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Abstract

The distributed nature of federated learning exposes it to
significant security threats, among which backdoor attacks
are one of the most prevalent. However, existing backdoor
attacks face a trade-off between attack strength and stealth-
iness: attacks maximizing the attack strength are often de-
tectable, while stealthier approaches significantly reduce
the effectiveness of the attack itself. Both of them result in
ineffective backdoor injection. In this paper, we propose
an adaptive layer-wise gradient alignment strategy to ef-
fectively evade various robust defense mechanisms while
preserving attack strength. Without requiring additional
knowledge, we leverage the previous global update as a ref-
erence for alignment to ensure stealthiness during dynamic
FL training. This fine-grained alignment strategy applies ap-
propriate constraints to each layer, which helps significantly
maintain attack strength. To demonstrate the effectiveness of
our method, we conduct extensive evaluations across a wide
range of datasets and networks. Our experimental results
show that the proposed attack effectively bypasses eight state-
of-the-art defenses and achieves high backdoor accuracy,
outperforming existing attacks by up to 54.76%. Addition-
ally, it significantly preserves attack strength and maintains
robust performance across diverse scenarios, highlighting
its adaptability and generalizability. Code implementation is
available at https://github.com/yqqhyqq/LGA.

1. Introduction
Federated Learning (FL) has emerged as a promising
paradigm for privacy-preserving distributed machine learn-
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ing, allowing multiple decentralized clients to collabora-
tively train a global model without directly sharing their
raw data [14, 21]. FL leverages local computation on edge
devices (e.g., smartphones and IoT sensors) and aggregates
model updates via a central server, making it widely adopted
in various real-world applications [27, 39]. However, the
distributed architecture of FL systems significantly increases
the potential attack surface, introducing a wide range of
security threats, among which backdoor attacks are a com-
monly studied threat in recent research. In a backdoor at-
tack [2, 32, 33, 35, 41, 42], adversarial clients intentionally
inject a backdoor into the global model by uploading a poi-
soning local update. As a result, the global model behaves
normally on benign inputs but misclassifies triggered inputs
into predefined target labels.

Existing backdoor defenses primarily focus on detecting
and filtering malicious updates by leveraging information
from multiple dimensions. Specifically, some methods rely
on distance-based measures between benign and malicious
updates [4, 5, 12, 23], while others detect inconsistencies in
parameter signs [25] or exploit the spectral separability [29].
These defenses significantly restrict the feasibility of back-
door attacks.

To counter these defenses, an effective backdoor attack de-
pends on two key factors: attack strength and attack stealth-
iness. Some attacks [2] achieve high attack strength by
scaling up the update, which increases their detectability and
makes them easily filtered by defense mechanisms. Oth-
ers [35, 42] prioritize stealthiness to evade detection but
show significantly lower performance when no defense is
present, highlighting their sacrifice of attack strength. These
attacks essentially constrain the malicious update by dis-
carding certain backdoor-related information [42] or using
coarse-grained scaling [33]. Although constraining mali-
cious updates helps maintain stealthiness, this inappropriate
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constraint leads to attack strength degradation. Therefore,
balancing the attack stealthiness and attack strength with
limited knowledge of the system’s defenses is challenging.

To address the challenge, we propose a layer-wise adap-
tive gradient alignment strategy that dynamically adjusts
the norm bound for each layer of malicious updates. This
adjustment enhances their similarity to the benign update
distribution in a fine-grained manner, thereby achieving both
attack stealthiness and attack effectiveness. Without requir-
ing any additional information, our approach uses the previ-
ous global update as a reference point for adaptive alignment.
By doing so, the proposed strategy not only constrains the
malicious update within a small norm ball, but also enables
the attack to adapt to the evolving global model and train-
ing dynamics, thereby significantly improving its stealthi-
ness. Inspired by previous observations [15] that parameters
within the same layer tend to share similar gradient magni-
tudes, we further conduct empirical analysis revealing that
the magnitudes of both malicious and benign updates vary
across layers, and there is no consistent proportional rela-
tionship between them. This discrepancy highlights the need
for layer-specific norm constraints. Such constraints are es-
sential to prevent over-constraining layers with inherently
smaller magnitudes, thereby preserving attack strength.

Extensive experiments validate the effectiveness of our at-
tack, demonstrating its ability to evade eight state-of-the-art
defenses while maintaining a high attack success rate. Addi-
tionally, we investigate its performance across various attack
scenarios, demonstrating its generalizability. We summarize
our main contributions as follows:
• We propose an adaptive layer-wise gradient alignment

strategy to effectively evade various robust defense mecha-
nisms while preserving attack strength. Without requiring
any additional knowledge, we leverage the previous global
update as a reference for gradient alignment, ensuring that
the attack maintains the stealthiness while adapting to the
training dynamics. This fine-grained alignment strategy
applies layer-specific constraints, allowing the attack to
retain its strength.

