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Abstract—Quantum computing has gained widespread interest
due to its exponential computational capabilities. In practical
scenarios, users often access real quantum computers indirectly
through cloud-based platforms (e.g., IBM Quantum), which re-
quires transmitting data to third-party servers. Quantum-specific
attacks, such as crosstalk attacks, have demonstrated high success
rates in inferring the output of legitimate users. These issues raise
serious privacy concerns. To protect client-side privacy, quantum
local differential privacy (QLDP) has been proposed, where
legitimate users perturbed their true output by adding quantum
noise to the circuits. However, we observe that the classical local
differential privacy (LDP) properties have not been fully adapted
to the quantum domain, and the information can still be inferred
from the perturbed output if attackers access the noise type
added by legitimate users. To fill this gap, we propose a novel
QLDP-based approach to protect the true output of legitimate
users. We find that QLDP can be achieved using only simple
quantum noise, but not all types of quantum noise can effectively
perturb the output under different quantum measurements.
In addition, to prevent advanced attackers who have partial
user information, we introduce a probabilistic noise addition
mechanism. To allow legitimate users to accurately estimate
the true output of a quantum circuit, we also propose a new
quantum frequency estimation. Our approach is validated using
real quantum computers and quantum simulators, achieving 94%
accuracy and 90% utility to estimate the true output from the
perturbed output.

Index Terms—Quantum computing, Quantum local differential
privacy, Quantum privacy

I. INTRODUCTION

Quantum computing is a rapidly growing field that has
exponential computational capability over classical computing.
It is particularly effective for solving large-scale optimization
problems and big data analytics [1]–[3]. As quantum tech-
nologies mature, they are widely applied in domains such as
cryptographic security [4], chemistry science [5], and finance
risk analysis [6]. However, quantum computing faces signif-
icant privacy concerns. Quantum attacks such as crosstalk

attacks [7] and qubit reset attacks [8] have been demonstrated
to effectively extract output of quantum computing, leading
to unintended data exposure [9]. For instance, in a financial
scenario where qubits are used to evaluate investment strate-
gies, an output of “1” may indicate an investment decision,
while “0” indicates rejection. If attackers can infer users’
outputs, it could compromise strategic decisions and financial
information. Thus, it is critical to find methods to protect
privacy in quantum computing.

In classical computing, differential privacy (DP) is a widely
adopted framework for preserving data privacy [10]–[12]. DP
primarily protects continuous data by introducing artificial
noise (e.g., Gaussian noise) to blur the output distribution.
The purpose of DP is to ensure that the inclusion or ex-
clusion of individual data points does not significantly af-
fect the output, thus preventing adversaries from inferring
sensitive information according to the output. Moreover, DP
has rigorous mathematical guarantees, offering a quantifiable
measure of privacy protection by parameter ϵ. It has been
successfully applied in domains such as data mining [13],
smart devices [14], and healthcare [15]. A notable extension
of DP is local differential privacy (LDP), which is particularly
suited for protecting discrete data [16]–[18]. Unlike traditional
DP, which assumes a trusted server, LDP can operate under an
untrusted server model. In this setting, noise (e.g., randomized
response) is applied directly to user inputs before they are sent
to the server, ensuring that even the insecure server cannot
directly obtain the original user data. Additionally, LDP allows
legitimate users to estimate the true distribution of the data
through frequency estimation, enabling useful data analysis
while maintaining privacy.

For quantum computing, there are several existing methods
to protect data privacy. Saki et al. [19] proposed a simple
protection mechanism against crosstalk attacks. An additional
X gate is applied before measurement to flip the true output,
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misleading potential attackers. Extending this idea to multi-
qubit circuits, Maurya et al. [20] suggested a protection
approach in which an X gate is applied to a randomly
chosen qubit, which can flip part of the output and introduce
uncertainty. However, these methods have several limitations.
The first drawback is that attackers may still be able to infer
the true output. If an advanced attacker gains knowledge of the
noise type introduced by legitimate users, they can reverse the
final result to recover the correct output. The second drawback
concerns the security of the registers used by legitimate users.
Legitimate users must record the positions of the X gates
to retrieve the correct output when needed. However, if an
advanced attacker gains access to or manipulates the register
storing X gates’ information, they can reconstruct or change
the intended results, further compromising output privacy.

Quantum differential privacy (QDP) is also a promising
framework to protect server-side data based on classical
DP [21]–[23]. For example, Zhou et al. [22] proposed three
quantum noise mechanisms to realize privacy protection in
quantum computing. Similarly, Li et al. [24] demonstrated
that quantum measurement noise could serve as a protective
mechanism against privacy leakage. In practical quantum com-
puting, users typically access quantum computers remotely
through cloud platforms, submitting their data to unfamiliar
servers. Moreover, quantum states are frequently transmitted
between different user data nodes [25]. These factors highlight
the critical need to address client-side data privacy. Conse-
quently, quantum local differential privacy (QLDP) has been
proposed as a variant of QDP, though it has been explored
in only a limited number of works [25]–[27]. The input of
QLDP can be a broader set of quantum states, which can
even include all possible quantum input states [25], [27]. It
means that QLDP can protect not only the initial quantum state
input of the client but also the quantum state after quantum
computation or transmitted through a quantum communication
channel. To realize QLDP, various noise mechanisms have
been proposed. Angrisani et al. [26] found that different
quantum measurement operators can perturb user data. Nu-
radha et al. [28] proposed that adding depolarizing noise in
quantum computing can achieve a similar effect as the classical
randomized response (RR) mechanism. However, we have
identified the third drawback of existing protection methods:
these approaches have not fully translated the classical LDP
properties into the quantum domain. For example, the depo-
larizing noise mechanism results in a complete transition of
the quantum state into the maximally mixed state, preventing
the use of frequency estimation which is crucial for extracting
meaningful information from noisy output.

