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Abstract—Circuit cutting is a promising technique that lever-
ages both quantum and classical computational resources, en-
abling the practical execution of large quantum circuits on
noisy intermediate-scale quantum (NISQ) hardware. Recent ap-
proaches typically focus exclusively on either gate cuts or wire
cuts, modeling quantum circuits as graphs. However, identifying
optimal cutting locations using this representation often results
in prohibitively high computational complexity, especially un-
der realistic hardware constraints. In this paper, we introduce
CIFOLD, a novel graph-based framework that exploits repetitive
modular structures inherent in quantum algorithms, significantly
enhancing the scalability and efficiency of circuit cutting. Our
approach systematically folds quantum circuits into compact
meta-graphs by identifying and merging common gate sequences
across entangled qubits, dramatically simplifying subsequent
partitioning tasks. We define folding factor and variance to
quantify circuit compression and ensure balanced folding. Using
these condensed representations, CIFOLD precisely identifies cut
locations without exhaustive global graph searches. We perform
extensive experiments, comparing CIFOLD with state-of-the-art
circuit-cutting techniques. Results demonstrate that CIFoOLD
achieves superior partition quality and computational efficiency,
reducing the number of required cuts by an average of 31.6%
and lowering the sampling overhead substantially by 3.55 x 10°.
Our findings illustrate that CIFOLD represents a significant
advancement toward scalable quantum circuit cutting.

I. INTRODUCTION

Quantum computing holds immense potential by solving
complex problems currently intractable for classical com-
puters. However, current noisy intermediate-scale quantum
(NISQ) devices suffer from limited qubit counts, connectivity
constraints, and gate fidelity issues, severely hindering the
practical execution of large-scale quantum circuits.

Circuit cutting has recently emerged as a promising strategy
to extend quantum computation beyond current hardware
limitations by decomposing large circuits into smaller subcir-
cuits executable on resource-constrained quantum processors.
Two main circuit-cutting paradigms: wire cut [1]-[3], which
provides exact reconstruction but incurring fixed overhead, and
gate cut [4]-[6], which uses quasiprobability decomposition to
reconstruct expectation values with reduced sampling overhead
compared to wire cut.

Despite the complementary nature of gate- and wire-cutting
methods, their integration into a unified framework remains
largely unexplored. Recent studies have begun examining the
advantages of combining these two approaches [7], [8], but
finding optimal cut points within a hybrid gate-wire partition-

ing is inherently challenging. Existing graph-based techniques
for wire cutting represent each two-qubit gate as a node [2],
[9], whereas gate cutting adopts a simpler representation, using
each qubit as a node [4]. When integrating both gate and
wire cuts into one framework, the resulting graph structure
effectively requires twice as many nodes compared to the
wire-cut-only scenario. Consequently, solver-based methods
designed to identify optimal partitions (e.g., Satisfiability
Modulo Theories(SMT) solvers used in [7] or Integer Linear
Programming(ILP) solvers employed in [8]) face significant
runtime overhead. For instance, Brandhofer et al. [7] imposed
a one-hour SMT solver timeout for circuits of up to 40 qubits,
while Pawar et al. [8], using an improved ILP model, reported
solution times of up to 1800 seconds for a 20-qubit quantum
Fourier transform (QFT) circuit. They suffer from significant
scalability issues and are impractical in reality.

Motivated by the fact that many quantum algorithms follow
fixed structural patterns to solve well-defined problems such as
Grover’s algorithm [10], quantum phase estimation [11], quan-
tum arithmetic operation [12], Bernstein-Vazirani algorithm
[13] and Shor’s algorithm [14]. As problem size increases,
these algorithms typically scale by adding more qubits while
retaining the same circuit structure. While this modularity
offers an opportunity for optimization, current approaches
often treat each gate as unique, leading to a combinatorial
explosion in cut-point searches that is both non-optimal and
computationally expensive. This results in non-optimal or
time-consuming methods that fail to scale efficiently. To
address these limitations, this work proposes CIFOLD, a novel
folding-based circuit-cutting framework designed to harness
the inherent modularity of many quantum algorithms. Rather
than searching the entire circuit for cutting points, CIFOLD
identifies recurring gate sequences and exploits these struc-
tural redundancies to minimize the number of required cuts.
By incorporating self-adaptive algorithms tailored to detect,
from qubit-level, in parallel, and leverage repeated mod-
ules, CIFOLD significantly reduces the exponential overhead
commonly associated with circuit partitioning. Experimental
results on standard quantum benchmarks demonstrate how
our approach not only lowers the computational cost but also
preserves accuracy, offering a practical path forward for large-
scale quantum computations. This work introduces several key
innovations:
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o Graph-Based Circuit Folding: We present a novel
graph-based framework for circuit partitioning that mod-
els quantum circuits as directed graphs. By apply-
ing folding techniques to identify recurring gate sets,
CIFOLD constructs a meta-graph that reduces circuit
complexity and improves partitioning efficiency.