• We conduct extensive evaluations across diverse models
and datasets, demonstrating that the proposed attack suc-
cessfully bypasses eight SOTA defenses and maintains the
attack impact. Our backdoor attack outperforms SOTA
attacks, with an improvement in backdoor accuracy by
up to 54.76%. Furthermore, our attack exhibits excellent
performance across various scenarios, such as different
attack patterns, highlighting its generalizability.

2. Related Work
Backdoor attacks in FL. Backdoor attacks present a se-
rious security threat in FL [16]. Typically, attackers com-
promise a small subset of client devices to upload poisoned
updates. These updates are crafted to inject the backdoor into

the global model, which then enables the model to obtain
predetermined predictions for samples with specific trigger
features. The backdoor attack process generally consists
of two stages: trigger embedding and model manipulation.
To successfully inject a backdoor, the attacker can carefully
design either the trigger or the model update to bypass de-
tection. Accordingly, existing methods can be divided into
two categories: model-optimization attacks [2, 18, 41, 42]
and trigger-optimization attacks [8, 20, 24, 33, 35, 40].

Model-optimization attacks [2, 3, 18, 33, 41, 42] focus on
fine-tuning the model to achieve the desired attack. Scaling
attack [2] amplifies malicious updates to achieve a one-shot
attack. However, the abnormally large gradient magnitudes
make it exposed to detection. Neurotoxin [41] projects mali-
cious gradients onto infrequently updated neurons, improv-
ing the persistence of the attack and preventing the back-
door from being overwritten by benign updates. However,
as an unconstrained backdoor attack, it’s vulnerable to ro-
bust detection. The LP attack [42] adaptively injects the
backdoor into backdoor-critical (BC) layers, achieving high
stealthiness. However, by discarding backdoor-related in-
formation in non-BC layers, the attack suffers from reduced
strength. PGD attack [33] exploits knowledge of server-side
defenses to craft malicious updates that bypass detection.
However, this strategy is only effective when the attacker has
access to detailed information about the system. Addition-
ally, 3DFed [18] introduces three distinct attack strategies
targeting different types of defenses and utilizes an indica-
tor for adaptive strategy adjustments. However, it relies on
client collaboration.

Trigger-optimization backdoor attacks aim to design
triggers that are both subtle and adaptable, ensuring their
stealthiness and effectiveness. Edge-case attack [33] selects
marginal data as poison samples to circumvent detection
mechanisms. DBA [35] firstly introduces distributed back-
door attacks, decomposing a global trigger into smaller, less
detectable components. These approaches craft triggers at
the pre-training stage and then fix them during training. Re-
cently, a range of studies [8, 19, 20, 24, 40] dynamically
optimize the trigger throughout the training process and ob-
tain better attack results than the former ones.

Defense strategies against backdoor attacks in FL. In
FL [16], the server only receives uploaded models without
access to any information about client data. As a result,
the majority of defense strategies are similarity-based, aim-
ing to detect and mitigate backdoor attacks by identifying
differences between malicious and benign models.

Among them, distance-based defenses [1, 4, 5, 9, 12, 17,
22, 23, 28, 29, 31, 34] exploit the observation that mali-
cious models often deviate from benign ones in their dis-
tribution within high-dimensional space, making distance-
based metrics an effective tool for detection. MultiKrum [4]



only aggregates updates that are selected with the smallest
pairwise Euclidean distances. FLTrust [5] weights upload
gradients based on their cosine similarity to a trusted gra-
dient to mitigate the influence of malicious models. The
trusted gradient is obtained from a root dataset collected by
the server. FLAME [23] and DeepSight [28] use pairwise
cosine distance between client gradients for clustering, iden-
tifying malicious gradients as outliers and further refining
the defense through additional modules. Multi-Metrics [12]
dynamically adjusts the weights of three distance metrics to
detect backdoor models. MESAS [17] leverages six distance
metrics for detection.

Other similarity-based defenses [13, 26, 29, 36, 38]
identify malicious updates from more diverse perspectives.
DnC [29] leverages singular value decomposition (SVD)-
based spectral methods to remove outliers. RLR [25] detects
inconsistencies in parameter signs across training rounds
and adjusts learning rates accordingly to suppress backdoors.
MASA [37] leverages the observation that a malicious model
unlearns the main task more quickly than a benign model
for detection. FedREDefense [36] relies on the finding that a
malicious model is more resistant to distillation. In addition,
some methods recently focus on the difference in update
behavior between benign models and malicious models at
the parameter level. For instance, SparseFed [26] only aggre-
gates Top-k highest magnitude parameters because the back-
door updates are usually injected into coordinates that are
unimportant for benign updates. Meanwhile, Lockdown [13]
restrains local training in a subspace to further reduce the
poison-coupling effect.