Based on the above, we propose a new QLDP-based quan-
tum privacy protection method. We first demonstrate that
the fundamental quantum noise gates (X, Y, or Z gate) can
effectively perturb outputs and develop a new RR mechanism,
thereby protecting user information and achieving QLDP. Fur-
thermore, our mathematical derivations reveal that not all types
of quantum noise can be used for effective data perturbation.
We also make improvements for the drawbacks mentioned

above. For the first one, we try to add noise gates with varying
probabilities, making it more difficult for attackers to infer
the true output even if they obtain the type of additional
noise. For the second and third drawbacks, we take advantage
of frequency estimation in classical LDP and extend this
concept to the quantum domain, enabling legitimate users to
estimate the true output without registers while ensuring data
protection. Our contributions can be summarized as follows:

• We find that simple quantum noise (X, Y, Z gate) can
perturb the output and implement a new RR mechanism
of QLDP. We also demonstrate that not all types of quan-
tum noise can effectively perturb outputs under different
measurement operators.

• We further enhance privacy protection by adjusting the
probability of adding noise gates to prevent advanced
attackers with partial user information. Moreover, we
derive the frequency estimation in the quantum domain,
allowing legitimate users to estimate the true output.

• We conduct extensive experiments using both real quan-
tum hardware and quantum simulators, demonstrating
the effectiveness of our QLDP-based privacy-preserving
approach, achieving 94% accuracy and 90% utility to help
estimate the true output.

The rest of this paper is organized as follows. Section II
introduces the basic background of quantum computing, QDP,
and QLDP. Section III presents the threat model. Section IV
provides a mathematical analysis of simple quantum noise
that can achieve output perturbation under different quantum
measurements. Section V proposes a frequency estimation
method for quantum domain under QLDP. Section VI demon-
strates the effectiveness of our methods through experiments
on real quantum computers and quantum simulators. Finally,
we discuss future research directions and conclude the paper.

II. PRELIMINARIES

In this section, we first introduce the basic architecture
of quantum computing, including quantum states, quantum
gate operations, and quantum measurements. Next, we review
the concepts of DP and QDP under classical computing and
quantum computing, respectively.

A. Quantum Computing

A quantum computer is a computing device based on the
principles of quantum mechanics, including digital quantum
computers, topological quantum computers, etc [29]–[31]. In
this work, we focus on digital quantum computers, which use
quantum gates to construct circuits to perform corresponding
quantum algorithms. These systems consist of three fundamen-
tal components: quantum states, quantum gates, and quantum
measurements [32].

Digital quantum computers use quantum bits (qubits) |0⟩
and |1⟩ as the basic units, corresponding to bits 0 and 1
in classical computers. A quantum state is the mathematical
description of qubits and can be categorized as pure and mixed
quantum states. A pure quantum state describes a completely
known state of the quantum system. In a two-dimensional
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Hilbert space, the pure quantum state can be a single basic
state (|0⟩ =

[
1 0

]T
or |1⟩ =

[
0 1

]T
) or a superposition of

|0⟩ and |1⟩: |ψ⟩ = α1 |0⟩+ α2 |1⟩ =
[
α1 α2

]T ∈ C2, where
the complex numbers α1 and α2 satisfy |α1|2+|α2|2 = 1. In a
2n-dimensional Hilbert space (n is the number of qubits), the
pure quantum state can be represented as |ψ⟩ =

∑2n

i=1 αi |i⟩ ∈
C2n , which satisfies |α1|2+...+|α2n |2 = 1. The density matrix
can also describe the pure state, denoted as ρ = |ψ⟩ ⟨ψ|. ⟨ψ|
is the conjugate transpose of |ψ⟩ (e.g., ⟨0| =

[
1 0

]
) and

Tr (ρ) = 1, which means the sum of the diagonal elements
of the density matrix ρ is 1. A mixed quantum state describes
a non-completely known state of the quantum system and is
denoted by the density matrix ρ =

∑2n

i=1 pi |ψ⟩ ⟨ψ|. We can
find that the mixed quantum state is represented by a mixture
of multiple pure states with different probabilities. In an ideal
environment, a quantum system remains in a pure state. When
the actual system is affected by the environment, it leads to
decoherence and produces a mixed state.

Quantum gates are similar to logic gates in classical com-
puters but with quantum properties. Quantum gates consist of
single qubit gates and multiple qubits gates. Quantum gates
can be expressed as the product of unitary matrices U , where
U satisfies U†U = UU† = I . U† denotes the conjugate
transpose of U , and I is the unit matrix. Single qubit gates
act on individual qubits, e.g., an X-gate corresponds to an
amplitude flip of a qubit; a Z-gate corresponds to a phase flip
of a qubit. These gates can all be represented as distinct 2×2
unitary matrices. Multiple qubits gates act on multiple qubits,
e.g., the CNOT gate is a two qubits gate that conditionally flips
the target qubit based on the state of the control qubit. It can be
represented as a 4× 4 unitary matrix. By combining quantum
gates in specific sequences, quantum states can be transformed
into desired states, realizing various quantum algorithms. For
example, when a quantum state ρ passes through a quantum
gate U , it evolves into a new quantum state ρ′ = UρU†.

Quantum measurements are used to convert the quantum
state into classical information after it passes through the cir-
cuit. The measurement results are the probability distributions
over the possible output values of the circuit. A general frame-
work for quantum measurements is the Positive Operator-
Valued Measure (POVM), which consists of a set of positive
semi-definite matrices [33]–[35]. These matrices are called
measurement operators {Mm}m∈O and satisfy

∑
mMm = I ,

where I is the identity operator, m is the classical results, O is
the set of possible outcomes. Since a single measurement pro-
vides only one random result, repeated measurements are nec-
essary to infer the probability distribution. So for a quantum
state ρ measured several times, the probability of obtaining the
outcome m is given by pm = Tr

(
M†

mMmρ
)
. As an example,

consider Z-basis measurements. The measurement operators in
this case are M0 and M1. When a quantum state ρ is measured,
the probabilities of obtaining the classical outcomes 0 and 1
are given by p0 = Tr

(
M†

0M0ρ
)

and p1 = Tr
(
M†

1M1ρ
)

.
These results correspond to the projection of the quantum
state onto the measurement operators. If the circuit uses

projective measurements (e.g. Pauli measurements), a special
case of POVM, the measurements can also be expressed as
pm = Tr (Mmρ).

