fully offloaded to the server,
avoiding that memory consumption on the mobile device.

Those optimizations in MobiLLM design collectively re-
duce the memory footprint, enabling mobile devices even with
limited memory capacities to fine-tune LLMs efficiently.

2) Advantages beyond memory efficiency: MobiLLM has
other merits that enhance its practicality and performance in
resource-constrained settings, which are listed as follows.

(i) Enhanced system reliability. Rather than relying on
fragile multi-hop pipeline collaboration among multiple mo-
bile devices [13], [14], MobiLLM only employs a single
server with sufficient computational resources for help. Such a
simple device-server design aligns with existing mobile edge
network architecture, which has mature physical and network

TABLE II: Training parameters.

Parameter Value Parameter Value
Training precision FP16 Epochs 20

Batch size 16 Learning rate 5× 10−4

Sequence length 256 Transmission rate 60 Mbps

layer protocols to support terminal-server collaboration with
high speed transmissions. For instance, 5G/6G base stations
often feature high-performance computational units to provide
nearby services for mobile users, and smart hubs in home
IoT networks can manage workloads for connected devices
via high-speed Wi-Fi links. Thus, the setup of MobiLLM is
inherently more reliable and practical. In addition, MobiLLM
ensures user data never leaves the local mobile device through-
out the LLM fine-tuning process.

(ii) Versatility besides fine-tuning. Unlike pipeline-based
methods that partition LLM across devices, MobiLLM allows
each mobile device to keep a full LLM. That enables mobile
devices to independently run local inference tasks besides on-
device LLM fine-tuning. In other words, the mobile device
may respond to on-demand and latency-sensitive inference
requests during a continuous fine-tuning process via local
resource sharing, i.e., simultaneously serving LLM fine-tuning
and inference. In addition, the device can periodically update
its model by fetching and merging task-specific adapters
trained on the server, and the server can host multiple side-
networks for different downstream tasks. That empowers a
mobile device to switch between LLM fine-tuning tasks by
simply altering the side-networks required at the server side.
This flexibility enhances mobile devices’ utility both during
and beyond LLM fine-tuning process.

V. EXPERIMENTAL SETUP

A. MobiLLM Implementation

The proposed MobiLLM system is deployed on a testbed
consisting of a server and a mobile device. The server is
equipped with a NVIDIA A100 GPU (6912-core Ampere GPU
with 40GB memory). On the mobile device side, we consider
two classical types of devices: (1) NVIDIA Jetson Xavier NX
with 6-core NVIDIA Carmel ARM CPU, 384-core NVIDIA
Volta GPU, and 8GB RAM. (2) Huawei Matebook laptop with
Intel 13th Gen Core i5-13500H and 16GB RAM, which is
a CPU-only device. The communication between the mobile
device and the server is based on Wi-Fi 5 connections, which
uses the WebSocket communication protocol.

In particular, LLMs’ fine-tuning on Jetson Xavier NX
contributes the major experimental results in this work. Since
Xavier’s GPU and CPU share 8GB RAM, its maximum avail-
able GPU memory for training is 4.6G. The Matebook laptop
is employed to test the training acceleration performance of
those CPU-only mobile devices (Sec. VI-C).

B. Baselines

The MobiLLM scheme is benchmarked against the follow-
ing state-of-the-art baselines across different LLM tasks.
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TABLE III: Experiment results on GLUE benchmark. Model: OPT-350M (Batch size=16, Sequence length=256)

Method
Hidden
Size/ r

Trainable
Parameters (%)

Memory Usage (GB) Accuracy (%)
Training Inference SST-2 QNLI QQP MRPC CoLA MNLI RTE STS-B Avg

Full-FT — 100 7.910 1.580 92.9 84.2 85.9 83 61.9 76.4 76 85.6 80.7

LoRA
64 1.86 6.700 1.580 92.7 84.1 85.1 82.2 61.1 76.5 75.8 85.9 80.4
16 0.47 6.655 1.580 92.2 83.7 84.3 81.7 60.4 76.1 75.4 85.6 79.9

BitFit — 0.08 6.081 1.580 93.8 84.2 84.6 82.2 61.4 76.3 76 86.2 80.6

LST
16 0.84 4.932 1.624 91.9 84 84.5 82.3 60.2 75.8 73.9 84.9 79.7
64 0.15 4.787 1.588 91.4 83.8 84.3 81.9 60.2 75.6 73.2 84.3 79.3