3. Methodology
Background. Federated Learning (FL) distributes the
training task across multiple clients to preserve data pri-
vacy. At the beginning, a global model θ0g is initialized on
the server and distributed to a set of N clients. In each round
t, a standard FL framework involves the following steps:
1. Local Training: Each client i receives the global model

θt−1
g and performs E local epochs of stochastic gradient

descent (SGD) on its private dataset D̂i with batch size
B, obtaining an updated model θti . The client computes
the model update as:

∆θti = θti − θt−1
g , (1)

and uploads it to the server.
2. Global aggregation: The server randomly selects a subset

of clients and aggregates their model updates {∆θt} to
compute the global update:

∆θtg =
∑

i∈[n] ∆θti , (2)

and updates the global model as θtg = θt−1
g +∆θtg. The

new global model is then distributed to clients for the

next round. Before updating the global model, the server
typically performs backdoor detection during aggregation
to mitigate the impact of malicious updates.

In FL, backdoor attacks exploit the system’s decentralized
nature. Specifically, an attacker, denoted as A, compromises
a subset of clients and injects malicious updates to implant a
backdoor into the global model. We consider a continuous
attack scenario, following prior studies [20, 35, 42].

Adversarial Objectives: The attacker A aims to inject a
backdoor into the global model while minimizing the impact
on the model’s performance on non-poisoned data. The goal
of the backdoor injection is to manipulate the model so that
it misclassifies inputs with a specific trigger pattern as an
incorrect target label. We denote the malicious update as
∆θm, which is trained on the poisoned dataset. By care-
fully crafting ∆θm, the attacker can introduce the backdoor
without significantly degrading the model’s overall accu-
racy. The server’s aggregation mechanism, which aggregates
updates from multiple clients, may unintentionally include
these poisoned updates, thereby corrupting the global model.

Adversarial Capability: The attacker A has the ability
to control a small subset of clients and gain access to their
datasets. Additionally, the attacker can manipulate the mod-
els of these compromised clients [2, 35, 41]. The attacker
does not have access to the data or models of benign clients,
nor to the specific defense methods implemented by the
defender.

Overview. We introduce an adaptive layer-wise gradient
alignment to enhance stealthiness while preserving attack
strength. In each round, we train the malicious update on
a poisoned local dataset and iteratively align gradients to
resemble benign updates before uploading them to the server.
This increases the likelihood of the server aggregating the
malicious update, effectively injecting the backdoor into the
global model.

Adaptive reference selection. Traditionally, the Uncon-
strained malicious update ∆θm, which is trained on the
poisoned dataset including out-of-distribution backdoor sam-
ples, tends to exhibit a larger magnitude compared to benign
updates [32]. To ensure that the malicious update remains
similar to the distribution of benign updates, it should be
carefully constrained within an appropriately small norm
ball. Notably, the selection of the norm bound significantly
impacts the effectiveness of the attack’s concealment. There-
fore, it is crucial to rigorously determine an appropriate
reference point for alignment. Some defense methods, such
as MultiKrum [4], select a fixed number of client updates
that appear most benign in each round. However, due to
data heterogeneity, such methods may inadvertently exclude
genuinely benign clients whose updates deviate from the ma-
jority. To mitigate this issue, we adopt the previous global



Malicious
Benign

La
ye

r M
ag

ni
tu

de

0

1

2

3

4

5

A-Layer Index
0 10

0

0.1

0.2

0.3

0.4

B-Layer Index
0 10

Figure 1. Layer-wise Magnitude Analysis of Benign vs. Malicious
Updates in VGG19. To better visualize, we focus on weight layers
and divide them into A-layers and B-layers based on ∥∆θl∥: those
with norms above 0.5 are A-layers; others are B-layers. The experi-
ment uses the default setting and records ∥∆θl∥ every 50 rounds.

update ∆θt−1
g as a reference point. Since it is computed by

aggregating multiple client updates, most of which are ex-
pected to be benign, it serves as a reasonable approximation
of benign behavior.

By aligning the malicious update with the global update,
the attack remains within the expected range of benign vari-
ation, thereby enhancing its stealthiness and increasing the
likelihood of successfully influencing the global model.