o Folding Metrics: We define the folding factor and fold-
ing variance as quantitative measures of circuit folding
efficiency, providing a systematic evaluation of the gains
achieved through structured circuit decomposition.

o Adaptive Partitioning: CIFOLD leverages the meta-
graph structure to guide the search for optimal partition
points, efficiently reducing the number of subcircuit exe-
cutions while maintaining fidelity. This adaptive approach
ensures flexibility across varying hardware constraints
and qubit resources.

o Implementation and Evaluation: We implement end-to-
end circuit cutting pipeline using CIFOLD and evaluate
it across a diverse set of quantum circuit benchmarks.
CiFoLD improves relative fidelity, ranging from 5.3%
to 61.2% across seven IBM backend emulators, achieves
runtimes below 1-second even for complex circuits,and
reduces required cuts by an average of 31.6%, leading to
a sampling overhead reduction of 3.55 x 10°.

II. RELATED WORK AND BACKGROUND

Quantum circuit cutting broadly falls into two cate-
gories: theoretical explorations, primarily investigating bipar-
tite cuts [3], [15]-[22], and practical, implementation-driven
studies aimed at efficient real-world deployment [1], [2], [4],
[9], [23]-[26]. Early theoretical work employed quasiprobabil-
ity decomposition, analyzing overhead scaling and techniques
such as parallel cuts and classical communication. Practical
implementations like CutQC [2], TensorQC [1], and FitCut [9]
introduced automated pipelines addressing classical computa-
tion bottlenecks and hardware-aware optimization.

In contrast to prior work, CIFOLD framework uniquely ex-
ploits qubit-level structural repetition within quantum circuits,
using a graph-based folding method to generate compact meta-
graphs. This approach reduces computational overhead, en-
ables parallel subcircuit processing, and efficiently optimizes
cut selection for both quantum and classical resources.

A. Circuit Cutting

Quantum circuit cutting allows large quantum circuits to
be divided into smaller subcircuits that can be executed
independently on quantum hardware and later reconstructed
using classical postprocessing. Two main techniques have been
developed for this purpose: gate cutting and wire cutting, as
shown in Figure 1.

Gate cut: employs quasiprobability simulation to recon-
struct the expectation value of the original circuit. It replaces a
two-qubit gate with local single-qubit operations, denoted by
s; as shown in Fig 1, along with classical postprocessing [15].
Each gate cut results in separately executable subcircuits,
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Fig. 1: Illustration of Gate Cut and Wire Cut

which are individually sampled according to their correspond-
ing quasiprobability distribution. Wire cuts: A wire cut severs
a quantum wire by inserting measurement and preparation
operations that effectively separate a circuit into independently
executable fragments. As shown in Fig. 1(b), when two wires
are cut, mj and mo correspond to measurement channels in the
{I,X,Y,Z} bases, while p; and py represent state prepara-
tions in the {|0), |1), |i),|+)} states for a distinct computation
fragment [2]. Consequently, one cut entails executing three
different upstream subcircuits (since I and Z are identical)
and four different downstream subcircuits. The final outputs
are combined via 16 Kronecker products of the respective
probability distributions to achieve exact reconstruction.

B. End-to-End Circuit Cutting pipeline

Circuit cutting is a hybrid quantum-classical technique
that redistributes computational workload between quantum
hardware and classical postprocessing. To enable its practical
deployment, an end-to-end workflow is required that coor-
dinates quantum execution with classical preprocessing and
reconstruction. This workflow consists of three key stages:

1) Cut Point Identification: The first step is to determine
the cut locations within the quantum circuit by jointly con-
sidering hardware constraints and the requirements of circuit
cutting protocols. While the maximum number of qubits per
subcircuit is typically the primary constraint, other hardware
limitations—such as gate depth restrictions imposed by coher-
ence time and gate fidelity—must also be included in the cut
selection process.