MobiLLM-L
64 1.12 2.452 1.623 90.2 83.7 84.2 81.8 59.7 75.2 73.4 84.2 79.1
16 0.42 2.421 1.605 90 83.4 84 81.6 59.3 75.1 72.9 83.7 78.8

MobiLLM
64 0 1.635 1.623 89.9 83.5 83.9 81.7 59.4 75.1 73 84 78.8
16 0 1.621 1.605 89.8 83.1 83.5 81.6 59.3 74.7 72.7 83.5 78.5

TABLE IV: Experiment results on GLUE benchmark. Model: OPT-1.3B (Batch size=16, Sequence length=256)

Method
Hidden
Size/ r

Trainable
Parameters (%)

Memory Usage (GB) Accuracy (%)
Training Inference SST-2 QNLI QQP MRPC CoLA MNLI RTE STS-B Avg

Full-FT — 100 20.895 4.403 95.9 85 86.9 84 63.9 81 83 89.6 83.6

LoRA
64 0.95 14.569 4.403 94.4 84.9 86.6 83.3 62.5 81.1 82.3 89.2 83.0
16 0.24 14.497 4.403 94.2 84.6 86.1 82.9 61.9 79.7 82.1 88.7 82.5

BitFit — 0.04 13.371 4.403 95.4 85.5 86.4 83.3 62.2 79.9 81.7 88.8 82.9

LST
16 0.85 11.122 4.533 94.5 85.8 86.4 83.3 60.8 77.6 81.6 88.4 82.3
64 0.15 10.804 4.427 94.4 85.6 86.2 83.1 60.3 77.4 81.2 88.1 82.0

MobiLLM-L
64 0.49 6.132 4.472 94.1 84.7 85.8 81.7 59.9 76.9 80.7 87.9 81.5
16 0.13 6.088 4.461 94.1 84.3 85.6 81.2 59.4 76.7 80.4 87.5 81.2

MobiLLM
64 0 4.495 4.472 94 84.5 85.4 81.7 59.7 76.8 80.6 87.3 81.3
16 0 4.487 4.461 93.8 84.1 85.3 81.4 59.4 76.6 80.2 87.3 81.0

• Full-FT: Updates all parameters of the pre-trained LLM,
serving as the performance upper bound at significant
computational expense.

• LoRA [11]: Inserts trainable low-rank decomposition
matrices into transformer layers while freezing backbone
weights, with r (reported as hidden size) indicating the
low-rank dimension.

• BitFit [12]: Trains exclusively the bias terms within
linear/attention layers while keeping all other weights
frozen.

• LST [20]: Uses lightweight transformer structures pruned
from the backbone as the side-network. The reduction
factor r determines dimension shrinkage of side-network
(e.g., r = 16 implies 1/16 of the backbone’s width).

• SL [18]: Layer-wise model partitioning with BitFit fine-
tuning, where initial transformer layers are processed on
the device and remaining layers on the server.

• MobiLLM-L: Trains both the backbone network and the
side-network entirely on-device, isolating the impact of
our server-assisted computation partitioning.

C. Models, Datasets and Parameters
The OPT-350M and OPT-1.3B, two popular decoder-only

LLMs from the OPT series, are exploited to evaluate Mo-
biLLM’s performance. The pre-trained weights of the above
models are from Huggingface [33].

The MobiLLM and several baselines are compared on
natural language understanding (NLU) tasks. We use the
GLUE [34] benchmark, which consists of seven classification
and one regression task. The benchmark evaluate models
on multiple diverse tasks over linguistic acceptability (CoLA
[35]), sentiment analysis (SST-2 [36]), similarity and para-
phrase (MRPC [37], QQP [38], STS-B [39]) and natural
language inference (MNLI [40], QNLI [41], RTE [36]). We
report accuracy on MNLI, QQP, QNLI, SST-2, MRPC, and
RTE, Pearson correlation coefficients on SST-B, and Mathews
correlation coefficients [42] on CoLA.

Unless otherwise specified, MobiLLM and all baseline
methods follow the same simulation configuration, as sum-
marized in Table II.