Layer-wise gradient alignment. Intuitively, applying a
norm constraint weakens the impact of the malicious update,
which potentially leads to ineffective backdoor injection. We
introduce a layer-wise scaling strategy to refine the mali-
cious update at a more granular level to not only ensure the
attack remains stealthy but also preserve its strength. A key
observation shown in Figure 1 is that the layer-wise magni-
tudes of the malicious and benign updates do not maintain
a fixed proportional relationship; instead, their patterns dif-
fer. Therefore, we align each layer individually with ∆θt−1

g .
Specifically, we define the scaling factor St,l for each layer
l as:

St,l = min(1,
∥∆θt−1,l

g ∥
∥∆θt,lm ∥

). (3)

The scaled malicious update after each local epoch is given
by:

∆θt,lm = St,l ·∆θt,lm . (4)

The adaptive layer-wise gradient alignment, implemented
in just four lines (Lines 10–13 in Algorithm 1), extends
the standard FL backdoor pipeline. This approach prevents
excessive constraints on layers with inherently smaller mag-
nitudes and constrains the update for each layer within an ℓ2
norm ball, thereby preserving attack strength while enhanc-
ing stealthiness.

4. Experiments
Our empirical study evaluates the effectiveness of the pro-
posed backdoor attack through experiments conducted on

Algorithm 1 Layer-wise Gradient Alignment for Attackers
Require: Batch size ℓ, local epochs E, malicious model
parameters θti , global parameters θt−1

g , poisoned dataset D̂,
and previous global parameter θt−2

g

Procedure:
1: // Attacker’s local training:
2: Calculate the previous global update:
3: ∆θt−1

g ← θt−1
g − θt−2

g

4: Initialize local model θti,0 ← θt−1
g

5: for e = 1 to E do
6: for each batch b in D̂ do
7: Compute gradient for batch b:
8: ∆θti,e ← ∆θti,e +∇θL(θti,e−1, D̂b)
9: end for

10: // Layer-wise gradient alignment
11: for each layer l in ∆θti,e do

12: St,l
i,e ← min(1,

∥∆θt−1,l
g ∥

∥∆θt,l
i,e∥

)

13: θt,li,e ← ∆θt,li,e · S
t,l
i,e + θt−1,l

g

14: end for
15: end for
16: Upload update ∆θti to server

real-world datasets, simulating an FL environment using the
NVIDIA RTX 4090 GPU.

4.1. Experimental setup
Datasets and Models. We evaluate the attack using two
widely used benchmark datasets: CIFAR10 (50,000 training
and 10,000 test samples across 10 classes) and CIFAR100
(50,000 training and 10,000 test samples across 100 classes).
Following previous studies [41, 42], we use the VGG19 [30]
network and ResNet18 network for CIFAR10, while we use
the ResNet18 [11] network for CIFAR100. We simulate a
non-IID data distribution following prior methods [5, 7, 42],
with q = 0.5/0.2 for CIFAR10/100, respectively.

Attack setup. In each round, we select n = 10 clients
among N = 100 clients to participate in the aggregation,
with the proportion of compromised clients set to C = 0.1
by default. The FL training runs for 300 rounds to make
it converge. We train for 6 local epochs (2 for the benign
clients) with a learning rate 0.1 for both CIFAR10 and CI-
FAR100. Additionally, we assess the effectiveness of our
attack in an IID setting, as defense strategies are more likely
to identify malicious models as outliers in this case [42]. The
trigger is a 5× 5 pixel square located at the bottom-right cor-
ner of each image by default. We further discuss the impact
of various shapes and sizes of the trigger. We evaluate our
attack in the fixed-frequency attack scenario. The attacker
controls a fixed number of compromised clients, which par-
ticipate in FL training at a fixed frequency. Following prior



Table 1. The effectiveness of our approach against the baseline attack across various state-of-the-art (SOTA) defenses under a fixed-frequency
attack setting on non-IID datasets. BA values below 10% in CIFAR10 (10 classes) and below 1% in CIFAR100 (100 classes) are highlighted
in red, indicating a failed attack. The highest BA achieved in each setting is presented in bold. Our attack results are reported as a ± b,
where a denotes the mean and b represents the standard deviation. MA and BA unit: %. Avg indicates the average. Each result is obtained as
the average over five independent runs.