The cost model must reflect the specific circuit cutting
protocol in use. For example, gate cuts and wire cuts differ
significantly in their reconstruction overhead and operational
requirements. Techniques like parallel cutting can reduce joint
sampling overhead between subcircuits [6], [17], but they
introduce additional constraints and trade-offs that must be
explicitly accounted for in the model. The overall objective is
to minimize the total sampling overhead required for recon-
struction, which can scale exponentially with the number and
type of cuts. Therefore, identifying an optimal cut strategy
requires careful alignment between hardware feasibility and
protocol-specific cost modeling.

2) Subcircuit Execution: The second step involves com-
piling and executing subcircuits. Wire cutting uses a fixed
number of shots per subcircuit, while gate cutting requires
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Fig. 2: Circuits with repeated patterns: (a) Bernstein Vazirani
(BV); (b) Hardware efficient ansatz (HWEA); (c¢) ISING

uneven shot allocation based on quasiprobability weights to
ensure statistical accuracy.

3) Classical Postprocessing: Following quantum execution,
classical reconstruction is performed to assemble either the
full probability distribution (in the case of wire cutting) or
the expectation value of specified observables (in the case
of gate cutting). This reconstruction step follows the protocol
determined during the initial cut planning phase.

III. CHALLENGES AND OPPORTUNITIES

Insight 1: Cut Finding is Non Trivial — Despite its critical
role, the problem of cut point finding is often overlooked or
assumed to be predefined in many circuit cutting studies [3],
[5], [6], [27]. Theoretical works frequently operate under the
assumption that optimal cuts are known a priori. In practice,
determining where to cut is a complex optimization task
that cannot be easily addressed using well established graph
algorithms. To address this, existing implementations typically
formulate cut finding as a constrained optimization problem,
employing solvers such as Mixed Integer Programming (MIP),
Boolean Satisfiability (SAT), or Integer Linear Programming
(ILP) to model sampling overhead and search for globally
optimal partitions [2], [7], [8].

The complexity of the graph model differs greatly between
gate and wire cutting. Gate cutting’s graph representations
map nodes to qubits, enabling heuristic-based merging strate-
gies [4]. In contrast, wire cuts model nodes as two-qubit gates,
making valid partitioning under qubit constraints a factorial-
complexity problem [2], [9]. Hybrid gate-wire modeling fur-
ther doubles graph size and increases solver complexity. Even
with optimized ILP formulations [8], solving times on practical
circuits can exceed 1800 seconds, underscoring the need for
more scalable and hardware-aware heuristics.

These challenges present a key opportunity for future
research: developing efficient, approximate cut-finding algo-
rithms that balance accuracy with runtime, while still account-
ing for hardware constraints and sampling overhead.

Insight 2: Exploiting Quantum Circuit Modularity —
Quantum algorithms are typically implemented through quan-
tum circuits whose size scales with the complexity of the target
problem. These circuits often exhibit recurring patterns across
qubit registers or layers. Benchmark suites QASMBench [28]
and SupermarQ [29] show how numerous algorithm families
(e.g., quantum arithmetic [12], simulation [30], machine learn-
ing [31], hidden subgroup [13], search [10], optimization [32]
and variational methods [33]) reuse the same structural blocks
as qubit counts increase. Figure 2 shows three examples with
repeated modules (in green).

Ideally, leveraging modular patterns keeps cutting a 100-

qubit BV circuit as manageable as a 10-qubit one. In contrast,
general-purpose frameworks that treat each gate independently
scale poorly with circuit size. By identifying and exploiting
this modularity, e.g., structural repetitions, our approach tar-
gets only the unique substructures within the circuit, effec-
tively amortizing the cut-finding cost. This reduces the need
for exhaustive search across the entire circuit graph, mitigating
the factorial growth in complexity. Instead of treating each gate
instance independently, our system constructs a compressed
circuit information graph and reuses cutting decisions across
all instances of the same module.
Insight 3: Limitations of Classical Graph Algorithms —
Classical graph algorithms, such as subgraph-isomorphism
solvers or frequent subgraph mining (FSM) techniques, are
not well-suited for quantum circuit cutting. First, subgraph-
isomorphism approaches require predefined patterns, which
are not available in the circuit cutting context. Additionally,
conventional graph properties, like node count or topology, do
not directly map to quantum hardware constraints or sampling
overhead. Second, FSM algorithms typically identify recurring
subgraphs within datasets and thus require significant modifi-
cations to handle single large graphs, as in circuit cutting. Even
with adaptations, FSM methods such as gSpan [34] or MoFa
[35] exhibit exponential complexity due to the combinatorial
explosion of candidate subgraphs, making them impractical
for circuits beyond 100-200 gates.