VI. EVALUATION RESULTS & ANALYSIS

A. End-to-End Performance

Performance of different baselines on GLUE Bench-
mark. We first study the performance of MobiLLM on the
OPT-350M model. Table III summarizes the experimental
results of MobiLLM and other baselines on GLUE benchmark
under the default setting. Overall, MobiLLM achieves the
lowest memory footprint among all methods while maintain-
ing comparable accuracy. Particularly, MobiLLM outperforms
Full-FT by a significant reduction of 79.5% in memory usage,
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(a) Impact of batch size (Model: OPT-1.3B) (b) Impact of sequence length (c) Impact of model size

Fig. 4: Performance on various training configurations. (Green area indicates the memory-safe region for Xaiver with peaking
4.6 GB GPU RAM.)
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Fig. 5: The breakdown of memory footprint.

while only introducing a 2% accuracy drop. Against other
PEFT baselines, i.e., LoRA and BitFit, MobiLLM is much
better than them by reducing averaged 75% memory require-
ments. Using a local deployment without server assistance,
MobiLLM-L reduces memory usage by 2.48 GB compared
to LST, thanks to its lightweight adapter-based side-network
design. With server-assisted side-tuning, MobiLLM further
reduces memory usage to 1.621 GB. The significant improve-
ment over all the baselines is mainly attributed to MobiLLM’s
design, which offloads dominant computational and memory
burdens to the high-performance server. It then allows the
mobile device to handle only the forward pass, in contrast
to other baselines that all require the backward pass on the
mobile device and can easily result in out-of-memory errors.
Moreover, MobiLLM enables the mobile device to fine-tune
LLM with a memory cost close to that of on-device inference,
as verified in Table III. That makes on-device LLM fine-tuning
practical, especially for memory-constrained mobile devices.

MobiLLM makes the billion-sized LLM model fine-
tuning affordable to the mobile device. We further evaluate
MobiLLM using a billion-sized model, OPT-1.3B, and report

the results in Table IV. LoRA, BitFit and LST have excessively
huge memory footprints exceeding 10 GB, rendering them
infeasible for most mainstream mobile devices. In contrast,
our MobiLLM effectively supports fine-tuning such sizable
models on a single mobile device. For instance, MobiLLM
requires only 4.487 GB of memory on the mobile device
to run the fine-tuning task smoothly on Xavier with 4.6
GB DRAM. Those results demonstrate that even resource-
constrained mobile devices can reliably fine-tune such billion-
sized LLMs without the risk of memory overflow.

B. Advantages in Memory Efficiency
MobiLLM achieves near-stable memory usage across

diverse training configurations. Figure 4(a)-4(b) demonstrate
how batch size, sequence length, and model size affect the
memory usage. Fig. 4(a) shows that while memory usage in-
creases with batch size for all methods, MobiLLM consistently
maintains the lowest memory footprint among all. Besides,
MobiLLM exhibits slower memory growth compared to other
baselines as the batch size increases. This is because, from
a memory usage perspective, the batch size primarily affects
the amount of intermediate activations that need to be stored
for backpropagation, whereas our MobiLLM frees the mobile
device from performing backpropagation entirely. Fig. 4(b)
shows memory usage for varying sequence lengths. Similar
to the impact of batch size, LST and MobiLLM alleviate the
growth rate of memory footprint of intermediate activations.
Notably, MobiLLM requires only 41% of the device-side
memory usage of LST, when the sequence length is set to
256.

We further evaluates the impact of different model sizes, as
shown in Fig. 4(c), testing our approach at five different model
scales: OPT-125M, OPT-350M, OPT-1.3B, OPT-2.7B, and
OPT-6.7B. The results indicate that MobiLLM consistently
outperforms baselines, with its memory advantage widening as
model size grows. These results verify that MobiLLM makes
the mobile device’s memory usage insensitive to training
configurations such as batch size and sequence length, having
a near-consistent memory cost. This alleviates the common
“occasional success or failure” issue for fine-tuning specific
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(c) MRPC@OPT-350M
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Fig. 6: Convergence performance on various models and tasks (On Xavier).

models under varying settings. It further helps to prevent
memory overflows on mobile devices even when processing
larger batch sizes and longer sequences, ensuring reliable fine-
tuning performance.

MobiLLM excels in memory saving. Figure 5 further
shows the breakdown of memory footprint for different
methods when fine-tuning OPT-1.3B. Both LoRA and BitFit
significantly reduce memory consumption by decreasing the
number of trainable parameters, thereby remarkably lowering
the memory required for optimizer states, as shown in the
zoomed-in view in Fig. 5. MobiLLM and LST further optimize
the memory usage by establishing backpropagation highways
for side-tuning, which reduces the need to store intermediate
activations for the backward pass. As a result, it achieves a
total memory reduction of 2−4 GB. MobiLLM also achieves
an additional reduction of 6.4 − 6.7 GB memory compared
to LST, owing to two key factors: 1) MobiLLM offloads the
intermediate activation memory burden of the side-network
to the server. 2) MobiLLM eliminates the need for storing the
optimizer states at the mobile device since it makes the mobile
device only execute forward propagation.