Defense
VGG19 (CIFAR10) ResNet18 (CIFAR10) ResNet18 (CIFAR100)

BadNets DBA LP Ours BadNets DBA LP Ours BadNets DBA LP Ours

No
Defense

MA 80.97 81.26 82.38 81.81±0.34 77.66 78.26 78.43 78.70±0.82 63.05 62.4 65.17 64.31±0.72
Best BA 98.33 46.17 95.38 97.05±0.19 98.59 20.96 96.69 97.60±0.21 100.0 1.16 72.24 98.51±1.06
Avg BA 97.70 33.96 90.56 96.16±0.09 97.91 14.93 95.08 97.22±0.21 99.73 0.80 61.87 96.70±2.46

MK [4]
MA 74.17 75.46 74.30 78.03±0.33 75.24 76.21 76.07 76.49±0.86 57.84 58.64 58.65 58.73±0.55
Best BA 24.06 3.16 93.54 98.01±0.80 6.04 7.52 95.89 98.61±0.14 0.88 0.99 97.52 99.94±0.01
Avg BA 5.99 1.33 76.41 95.98±0.36 3.64 3.85 92.40 97.03±1.57 0.62 0.54 89.22 94.42±2.87

FLTrust [5]
MA 83.14 83.25 82.98 83.84±0.20 80.75 80.22 80.22 80.33±0.29 61.58 61.80 61.89 61.14±1.81
Best BA 56.23 6.53 96.96 97.95±0.34 91.81 4.18 97.19 97.78±0.27 30.12 0.69 95.42 99.98±0.05
Avg BA 42.45 4.91 96.60 96.74±0.47 89.12 3.67 95.48 91.94±8.41 19.87 0.46 87.51 98.52±1.59

FLAME [23]
MA 58.07 57.52 58.63 63.46±0.91 74.21 73.52 71.90 73.06±0.76 55.93 54.28 55.62 55.87±0.45
Best BA 21.20 37.84 92.43 98.38±0.63 12.70 2.97 94.46 98.69±0.17 0.83 0.53 77.67 99.99±0.00
Avg BA 7.75 12.76 78.89 97.46±0.44 7.01 2.27 89.72 97.54±0.58 0.62 0.44 72.89 99.88±0.08

MM [12]
MA 69.31 66.43 70.72 75.42±0.97 71.43 72.61 72.80 73.16±1.07 53.03 53.82 53.40 53.55±0.33
Best BA 29.08 16.02 94.95 98.31±0.44 15.54 1.71 96.01 98.47±0.09 0.97 0.85 92.73 99.99±0.00
Avg BA 7.04 5.42 84.61 94.55±4.20 3.91 1.37 93.12 97.52±0.67 0.37 0.66 83.46 97.05±1.58

DnC [29]
MA 81.09 82.6 82.32 81.30±1.45 77.98 79.32 78.63 78.83±0.30 63.01 61.43 63.89 63.43±0.73
Best BA 5.94 2.83 95.04 97.85±0.27 6.58 11.20 96.25 98.19±0.14 0.43 4.88 80.93 99.67±0.29
Avg BA 3.68 1.67 93.57 96.94±0.53 4.03 9.72 94.45 97.29±0.37 0.41 2.69 63.37 98.07±0.59

RLR [25]
MA 72.28 76.22 77.71 77.90±0.68 75.72 75.06 74.51 74.77±1.37 54.77 56.78 56.14 56.58±0.58
Best BA 96.93 23.06 94.11 97.78±0.11 97.29 17.16 94.83 98.39±0.13 0.14 0.34 88.12 99.98±0.01
Avg BA 95.65 15.13 91.61 97.39±0.29 97.02 10.85 89.41 97.95±0.17 0.05 0.09 83.81 99.97±0.02

FLARE [34]
MA 84.45 84.24 84.53 84.56±0.11 77.79 78.21 77.52 77.82±2.05 60.44 56.58 59.54 59.07±1.41
Best BA 98.21 43.87 94.79 97.85±0.12 98.18 5.88 94.91 96.75±0.50 99.71 1.14 88.56 99.56±0.41
Avg BA 98.11 36.32 94.10 97.28±0.30 98.02 5.40 93.55 96.30±0.82 98.60 0.63 80.73 98.17±2.42

approaches [2, 41, 42], we assume that the attacker controls
exactly one client per round and sets the attack interval to
F = 1. This setup allows us to analyze the attack in isola-
tion, without client collusion. We also evaluate the attack’s
performance across different frequencies, comparing it to
the baseline.

Baseline Defenses and Attacks. We assess our backdoor
attack on eight state-of-the-art or representative defenses in
FL: MultiKrum (MK) [4], FLTrust [5], FLAME [23], Multi-
Metrics (MM) [12], DnC [29], RLR [25], FLARE [34], and
DeepSight [28], ensuring a comprehensive evaluation of the
attack’s effectiveness.

We compare our backdoor attack against three state-
of-the-art or representative attacks in FL: BadNets [10],
DBA [35], and LP attack [42].