In this paper, we utilize Pauli measurements at the end of the
quantum circuit. Pauli measurements are the most fundamental
class of measurements which consists of three Pauli operators
(X, Y, Z) [36]. A more detailed mathematical analysis of Pauli
measurements is provided in Section IV.

B. Differential Privacy

By artificially adding noise, classical DP perturbs the com-
puting outputs and effectively prevents attackers from inferring
a particular user’s privacy. A notable advantage is that DP has
a rigorous mathematical derivation, and can quantify privacy
protection level by parameter ϵ. The definition of DP can be
expressed as follows [37].

Definition 1 (Classical Differential Privacy): A random-
ized function K satisfies (ϵ, δ)-differential privacy if the data
sets D and D′ differ by only one participant, and every subset
S of outcomes satisfy

Pr [K(D) ∈ S] ≤ eϵ · Pr [K(D′) ∈ S] + δ, (1)

where ϵ is the privacy budget and δ is the failure probability.
Similar to DP, QDP perturbs the output by adding either

classical or quantum noise. The definition of QDP can be
expressed as follows [38].

Definition 2 (Quantum Differential Privacy): Given two
quantum datasets ρ and σ with τ(ρ, σ) ≤ d, where d ∈ (0, 1].
τ(ρ, σ) = ∥ρ− σ∥1 indicates the trace distance, which is used
to define quantum neighboring datasets. A quantum operation
E satisfies (ϵ, δ)-differentially private if every POVM (Posi-
tive Operator-Valued Measure) M = {Mm} and every subset
S of outcomes satisfy,

Pr [M (E (ρ)) ∈ S] ≤ eϵ · Pr [M (E (σ)) ∈ S] + δ, (2)

where ϵ is the privacy budget and δ is the failure probability.
Specifically, ϵ represents the level of privacy protection,

where a smaller ϵ indicates stronger privacy protection.

C. Local Differential Privacy

LDP is a variant of DP that protects the privacy of user input
data. By artificially adding noise to the input, LDP perturbs the
input data before transmission, effectively preventing untrusted
servers from obtaining true data. The definition of LDP can
be expressed as follows [16].

Definition 3 (Local Differential Privacy): For any pairs
of input values D and D′, a randomized noise mechanism K
satisfies ϵ-LDP if and only if for any subset Y of outcomes,
it holds

Pr [K (D) ∈ Y ] ≤ eϵ · Pr [K (D′) ∈ Y ] , (3)

where Pr [·] is the probability, ϵ is the privacy budget.
Randomized Response (RR) is a classical technique to

implement LDP. An example is given below to understand the
relationship between RR and LDP. Legitimate data collectors
seek to determine the true number of smokers among N users.
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Each user is required to consider the question “Are you a
smoker?” and can respond with either “yes” or “no”. To protect
the users’ response, each user employs an RR mechanism
before answering. Specifically, the user flips a biased coin:
with probability p, the user tells the truth; with probability
1−p, the user tells a lie. Suppose that the total number of users
saying “yes” is N1 after applying RR, we can now estimate
the true number of smokers f̂ by frequency estimation,

f̂ =
p− 1 +N1/N

2p− 1
. (4)

Similar to LDP, QLDP perturbs the input by adding quan-
tum noise. The definition of QLDP can be expressed as
follows [25].

Definition 4 (Quantum Local Differential Privacy): For
any quantum states ρ and σ, a quantum operation E satisfies
ϵ-QLDP if and only if every POVM M = {Mm} and every
subset Y of outcomes satisfy,

Pr [M (E (ρ)) ∈ Y ] ≤ eϵ · Pr [M (E (σ)) ∈ Y ] , (5)

where Pr [·] is the probability, ϵ is the privacy budget.
Specifically, ϵ represents the level of privacy protection,

where a smaller ϵ indicates stronger privacy protection.
Multiple types of quantum noise have been shown to

implement RR mechanisms and thereby achieve QLDP, but
none have introduced frequency estimation to the quantum
domain and combined it with defense mechanisms against
output attacks [25]–[27]. Hence, further research is necessarily
needed. A detailed comparison between our work and previous
work is presented in Section VI-A and Table II.

III. THREAT MODEL

Existing works have demonstrated that specific quantum
attacks can successfully infer user output with high accuracy,
such as crosstalk attacks [19]. Crosstalk refers to unintended
interactions between qubits in the same quantum computer
due to physical coupling. These interactions can lead to some
problems, such as introducing noise into idle qubits or causing
state leakage during qubit reset. Such effects can reduce the
performance of quantum computing and pose risks to the data
privacy of legitimate users [39], [40].

In our work, we focus on measurement-induced
crosstalk [9], where the attacker infers the legitimate
user’s output information by comparing their own output to
the legitimate user’s. This specific attack process can be found
in [19], where experiments have shown that the successful
rate of the crosstalk attack is 96%. To establish a favorable
scenario for the attacker, the threat model adopts the following
assumptions as [19]. The attacker knows the number of qubits
of the legitimate user’s circuit. Both the legitimate user and
attacker circuits use the same measurement basis. Since the
output of quantum computing is highly likely to be leaked, it
is crucial to explore appropriate privacy-preserving methods.

We consider two attack scenarios as [8] that can be defended
to make our privacy-preserving approach more practical. First,

the attacker has full knowledge of the legitimate user’s algo-
rithm. For example, the legitimate user is implementing Shor’s
algorithm for integer factorization but does not know the input
number. Second, the attacker has only partial information
about the legitimate user’s algorithm. For example, the attacker
knows that the legitimate user is executing a quantum error
correction protocol but lacks details about the specific error
model. Our approach can protect privacy in both cases.

IV. DEFENSE FRAMEWORK

As we mentioned in Section III, with the crosstalk attack,
the attacker can infer the legitimate user’s output with high
probability and leak the user’s privacy. One defense against
crosstalk attack was proposed in [19]. The legitimate user
perturbs the final output distribution by adding an X gate with
a 100% probability after their circuit, before the measurement.
This perturbation ensures that the attacker can only infer
the legitimate user’s perturbed output, which does not reveal
the user’s true information, thereby protecting the user’s data
privacy. However, we found that the X-gate is not always effec-
tive when different measurements are used. To ensure robust
privacy protection, other types of noise gates must be added
to protect output under different quantum measurements.