C. Advantages in Fine-tuning Acceleration

MobiLLM accelerates on-device fine-tuning. Figure 6 and
Fig. 7 show training curves that evaluate the accuracy-to-
time performance of MobiLLM and other baselines. Specif-
ically, the results in Fig. 6 are obtained by fine-tuning

OPT-350M/1.5B models (batch size=12) on a Xavier device
equipped with a GPU offering 4.6 GB DRAM for model
training. Fig. 7 shows results from experiments on a CPU-
only laptop, which, unlike Xavier, lacks hardware acceleration
for neural network computations but benefits from larger
available memory. Here, we exclude the results of the Full-FT
method from comparison as its memory requirements exceed
the capabilities of both devices.

Overall, the proposed MobiLLM consistently outperforms
its peer designs across various LLMs and tasks, achieving
significant training speedups while maintaining comparable
accuracy. Compared with the LoRA baseline, MobiLLM expe-
dites the fine-tuning to the target test accuracy by an average
of 2.3× on the laptop. Crucially, Fig. 6(b) and Fig. 6(d)
verifies that MobiLLM-L (the fully localized variant of our
MobiLLM) stands out as the only non-split solution capa-
ble of fine-tuning the billion-scale OPT-1.3B model under
Xavier’s 4.6 GB memory constraint-other methods that do
not employ model partitioning fail to initialize under this
limitation. This advantage stems from its training strategy
(as discussed in Sec. IV-C): unlike LoRA and BitFit, which
compute gradients through the frozen backbone, MobiLLM-
L updates only the side-network, avoiding backpropagation
through the backbone and thus reducing memory footprint
and speeding up tuning. Moreover, MobiLLM-L also sur-
passes LST in efficiency. Although LST uses scaled-down
transformer-based side networks, their structure still entails
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Fig. 7: Convergence performance on various models and tasks (On CPU-only laptop).

high FLOPs due to compute-intensive self-attention and feed-
forward layers. In contrast, MobiLLM’s adapter-style side-
network is computationally lighter.

As shown in Fig. 6 and Fig. 7, MobiLLM achieves ad-
ditional speedup over its localized variant (MobiLLM-L) by
offloading the side-network’s training to the server, thereby
leveraging the server’s high-performance compute for the
associated forward and backward passes. Moreover, although
both MobiLLM and SL adopt a form of model partitioning,
MobiLLM’s design decouples the device-side forward pass
from the server-side side-network training, enabling parallel
computation. This eliminates device idle time and leads to bet-
ter acceleration than the sequential execution scheme in SL. In
addition, since the mobile device in MobiLLM focus solely on
inference-related computations, cutting-edge inference-centric
hardware acceleration techniques can be effortlessly integrated
to further achieve speedups.

D. Sensitivity Study

Sensitivity to activation quantization levels. Table V
illustrates how varying quantization levels of intermediate
activation values influence the performance of MobiLLM. The
results show that MobiLLM achieves similar accuracy per-
formance across all quantization settings. When adopting the
FP4 data type, MobiLLM incurs an average accuracy drop of
only 1% compared to non-quantized methods while reducing
per-iteration transmission volume by approximately 4×. When

TABLE V: Performance comparison with different activation
quantizers. (Batch size=16, Sequence length=256)

Model
Quantizer

Configuration

Data

Size (MB)
Accuracy

OPT-350M

No Act. Quant. 190 79.1

FP8 Act. Quant. 99.6 78.6

FP4 Act. Quant. 49.2 78.1

NP4 Act. Quant. 49.2 78.8

OPT-1.3B

No Act. Quant. 400 81.5

FP8 Act. Quant. 200.3 81.2

FP4 Act. Quant. 100.2 80.4

NP4 Act. Quant. 100.2 81.3

adopting the NP4 data format, the accuracy remains even
more stable. The results validate that MobiLLM can balance
the trade-off between fine-tuning accuracy and transmission
burden by appropriately selecting the activation quantization
level. Furthermore, MobiLLM is compatible with diverse
quantization techniques and benefits from their performance
gains, which allows MobiLLM to tolerate quantization noise
within an acceptable range to achieve the desired fine-tuning
performance.