Metrics. Following prior work on FL backdoor attacks [10,
35, 42], we evaluate the global model using two primary
metrics: main task accuracy (MA) and backdoor accuracy
(BA). Given the dynamic nature of the global model in FL,
we report both the average and the best BA over the last

10 communication rounds. Furthermore, to evaluate the
stealthiness of the attack, we adopt two metrics introduced
in [42]: the malicious client acceptance rate (MAR) and the
benign client acceptance rate (BAR). MAR measures the
proportion of rounds in which malicious clients successfully
bypass defense and are selected for aggregation, while BAR
represents the average proportion of rounds in which benign
clients are selected for aggregation.

4.2. The effectiveness of our attack

We first evaluate our attack in the fixed-frequency attack
setting under different SOTA defenses. Table 1 presents
the performance comparison between our attack and the
baseline attacks. We also evaluate our attack in the IID
setting in supplementary §B.1 and on a larger dataset Tiny-
ImageNet in supplementary §B.11. The results show that
our attack achieves the highest BA in most cases. These
results demonstrate the broad effectiveness of our attack,
effectively bypassing defenses while maintaining superior
attack performance.

BadNets only works well under FLARE and consistently
fails to bypass defenses such as MK, FLAME, MM, and



Table 2. MAR and BAR comparison under outlier-based defenses:
MK, FLAME, MM, and DnC.

Dataset
(Model) Attack MK FLAME MM DnC

BAR MAR BAR MAR BAR MAR BAR MAR

CIFAR10
(ResNets18)

BadNets 0.42 0.01 0.75 0.01 0.33 0.01 0.97 0.01
DBA 0.41 0.01 0.71 0.01 0.34 0.01 0.95 0.01

LP attack 0.36 0.72 0.65 0.90 0.13 0.8 0.39 0.82
Ours 0.38 0.68 0.64 0.88 0.25 0.79 0.78 0.99

CIFAR10
(VGG19)

BadNets 0.41 0.01 0.72 0.01 0.31 0.01 0.98 0.01
DBA 0.42 0.01 0.75 0.01 0.33 0.03 0.97 0.01

LP attack 0.35 0.63 0.61 0.75 0.13 0.8 0.41 0.99
Ours 0.38 0.56 0.6 0.9 0.26 0.60 0.79 0.99

CIFAR100
(ResNets18)

BadNets 0.43 0.01 0.68 0.01 0.33 0.01 0.99 0.01
DBA 0.42 0.01 0.76 0.01 0.33 0.01 0.97 0.01

LP attack 0.32 0.91 0.56 0.99 0.12 0.93 0.35 0.94
Ours 0.34 0.83 0.58 0.97 0.23 0.92 0.72 0.99

DnC across all settings, and it also fails against RLR on
CIFAR100 in both non-IID and IID settings. Similarly, DBA
also fails under several defenses, including MK, FLTrust,
MM, and DnC under both non-IID and IID settings. LP
attack achieves comparable BA across most defenses, except
when evaluated under the FLARE defense in the IID setting.
Specifically, for CIFAR100, our attack achieves significantly
higher BA than the LP attack, demonstrating superior adapt-
ability to complex data distributions. We also evaluate our
attack performance compared with the LP attack under Deep-
Sight in supplementary §B.3. Our attack achieves a higher
BA than the LP attack across all scenarios and the LP attack
fails on CIFAR100.

Our attack improves the attack stealthiness and main-
tains strength. Under the FedAvg setting, our attack
achieves significantly higher BA compared to both DBA
and LP attack, particularly on CIFAR100, approaching the
performance of unconstrained attacks like BadNets. This
demonstrates the strong strength of our attack.

Table 2 presents the comparison of MAR and BAR under
outlier-based defenses such as MK, FLAME, MM, and DnC.
A higher MAR indicates that malicious updates are more
likely to bypass detection. We observe that BadNets and
DBA fail to bypass defenses, as their MAR remains close to
zero in all cases. This suggests that BadNets and DBA are
consistently detected as outliers during training, rendering
them ineffective against robust defenses. While BadNets
demonstrates strong attack strength, its failure to bypass
defenses undermines its overall effectiveness. In contrast,
our attack achieves MAR consistently higher than BAR,
meaning our malicious updates are more likely to be selected
for aggregation, which reflects the stealthiness capability of
our method.