To address the limitations of existing defense methods, we
conduct a more comprehensive analysis of the relationship
between noise and user output. Unlike previous work that
primarily focuses on Z-basis measurements [19], we consider
three of the most common and fundamental measurement
bases: X, Y, and Z-basis measurements, which can also be
called Pauli measurements [41]. For perturbing the legitimate
user’s output, we analyze the different effects by adding simple
noise (e.g., X, Y, or Z noise gates) after the legitimate user
circuits and before the measurements. Notably, this approach
simultaneously satisfies the requirements of QLDP. The le-
gitimate users can recover its true output through frequency
estimation and the details can be found in Section V.

We summarize the results after perturbation in Table I.
The first column represents the type of noise added after
the legitimate users’ circuit and before the measurements,
while the first row specifies the measurement basis used by
the legitimate user and attacker. For each measurement type,
P (·) denotes the probability distribution of the measurement
outcomes, and the column “Protect data” indicates whether the
data is successfully protected under the given setup. Table I
demonstrates that a simple noise gate can effectively perturb
the output under different measurements, thereby protecting
privacy. However, under the same measurement settings, not
all noise gates can achieve the output perturbation. The de-
tailed analysis for Table I is explained in Section IV-A- IV-C.

We first compute the generic quantum state used in Sec-
tion IV-A- IV-C. We denote the quantum state of the legitimate
user after passing through the circuit as |ρ⟩ = a |0⟩+ beiϕ |1⟩,
where a and b are real numbers satisfying a2 + b2 = 1.
Here, eiϕ represents the relative phase, with ϕ being the phase
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angle. ρ can also be expressed as a density matrix for ease of
computation, i.e.

ρ = |ψ⟩⟨ψ| =
[
a
beiϕ

] [
a be−iϕ

]
=

[
a2 abe−iϕ

abeiϕ b2

]
.

When an X, Y, or Z gate noise is applied after the quantum
state ρ, the new quantum state can be represented as the
following matrix respectively,

ρ
′

1 = XρX† =

[
0 1
1 0

] [
a2 abe−iϕ

abeiϕ b2

] [
0 1
1 0

]
=

[
b2 abe−iϕ

abeiϕ a2

]
,

ρ
′

2 = Y ρY † =

[
0 −i
i 0

] [
a2 abe−iϕ

abeiϕ b2

] [
0 −i
i 0

]
=

[
b2 −abe−iϕ

−abeiϕ a2

]
,

ρ
′

3 = ZρZ† =

[
1 0
0 −1

] [
a2 abe−iϕ

abeiϕ b2

] [
1 0
0 −1

]
=

[
a2 −abe−iϕ

−abeiϕ b2

]
.

Next, we calculate the output distribution of legitimate users
under different measurement operators.

A. Z-basis Measurement

First, we analyze the effect of the X, Y, or Z noise gates on
the legitimate user’s output when both the legitimate user and
the attacker perform Z-basis measurements. The basis vectors
for Z-basis measurements are |0⟩ and |1⟩. The measurement
operators are

M0 = |0⟩⟨0| =
[
1 0
0 0

]
,M1 = |1⟩⟨1| =

[
0 0
0 1

]
.

In the initial case, where no noise is added after the legitimate
user circuit, the probabilities of the final output (i.e., the
classical outcomes 0 and 1) are given by

P0 = Tr (M0ρ) = Tr
([

1 0
0 0

] [
a2 abe−iϕ

abeiϕ b2

])
= a2,

P1 = Tr (M1ρ) = Tr
([

0 0
0 1

] [
a2 abeiϕ

abe−iϕ b2

])
= b2.

We now add an X, Y, or Z noise gate after the original circuit
and before the measurement. When an X gate is added after
the original circuit, the quantum state can be represented as the

matrix ρ
′

1 = XρX† =

[
b2 abe−iϕ

abeiϕ a2

]
. The probabilities of

obtaining the classical outcomes 0 and 1 are given by

P0 = Tr (M0ρ
′
1) = Tr

([
1 0
0 0

] [
b2 abeiϕ

abe−iϕ a2

])
= b2,

P1 = Tr (M1ρ
′
1) = Tr

([
0 0
0 1

] [
b2 abeiϕ

abe−iϕ a2

])
= a2.

When a Y gate is added after the original circuit, the quantum
state can be represented as the matrix ρ

′

2 = Y ρY † =

[
b2 −abe−iϕ

−abeiϕ a2

]
. The probabilities of obtaining the clas-

sical outcomes 0 and 1 are given by P0 = Tr
(
M0ρ

′

2

)
= b2,

P1 = Tr
(
M1ρ

′

2

)
= a2. When a Z gate is added after the

original circuit, the quantum state can be represented as the

matrix ρ
′

3 = ZρZ† =

[
a2 −abe−iϕ

−abeiϕ b2

]
. The probabilities

of obtaining the classical outcomes 0 and 1 are given by
P0 = Tr

(
M0ρ

′

3

)
= a2, P1 = Tr

(
M1ρ

′

3

)
= b2.

Based on the above analysis under Z-basis measurements,
we can observe that when an X or Y noise gate is added,
the final output distribution of legitimate users changes. In
other words, even if the attacker obtains the legitimate user’s
output through an attack, the information is no longer the true
output. However, when a Z noise gate is added, the final output
distribution of legitimate users remains unchanged. As a result,
it fails to protect the information effectively.

B. X-basis Measurement

Second, we analyze the effect of the X, Y, or Z noise gates
on the legitimate user’s output when both the legitimate user
and the attacker perform X-basis measurements. The basis
vectors for X-basis measurements are |+⟩ = |0⟩+|1⟩√

2
and

|−⟩ = |0⟩−|1⟩√
2

. The measurement operators are

M+ = |+⟩⟨+| = 1

2

[
1 1
1 1

]
,M− = |−⟩⟨−| = 1

2

[
1 −1
−1 1

]
.