Sensitivity to transmission rates. By fixing the activation
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TABLE VI: Sensitivity to different transmission rate.
(Model: OPT-350M)

Time Per

Iteration (s)
10 Mbps 60 Mbps 100 Mbps

Device

only

Batch size=12 7.3 5.5 5.4 6.8

Batch size=16 9.8 7.48 7.5 8.4

Batch size=24 14.7 10.1 10 —

Batch size=30 18.4 14 14.1 —

quantization level to be 4-bit, we also study the impacts
of different transmission rates on the convergence time of
MobiLLM, as reported in Table VI. To ensure the side-
network effectively learns from the device’s data, the mo-
bile device occasionally reports its intermediate activations,
whose size is proportional to the product of batch size and
sequence length. At relatively higher uplink rates (e.g., 60
Mbps and 100 Mbps), MobiLLM converges faster than the
device-only method despite introducing transmission delays.
This is achieved through our overlapping training and activa-
tion quantization designs, which allow the mobile device to
continuously conduct forward propagation concurrently with
low-bit activation transmission. Moreover, the quantization of
activations effectively reduces the transmission delays. The
server’s efficient side-network computation further accelerates
training compared to using a mobile device alone, mitigating
the impact of transmission delays. Even at a slow transmission
rate (e.g., 10 Mbps), MobiLLM maintains acceptable training
time (only a 7% increase compared to device-only), where the
transmission delay emerges as a bottleneck. Notably, with a
batch size larger than 24, MobiLLM can still support on-device
fine-tuning, although the longer transmission delay slightly
prolongs the training time. In contrast, device-only methods
exceed the device’s memory capacity and fail to perform
fine-tuning under those settings. Future deployment or wide
coverages of high-speed networks (e.g., 5G beyond, 6G, or Wi-
Fi 6) will strengthen MobiLLM’s power to enable or accelerate
LLM fine-tuning on resource-constrained mobile devices.

E. Additional Discussion
Energy Efficiency Implications: Although a direct measure-

ment of energy consumption is reserved for future work, the
performance improvements demonstrated by MobiLLM, par-
ticularly in computational and memory efficiency, are consis-
tent with improved energy utilization. On mobile Systems-on-
Chips (SoCs), reductions in computational load and memory
operations typically correlate with lower power consumption.
Thus, the efficiency gains observed in our experiments suggest
that MobiLLM offers a favorable direction for energy-efficient
on-device fine-tuning.

Compatibility with Model Quantization: To further alleviate
on-device memory requirements, MobiLLM is fully compati-
ble with model quantization. Our additional experiments reveal
that with the backbone model quantized to INT4, MobiLLM
limits on-device memory usage to 1.176 GB when fine-
tuning OPT-350M with batch size 16 and sequence length

256. For fine-tuning an OPT-1.3B model, the memory usage
is remarkably reduced to 2.751 GB (over a 5× reduction
compared to LoRA fine-tuning) while maintaining a negligible
accuracy drop of just 2%. In addition, low-precision data are
typically faster to execute on modern accelerators by utilizing
the integer kernels, which are supported by a wide range of
hardware (e.g., NVIDIA GPUs, Intel CPUs, Qualcomm DSPs,
etc.). These facts highlight the practical value of combining
MobiLLM with quantization for deploying LLMs in resource-
limited settings.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed MobiLLM, a novel scheme
for on-device LLM fine-tuning. MobiLLM separates parallel
adapters from the backbone network, and offloads dominant
computational and memory burdens in the fine-tuning process
to the edge server. It allows the mobile device to retain a
frozen backbone model and perform only forward propagation
parallel to the server-side execution, while keeping their data
locally on the device. Comparative analyses have revealed that
MobiLLM outperforms benchmarks, including a 4× reduction
in memory footprint and a 2.3× convergence speedup.

Crucially, MobiLLM fundamentally rethinks workload par-
titioning in device-server collaborative learning system - mov-
ing beyond naive layer-wise LLM splitting - by innovatively
distributing computations based on operator-level character-
istics and memory access patterns. This principled approach
unlocks the potential for on-device fine-tuning of billion-
sized LLMs, such as OPT-1.3B, demonstrating viability on
commodity mobile hardware, even a CPU-only one. For the
future work, we will explore integrating MobiLLM with post-
training quantization and selective activation transmission to
further reduce memory and communication overhead.We will
also conduct a more comprehensive evaluation under highly
dynamic network conditions to further verify the system’s
robustness in practical environments.
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