When compared to the LP attack, our method maintains
nearly the same or even higher MAR in defenses such as
FLAME and DnC, further demonstrating its stealthiness.
MK and MM impose stricter selection criteria by choosing
only a small proportion of the most benign clients, making

it more challenging for an attacker to be selected. LP at-
tack achieves a higher MAR than our method under these
defenses by restricting the backdoor to BC layers, which
significantly enhances its stealthiness. However, our method
consistently achieves higher BA than LP attack across all
settings in FLAME, DnC, MK, and MM, demonstrating that
while LP attack sacrifices attack strength for stealthiness,
our approach achieves a better balance, ensuring both strong
attack strength and high stealthiness.

More evaluation of attack stealthiness. We leverage
Krum distance, cosine distance, and Manhattan distance
to further illustrate the stealthiness of our attack. Specifi-
cally, we calculate the sum of squared Euclidean distances,
cosine distances, and Manhattan distances between a model
update and other local model updates, referring to them as
Krum distance, Cosine distance, and Manhattan distance,
respectively.

A larger Krum distance indicates that the update deviates
significantly from benign updates, making it less likely to
be accepted by the aggregation mechanism. Figure 2 shows
the comparison of Krum distance with baseline attacks. The
Krum distances of BadNets and DBA are significantly larger
than those of benign updates, indicating that these attacks
produce model updates that are easily distinguishable from
benign ones. In contrast, our attack and the LP attack exhibit
Krum distances close to those of benign updates, suggesting
that they are more stealthy. Although DBA demonstrates
slightly better stealthiness than BadNets, its Krum distance
remains considerably larger than that of benign updates.
This suggests that DBA is still insufficiently stealthy against
robust defenses. In supplementary §B.4, we further discuss
the Cosine distance and Manhattan distance between the
malicious update and the benign update. The result exhibits
similar trends across all attacks.

Table 3. The BA of various backdoor attacks combined with-
out/with ours.

Attack IBA [24] IBA+ours Cerp [20] Cerp+ours A3FL [40] A3FL+ours

FLAME 2.71 98.04↑ 29.84 99.64↑ 94.87 99.87↑
MM 31.63 99.99↑ 24.72 99.98↑ 86.29 99.89↑

Our attack demonstrates strong generalizability. It can
be easily integrated into existing FL backdoor attacks, par-
ticularly those based on trigger optimization. As shown
in Table 3, incorporating our method further enhances attack
effectiveness, underscoring its practical value.

We further evaluate our attack trained on other networks:
ResNet50 [11], ResNet101 [11] and ViT [6] in supplemen-
tary §B.5. Our attack achieves high BA on those networks,
demonstrating its generalizability to more complex architec-
tures.
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Figure 2. Krum distance of malicious and benign model updates. A larger distance indicates that the update deviates significantly from
benign updates. The result shows the stealthiness of our attack.
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Figure 3. Impacts of different attack intervals F on the attack
performance. The F indicates that an attack is performed every F
rounds.

In addition, we analyze the impact of varying degrees
of data heterogeneity in supplementary §B.6. Results show
that our attack remains effective under highly non-IID con-
ditions and consistently outperforms the LP attack across all
scenarios, further confirming its generalizability.

Our attack maintains the global model’s performance.
Supplementary §B.2 shows the MA with the unpoisoned
global model to assess whether our attack affects the utility
of the global model. The results demonstrate that our attack
does not lead to a significant decrease in MA compared to
the unpoisoned global model.

4.3. Our attack under different scenarios
Impact of attack intervals. We evaluate the performance
of our attack compared to baseline attacks under different
attack intervals, as shown in Figure 3. The attack interval
F ranges from 1 to 5, where F indicates that an attack is
performed once every F rounds. This setting is designed to
simulate scenarios where the frequency of malicious updates
is limited, requiring more effective and persistent attack
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Figure 4. Effectiveness of our attack under different proportions of
compromised clients (C = 0.02, 0.04, 0.06, 0.1) in a fixed-pool
attack setting.

strategies.
The results show that as F increases, the performance of

all attacks degrades as the attack frequency decreases. This
trend is consistent across all evaluated methods, where a
lower frequency results in reduced BA. A larger F imposes
greater demands on the attack’s strength, persistence, and
stealthiness. The attack must be sufficiently powerful and
stealthy to maintain its effectiveness with fewer opportuni-
ties to update the model. We observe that BadNets fails
in all cases. Notably, our attack maintains a comparable
BA even when F = 5. Whereas the LP attack loses nearly
all effectiveness, particularly when trained on CIFAR100,
demonstrating its vulnerability to defenses when attack op-
portunities are limited. We also show the results of BA under
all defenses trained on CIFAR10 (ResNet18) in supplemen-
tary §B.8. We observe that our attack achieves comparable
BA across all defenses when F = 5.