In the initial case, where no noise is added after the legitimate
user circuit, the probabilities of the final output (i.e., the
classical outcomes + and −) are

P+ = Tr (M+ρ) = Tr
(
1

2

[
1 1
1 1

] [
a2 abe−iϕ

abeiϕ b2

])
=

1

2

(
a2 + b2 + 2ab cosϕ

)
=

1

2
(1 + 2ab cosϕ) ,

P− = Tr (M−ρ) = Tr
(
1

2

[
1 −1
−1 1

] [
a2 abe−iϕ

abeiϕ b2

])
=

1

2

(
a2 + b2 − 2ab cosϕ

)
=

1

2
(1− 2ab cosϕ) .

Similarly, we add an X, Y, or Z noise gate after the
original circuit and before the measurement. When an X gate
is added after the original circuit, the quantum state can be

represented as the matrix ρ
′

1 = XρX† =

[
b2 abe−iϕ

abeiϕ a2

]
.

The probabilities of obtaining the classical outcomes + and
− are

P+ = Tr
(
M+ρ

′

1

)
= Tr

(
1

2

[
1 1
1 1

] [
b2 abeiϕ

abe−iϕ a2

])
=

1

2

(
a2 + b2 + abeiϕ + abe−iϕ

)
=

1

2
(1 + 2ab cosϕ) ,

P− = Tr
(
M−ρ

′

1

)
= Tr

(
1

2

[
1 −1
−1 1

] [
b2 abeiϕ

abe−iϕ a2

])
=

1

2

(
a2 + b2 − abeiϕ − abe−iϕ

)
=

1

2
(1− 2ab cosϕ) .
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Z-basis measurement X-basis measurement Y-basis measurement
P(0) P(1) Protect data P(+) P(-) Protect data P(+i) P(-i) Protect data

No noise a2 b2 1
2
[1 + 2ab · cosϕ] 1

2
[1− 2ab · cosϕ] 1

2
[1 + 2ab · sinϕ] 1

2
[1− 2ab · sinϕ]

Add X gate b2 a2 ✓ 1
2
[1 + 2ab · cosϕ] 1

2
[1− 2ab · cosϕ] ✗ 1

2
[1− 2ab · sinϕ] 1

2
[1 + 2ab · sinϕ] ✓

Add Y gate b2 a2 ✓ 1
2
[1− 2ab · cosϕ] 1

2
[1 + 2ab · cosϕ] ✓ 1

2
[1 + 2ab · sinϕ] 1

2
[1− 2ab · sinϕ] ✗

Add Z gate a2 b2 ✗ 1
2
[1− 2ab · cosϕ] 1

2
[1 + 2ab · cosϕ] ✓ 1

2
[1− 2ab · sinϕ] 1

2
[1 + 2ab · sinϕ] ✓

✓ means that the output can be protected; ✗ means that the output cannot be protected.

TABLE I
MEASUREMENT RESULTS UNDER DIFFERENT MEASUREMENTS.

When a Y gate is added after the original circuit, the quantum
state can be represented as the matrix ρ

′

2 = Y ρY † =[
b2 −abe−iϕ

−abeiϕ a2

]
. The probabilities of obtaining the clas-

sical outcomes + and − are given by P+ = Tr
(
M+ρ

′

2

)
=

1
2 (1− 2ab cosϕ), P− = Tr

(
M−ρ

′

2

)
= 1

2 (1 + 2ab cosϕ).
When a Z gate is added after the original circuit, the quantum
state can be represented as the matrix ρ

′

3 = ZρZ† =[
a2 −abe−iϕ

−abeiϕ b2

]
. The probabilities of obtaining the clas-

sical outcomes + and - are given by P+ = Tr
(
M+ρ

′

3

)
=

1
2 (1− 2ab cosϕ), P− = Tr

(
M−ρ

′

3

)
= 1

2 (1 + 2ab cosϕ).
Based on the above analysis under X-basis measurements,

we can observe that when a Y or Z noise gate is added, the
final output distribution of legitimate users changes. In other
words, even if the attacker obtains the legitimate user’s output
through an attack, the information is no longer the true output.
However, when an X noise gate is added, the final output
distribution of legitimate users remains unchanged. As a result,
it fails to protect the information effectively.

C. Y-basis Measurement

Third, we analyze the effect of the X, Y, or Z noise gates on
the legitimate user’s output when both the legitimate user and
the attacker perform Y-basis measurements. The basis vectors
for Y-basis measurements are |+ i⟩ = |0⟩+i|1⟩√

2
and | − i⟩ =

|0⟩−i|1⟩√
2

. The measurement operators are

M+i = |i⟩⟨i| = 1

2

[
1 −i
i 1

]
,M−i = | − i⟩⟨−i| = 1

2

[
1 i
−i 1

]
.

In the initial case, where no noise is added after the legitimate
user circuit, the probabilities of the final outputs (i.e., the
classical outcomes +i and −i) are given by

P+i = Tr (M+iρ) = Tr
(
1

2

[
1 −i
i 1

] [
a2 abe−iϕ

abeiϕ b2

])
=

1

2

(
a2 + b2 + 2ab sinϕ

)
=

1

2
(1 + 2ab sinϕ) ,

P−i = Tr (M−iρ) = Tr
(
1

2

[
1 i
−i 1

] [
a2 abe−iϕ

abeiϕ b2

])
=

1

2

(
a2 + b2 − 2ab sinϕ

)
=

1

2
(1− 2ab sinϕ) .

Similarly, we add an X, Y or Z noise gate after the original
circuit and before the measurement. When the X gate is

added after the original circuit, the quantum state can be

represented as the matrix ρ
′

1 = XρX† =

[
b2 abe−iϕ

abeiϕ a2

]
.

The probabilities of obtaining the classical outcomes +i and
−i are

P+i = Tr
(
M+iρ

′

1

)
= Tr

(
1

2

[
1 −i
i 1

] [
b2 abeiϕ

abe−iϕ a2

])
=

1

2

(
a2 + b2 − iabeiϕ + iabe−iϕ

)
=

1

2
(1− 2ab sinϕ) ,

P−i = Tr
(
M−iρ

′

1

)
= Tr

(
1

2

[
1 i
−i 1

] [
b2 abeiϕ

abe−iϕ a2

])
=

1

2

(
a2 + b2 + iabeiϕ − iabe−iϕ

)
=

1

2
(1 + 2ab sinϕ) .

When a Y gate is added after the original circuit, the quantum
state can be represented as the matrix ρ

′

2 = Y ρY † =[
b2 −abe−iϕ

−abeiϕ a2

]
. The probabilities of obtaining the clas-

sical outcomes +i and −i are given by P+i = Tr
(
M+iρ

′

2

)
=

1
2 (1 + 2ab sinϕ), P−i = Tr

(
M−iρ

′

2

)
= 1

2 (1− 2ab sinϕ).
When a Z gate is added after the original circuit, the quantum
state can be represented as the matrix ρ

′

3 = ZρZ† =[
a2 −abe−iϕ

−abeiϕ b2

]
. The probabilities of obtaining the clas-

sical outcomes +i and −i are given by P+i = Tr
(
M+iρ

′

3

)
=

1
2 (1− 2ab sinϕ), P−i = Tr

(
M−iρ

′

3

)
= 1

2 (1 + 2ab sinϕ).
Based on the above analysis under Y-basis measurements,

we can observe that when an X or Z noise gate is added,
the final output distribution of legitimate users changes. In
other words, even if the attacker obtains the legitimate user’s
output through an attack, the information is no longer the true
output. However, when a Y noise gate is added, the final output
distribution of legitimate users remains unchanged. As a result,
it fails to protect the information effectively.

V. QUANTUM LOCAL DIFFERENTIAL PRIVACY

Our next objective is to ensure that the true output remains
inaccessible to the attacker, while allowing the legitimate user
to infer the true output. It is very important to determine
whether the legitimate user can effectively utilize the data.
For random noise gates, a common approach to obtain the
true output is to record whether an X-gate was applied during
each shot in a register [39], [40]. The legitimate user can then
retrieve the true output by reversing the noise operation using
the recorded information. However, for crosstalk attacks, since
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the legitimate user and the attacker are in the same quantum
computer, the attacker can likely access these registers, po-
tentially tampering with the recorded information or inferring
the output. For fixed noise gates, the limitation is that due to
the simple method of perturbation (adding X-gate), once the
attacker discovers the legitimate user’s perturbation method,
he/she can reverse the flipped output and retrieve the legitimate
user’s true information.

Therefore, we aim to propose a more advanced defense
mechanism. In our method, the legitimate user perturbs the
final output by adding noise with a probability p after the
circuit. Even if the attacker is aware of the noise type added,
they cannot infer the true output without knowing the exact
probability p. In this setting, we find that QLDP can be
satisfied. Specifically, we take the quantum state after the
circuit as the input to the QLDP, apply a noise gate as
the noise mechanism, and obtain a final output that satisfies
QLDP privacy preservation. Additionally, we take inspiration
from classical Local Differential Privacy (LDP) and propose
a method that eliminates the need for secure registers. Specif-
ically, we introduce frequency estimation in the quantum
domain to infer the true output of the legitimate user circuit
while preventing the attacker. QLDP and the corresponding
properties (e.g., quantum frequency estimation) are described
below.

A. QLDP Model

1) Definition: We follow the Definition 4 for our QLDP-
based protection approach.

2) The Noise Mechanisms to Achieve QLDP: Randomized
Response (RR), a classical technique to implement LDP,
can similarly realize QLDP. The core idea of RR is to add
probabilistic noise while collecting data, so that the attacker
can not get the real information, but the legitimate user can still
infer the useful information from the overall data. In QLDP, we
implement RR by adding a probabilistic quantum noise gate
(X, Y, or Z gate): with probability 1 − p, no noise is added
after the quantum state, while with probability p, a specific
noise is added.

3) Quantum Frequency Estimation: As an example, we
assume both the legitimate user and the attacker use Z-basis
measurements in their respective circuits; the legitimate user
adds an X noise gate to perturb outputs. The legitimate user
output without noise gates is defined as “the true output”,
which represents the unperturbed results. In contrast, the
legitimate user output after the addition of noise gates is
referred to as “the final output”, which represents the privacy-
protected results. The legitimate user can only obtain the final
output, and now they attempt to get the true output distribution
after N shots. Each shot requires considering the question
“Will the X noise gate be added?”, answering “yes” or “no”.
To protect the distribution of the true output, the legitimate
user decides whether to add noise or not by a uniformly
distributed random number [0, 1]. If the random number is
smaller than p, no noise is added; if the random number

is larger than p, the noise is added. In this way, the final
probabilities of “1” and “0” can be calculated as

Pr [final = “1”] = hp+ (1− h) (1− p) ,

Pr [final = “0”] = (1− h) p+ h (1− p) ,
(6)

where h is the probability that the true output is “1”.
In addition, Pr [final = “1′′] = N1/N , where N1 is the

number of final results that get “1”. Combined with Eq. (6),
we can get an estimate of the true output as “1” is

ĥ =
N1/N − p

2(1− p)− 1
. (7)

Legitimate users will now be able to use Eq. (7) to estimate
their true output.

4) Protection Level ϵ of QLDP: Now we can obtain the
following new QLDP theorem under RR.

Theorem 1 (QLDP under Random Response): For all
quantum states E (ρ) and E (σ) before a random noise mech-
anism K, this random response in the D-dimension Hilbert
space provides ϵ-quantum local differential private, where ϵ is

ϵ = ln
p

1− p
. (8)

Proof 1: We can find that in Eq. (6), Pr [final = “1′′] varies
from p to 1− p, Pr [final = “0′′] also varies from p to 1− p.
Hence, the ratio of probabilities for different results of one shot
can be at most p

1−p . According to Definition 4, under the ran-
dom response, we can obtain that ϵ = ln p

1−p ≥ Pr[K(E(ρ))∈y]
Pr[K(E(σ))∈y] .

B. The Variants of QLDP

The (ϵ, δ)-LDP is a relaxed version of ϵ-LDP, where the
mechanism satisfies ϵ-LDP with probability at least 1 − δ.
Similarly, we introduce (ϵ, δ)-QLDP as a relaxed version of
QLDP, where the mechanism satisfies ϵ-QLDP with probabil-
ity at least 1−δ. If δ is 0, (ϵ, δ)-QLDP becomes ϵ-QLDP. The
following is the definition of (ϵ, δ)-QLDP.