Impact of different proportions of compromised clients.
To evaluate our attack in a more practical scenario, we con-
duct experiments in a fixed-pool attack setting. To further



Table 4. Ablation study on alignment strategy.

Dataset
(Model) Attack

No Defense FLAME MM
BA BA MAR BA MAR

CIFAR-10
(VGG19)

no alignment 97.70 7.05 0.01 7.04 0.01
model-wise 90.12 45.79 0.90 83.58 0.65

layer-wise (ours) 96.16 97.46 0.90 97.09 0.67

CIFAR-10
(ResNet18)

no alignment 97.91 7.01 0.01 3.91 0.01
model-wise 93.39 85.32 0.89 95.53 0.80

layer-wise (ours) 97.21 98.16 0.88 97.85 0.79

CIFAR-100
(ResNet18)

no alignment 99.73 0.62 0.01 0.37 0.01
model-wise 73.29 85.86 0.95 95.05 0.90

layer-wise (ours) 96.70 99.88 0.97 97.05 0.92

demonstrate the strength of our attack, we also analyze its
performance under varying proportions of compromised
clients C. In a fixed-pool attack setting, the attacker controls
a pool of compromised clients, from which participants are
randomly selected in each round. This setup allows multiple
malicious clients to be chosen in a single round, while in
some cases, several consecutive rounds may pass without
selecting any malicious clients.

As shown in Figure 4, our attack achieves the highest
BA compared to the baseline across all cases. Notably, even
with a very low proportion of malicious clients (C = 0.02,
meaning only 2% of clients are compromised), our attack
successfully bypasses defenses and maintains a comparable
BA. This demonstrates that our attack is both powerful and
persistent, as it continues to perform well even when the
pool of malicious clients is small.

Additionally, BadNets performs better when C = 0.1 due
to the increased likelihood of malicious clients colluding in
the same round. This collusion significantly enhances the
attack’s effectiveness, as multiple attackers working together
are more likely to successfully inject a backdoor. This is
particularly evident under MK, where BadNets achieves a
higher BA with a higher C, compared to when it fails in the
fixed-frequency setting. However, this improvement dimin-
ishes as the compromised client ratio decreases. At lower C,
the attack becomes more reliant on its strength. In contrast,
as shown in supplementary §B.9, our attack achieves high
BA across all defenses when C > 0.04, demonstrating its
robustness even with fewer compromised clients.

4.4. Ablation study
Impact of different triggers. We further evaluate the
impact of various trigger shapes. Supplementary §B.10
presents three different trigger shapes (Apple, Watermark,
and Square) applied to backdoor a ResNet18 model trained
on the CIFAR10 dataset. Figure 5a shows the impact of
various trigger shapes. Under the default setting (F = 1),
all three trigger shapes achieve high BA. The results demon-
strate that our attack remains effective across different trigger
shapes, indicating its robustness and generalizability.
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Figure 5. Impact of trigger shape (left) and trigger size (right) in
Flame.

Figure 5b illustrates the performance of different trigger
sizes (3, 5, 7, and 10). Regardless of trigger size, our attack
consistently achieves high BA. Notably, when the trigger
size is set to 10, the attack effectiveness is significantly
enhanced. Larger triggers strengthen the attack, and their
ability to bypass defenses is improved through layer-wise
norm constraints, leading to superior attack performance.

Impact of alignment strategy. To demonstrate how dy-
namic layer-wise gradient alignment enhances the effec-
tiveness of our attack, we compare it with BadNets (no
alignment) and the model-wise gradient alignment attack,
which adjusts the overall gradient magnitude to align with
the previous global update. As shown in Table 4, our attack
consistently outperforms both BadNets and the model-wise
method across all settings.

First, both model-wise and layer-wise gradient alignment
show higher MAR compared to BadNets, indicating that
aligning the update with the previous global model signifi-
cantly improves the stealthiness of the attack. Second, when
compared to model-wise alignment, layer-wise alignment
achieves better attack performance. Specifically, even in the
absence of an attack, particularly on CIFAR100, the BA for
model-wise alignment is much lower than that for layer-wise
alignment.

5. Conclusion

This paper proposes a new stealthy backdoor attack in FL,
which leverages adaptive layer-wise gradient alignment to
enhance stealthiness while preserving attack strength. By
dynamically aligning malicious gradients to historical global
updates at the layer level, the proposed attack reduces sta-
tistical anomalies caused by malicious updates, making
them harder to detect. Extensive experiments across di-
verse datasets, models, and defenses demonstrate that the
proposed attack achieves superior backdoor success rates
while evading SOTA defenses, highlighting its effectiveness
and stealthiness in various FL scenarios.
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