Definition 5 ((ϵ, δ)-Quantum Local Differential Privacy):
For any quantum states ρ and σ, a quantum operation E
satisfies (ϵ, δ)-QLDP if and only if every POVM M = {Mm}
and every subset Y of outcomes satisfy,

Pr [M (E (ρ)) ∈ Y ] ≤ eϵ · Pr [M (E (σ)) ∈ Y ] + δ, (9)

where Pr [·] is the probability, ϵ is the privacy budget, E is
an arbitrary quantum operation, δ is the failure probability for
privacy breaches.

C. The Variance of The True Output

We now infer the variance of the true output, which evalu-
ates the accuracy of the estimated true output by a legitimate
user over multiple shots. We first redefine Definition 4 in a
visual terms.

Definition 6 (ϵ-Quantum Local Differential Privacy Pro-
tocol): Consider two probabilities, p and q. A local protocol
given by the mechanism M (binary randomized response),
in which the legitimate user does not add noise gates to
a quantum circuit with probability p, and adds noise with
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probability q, satisfies ϵ-QLDP if and only if p ≤ q · eϵ. p
and q satisfy p+ q = 1.

Based on Eq. (13) in [16], the variance for the value v
(i.e. f̂v) with random noise among N users will be Var[f̂v] =
q(1−q)

N(p−q)2 +
f̂v(1−p−q)
N(p−q) . Similarly, we can introduce the variance

of the number of true output “1” (i.e. ĥE(v)) among N shots
will be

Var[ĥE(v)] =
q(1− q)

N(p− q)2
+
ĥE(v)(1− p− q)

N(p− q)
≈ q(1− q)

N(p− q)2
.

(10)

When p is 1 or 0, the estimated output ĥE(v) becomes more
accurate; as p gets closer to 0.5, this estimate output ĥE(v)
becomes increasingly random. As the number of shots N
increases, the estimated output ĥE(v) becomes more accurate.

VI. EXPERIMENTAL EVALUATION

Our experiment is divided into three parts to show the
effectiveness of our approach. First, we compare our paper
with existing works. Second, we verify that simple noise can
perturb the output, but not all types of noise are effective under
different measurements. Third, we demonstrate that quantum
frequency estimation enables legitimate users to obtain reliable
true outputs while preserving privacy.

A. Comparison with Existing Works

We summarize the key differences between our work and
existing approaches in Table II. All three characteristics in the
table are from the perspective of legitimate users, where the
“irreversible” means that even if the attacker knows the noise
type the legitimate user adds, they still cannot infer the true
output. “Memory-independent” means that legitimate users do
not need to record where the noise occurs in order to apply in-
verse operations to recover the true output. “Estimable” refers
to the ability of legitimate users to estimate the distribution
of the true output even after the noise is added. As shown in
Table II, only our method satisfies all three characteristics.

In addition, we compare the privacy budgets of our method
with those of methods [19] and [20], that also add X noise gate
for output protection, as shown in Fig. 1. Since [19] and [20]
apply an X gate with 100%, they can only achieve a fixed pri-
vacy budget, represented by the asterisk in Fig. 1. In contrast,
our approach adds a probabilistic X noise gate, enabling us to
obtain different privacy budgets, represented by the blue line,
to satisfy different privacy protection requirements. This also
supports the conclusion in Section V.C, where we demonstrate
that for X (or Y, Z) noise gate, setting p = 0.5 achieves
the largest perturbation with the most random output and the
smallest privacy budget.

B. The Noise Mechanisms to Realize QLDP

We utilize the IBM real quantum computer “ibm_kyiv”
to validate Table I, i.e., whether different types of noise
can perturb the output under different quantum measurement
operators. The number of shots is set to 1000, the noise gates
(i.e., ‘Noise’, Noise1’, ‘Noise2’ in Fig. 2) are either X or Y, or

Fig. 1. Comparison of privacy budgets.

Z gates. In noisy circuits, the probability of noise occurrence
is 100%. Measurements are either X or Y, or Z-basis. The
corresponding quantum circuit model is shown in Fig. 2.

For a single-qubit circuit, as shown in Fig. 2(a), we assume
that the quantum circuit part consists of only random single
qubit gates U

(
π
3 ,

π
4 ,

π
6

)
. The first qubit represents the quantum

circuit without additional noise (i.e., the original circuit),
and the second qubit represents the quantum circuit with an
additional noise gate. The result is shown in Table III. Taking
Z-basis measurement as an example, we observe that adding
X or Y noise gate can effectively perturb the original output
distribution, but adding a Z noise gate results in an output
distribution the same as the original, meaning it fails to provide
protection. This result is consistent with Table I, so we show
that not all types of noise can perturb the output under different
measurements in single qubit circuits. Moreover, since the
final output of legitimate users is perturbed (i.e., the true
output inversion), the crosstalk attack described in Section III
becomes ineffective by inferring the true output with only 4%
accuracy.

For multi-qubit circuits, we utilize the Bernstein-Vazirani
algorithm to be the circuit part. The Bernstein-Vazirani algo-
rithm works by allowing the user to query the algorithm with
different inputs to obtain corresponding outputs, ultimately
revealing the hidden number encoded in the system [42].
In this experiment, we assume that the hidden number of
the system is “11” and the corresponding circuit is shown
in Fig. 2(b). We aim to show that adding a specific noise
can modify the output and thus protect the hidden number,
which is of practical importance. The result is shown in
Table IV. Taking Z-basis measurement as an example, we
observe that adding an X or Y noise gate on both qubits can
effectively perturb the original output distribution, but adding
a Z noise gate results in an output distribution the same as
the original, meaning it fails to provide protection and has
the chance of revealing the hidden number. This result is
consistent with Table I, so we show that not all types of noise
can perturb the output under different measurements in multi-
qubit circuits. Moreover, since the final output of legitimate
users is perturbed, the crosstalk attack described in Section III
becomes ineffective by inferring the true output with only 4%
accuracy.
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Irreversible Memory-independent Estimable
Noise type added Support Register usage Support Estimation Method Support

Saki et al. [19] 100% X gate ✗ Register ✗ Inverse operation ✓
Maurya et al. [20] 100% X gate ✗ Register ✗ Inverse operation ✓

Guan [25] Depolarizing noise ✓ Register ✗ Not mention ✗
Angrisani et al. [26] Measurements ✗ Register ✗ Not mention ✗
Nuradha et al. [28] Depolarizing noise ✓ Register ✗ Not mention ✗

Our Work Probabilistic X/Y/Z gate ✓ Register-free ✓ Frequency estimation ✓
✓ means that this work has this characteristic; ✗ means that this work does not have this characteristic.

TABLE II
COMPARISON WITH EXISTING WORKS.

Z-basis measurement X-basis measurement Y-basis measurement
P(0) P(1) Protect data P(+) P(-) Protect data P(+i) P(-i) Protect data

No noise 0.73 0.27 0.82 0.18 0.81 0.19
Add X gate 0.25 0.75 ✓ 0.80 0.20 ✗ 0.22 0.78 ✓
Add Y gate 0.25 0.75 ✓ 0.19 0.81 ✓ 0.79 0.21 ✗
Add Z gate 0.76 0.24 ✗ 0.18 0.82 ✓ 0.20 0.80 ✓

✓ means that the output can be protected; ✗ means that the output cannot be protected.

TABLE III
SINGLE QUBIT CIRCUIT RESULTS UNDER DIFFERENT GATES PERTURBATIONS.

Z-basis measurement
P(00) P(01) P(10) P(11) Protect data

No noise 0.00 0.02 0.02 0.96
Add X gate 1.00 0.00 0.00 0.00 ✓
Add Y gate 0.94 0.02 0.04 0.00 ✓
Add Z gate 0.00 0.02 0.02 0.96 ✗

✓ means that the output can be protected; ✗ means that the output cannot
be protected.

TABLE IV
MULTI-QUBITS CIRCUIT RESULTS UNDER DIFFERENT GATES

PERTURBATIONS.

Fig. 2. Quantum circuit models to validate noise mechanisms. (a) The two
circuits illustrate the single qubit cases without and with noise, while the rest
is the same. ‘Quantum circuit’ denotes single qubit gates, and ‘Noise’ denotes
an X, Y or Z noise gate. (b) The circuit illustrates the multiple qubits case
with noise. ‘Noise1’ and ‘Noise2’ both denote an X noise gate.

C. The Quantum Frequency Estimation

We utilize the IBM quantum simulator “qasm_simulator” to
validate the frequency estimated result (i.e., ‘Result’ in Fig 3)

is similar to the true output. As an example, we choose X-basis
measurements for this simulation. The number of shots is set
to 1000 and the noise gates is X-gate noise with occurrence
probability 0.2.

The corresponding quantum circuit model is shown in
Fig. 3. The simulation was conducted on 50 randomly gen-
erated circuits (i.e., ‘Quantum Circuit’ in Fig 3), where the
circuit consists of 5-10 gates taken randomly from X, H,
S, Ry gates. The first qubit represents the quantum circuit
with additional noise; the distribution after the measurement
symbol represents the final output; ‘Formula’ refers to the
frequency estimation Eq. (7); ‘Result’ represents the estimated
result. The second qubit represents the quantum circuit without
additional noise (i.e., the original circuit); the distribution after
the measurement symbol represents the true output. To assess
the similarity between the true output and the estimated output,
we used Kullback-Leibler (KL) divergence, where a lower
KL divergence indicates a higher similarity between the two
distributions. The results, shown in Fig. 4, indicate that 94%
of the circuits have a KL divergence below 0.01, suggesting
that the estimated and true outputs are highly similar. This
confirms the accuracy of our frequency estimation method. In
addition, we evaluated the utility of our method by measuring
the probability that the estimated and true outputs match (i.e.,
both output 1 or 0). Across the same 50 circuits, our approach
achieved a utility score of 90%, which shows that our method
maintains usability while protecting data privacy.

VII. DISCUSSION

We consider exploring the frequency estimation of multi-
qubit circuits in the future. For multi-qubit circuits, we typ-
ically obtain the joint probability distribution over multiple
qubits rather than the probability of individual qubits. If the
qubits are uncorrelated, the joint probability distribution can
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Fig. 3. Quantum circuit models to validate frequency estimation. The two
circuits illustrate the cases without and with noise, while the rest are the same.
‘Quantum circuit’ denotes single qubit gates, ‘Noise’ denotes an X, Y, or Z
noise gate, ‘Formula’ denotes Eq. (7), ‘Result’ denotes the estimated results.

Fig. 4. KL Divergence for different test circuits.

be factorized using the law of total probability, allowing us
to determine the individual probability distributions of each
qubit. In this way, we can perform the frequency estimation
for each qubit, as Eq. (7) derived earlier in our paper, to obtain
the true distribution of each qubit and the corresponding joint
probability. However, in most practical scenarios, multi-qubit
circuits involve entanglement and correlation, such as CNOT
gates, CCX gates, etc. In such cases, the joint probability
would not be able to obtain the respective distribution of
each qubit. Nevertheless, through our preliminary derivation,
we have found that the relationship between the true and
estimated distributions of multiple qubits quantum circuits
can be expressed as a system of 2n equations, and the exact
relationship can still be obtained. The specific details will be
explored in the future.

VIII. CONCLUSION

In this paper, we develop a novel protection method for the
quantum computing output based on quantum local differential
privacy. Through rigorous mathematical derivation, we demon-
strate that under different quantum measurement operators,
simple quantum noise can perturb the output and thereby
protect the data. However, not all types of noise are effective
for this purpose. To further prevent an advanced attacker who
has the user’s partial information, we change the probability
of the noise gate added to the quantum circuit. Additionally,
we propose quantum frequency estimation enabling legitimate
users to estimate the true output from the perturbed results.
We conduct extensive experiments on both real quantum
computers and quantum simulators to validate our theoretical
findings. Our results also show that the quantum frequency

achieves 94% accuracy and 90% utility to estimate the true
output, demonstrating the effectiveness of our approach.
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