Consequently, these classical methods fail to effectively
align with the practical constraints and cost models necessary
for scalable and efficient quantum circuit partitioning.

IV. CIFoLD SOLUTION DESIGN

To address the challenges and limitations, we propose
CIFOLD, a scalable and graph-based circuit cutting and fold-
ing framework. In this section, we formulate circuit cutting
as a constrained graph partitioning problem, introducing a
novel weighted graph representation that unifies gate and wire
cuts while quantifying sampling overhead as edge weights.
CIFOLD hinges on two pillars: (1) circuit folding, a systematic
compression technique that identifies recurrent gate sequences
across entangled qubits to construct a compact meta-graph;
and (2) adaptive partitioning, which leverages the meta-graph’s
hierarchical structure to guide minimal-overhead cut identifi-
cation without exhaustive searches. Central to our approach
are the folding factor and folding variance metrics, which
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Fig. 3: CIFOLD Framework Overview

rigorously assess compression efficiency and structural bal-
ance, enabling automated optimization of the folding process.
From a system design perspective, we detail a parallelized
workflow that combines dynamic program analysis for pattern
detection (via Longest Consecutive Common Subsequence)
with Weisfeiler-Lehman graph hashing for fast structural
equivalence checks, ensuring scalability to large-scale circuits.

A. Problem Formulation

We represent a quantum circuit as a directed weighted graph
G = (V, E,w), where:

o V is the set of nodes representing qubit operands.

o FE is the set of edges, each (u,v) € E corresponding to a

two-qubit gate or a wire (sequential gate on same qubit).
The directed edges enforce the sequential gate ordering
on each qubit, and bidirectional edges represent two-qubit
interactions.

e w:E — RT assigns sampling overhead as edge weights.
Cutting Overhead: Wire cuts have a fixed weight of 16. For
gate cuts, the overhead depends on the entangling strength.
A controlled-CZ rotation with angle 6 incurs: w(e)
(1+ 2sin (g))2 . Typical controlled gates (X, Y, Z) have
overhead 9, while SWAP has 49.

Partitioning: A valid partitioning P = { P4, ..., Py} satisfies:
Ule P, =V, P,NP;=1(0 Yi# j. Each partition contains
nodes V; C V and edges F; = {(u,v) € E | u,v € V;}. The

cut set is: Eoy = {(u,v) € E |u € P;,v € Pj,i # j}. The
total sampling overhead is:
Pow = [ wu,v). ()

(u7v)€Ecm
B. Meta-Graph and Folding Metrics
Given repeated substructures, we construct a meta-graph
G' = (V',E') where each v/ € V' and ¢ € FE’ ag-
gregates multiple instances from (. Each meta-node/edge
is assigned a frequency: freq(v'), freq(e’). By construction:

P rev’ freq(v") = V[, 32, 'eE’ freq(e") = |E.
Folding Factor:
]+ IE|

T VI ET
A higher F' indicates greater structural compression.
Folding Variance: Let yiy = 1077 2 freq(v'). The variance
is:

2)

Varea(V') = — Y freq(v') (freq(v') — pv)*

v’ eV’

1
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Fig. 4: Nlustration of Circuit Folding: (a) Circuit-level
graph. (b) Five qubit-level gate sequences are paired based
on Maximum Entangled Pairs, highlighted in matching colors,
and folded in parallel. (¢) A common gate sequence between
g2 and g¢s is detected using LCCS function, merging the red-
circled nodes. (d) The folded structure of [gs, g3] triggers self-
folding in g4, marked by a green edge. (e) The final meta-graph
reduces node count from 19 to 11.

A lower Vargq(V') implies more uniform module sizes,
simplifying partitioning. Together with F', this metric helps
assess folding quality and avoid under-folding (low F') or
over-folding (high variance dominated by few large modules),
ensuring a compact and balanced meta-graph for efficient
circuit cutting.

C. Framework Design: Circuit Folding

Figure 3 illustrates the CIFOLD framework using a 5-qubit
example. First, the input circuit is translated into qubit-level
sequence graphs. These per-qubit graphs are then analyzed
by the folding algorithm (Algorithm 1, Figure 4) to detect
repeated modules and construct a compact meta-graph. By
folding qubits with identical or similar workloads, CIFOLD
consolidates redundant structures and captures essential pat-
terns. The resulting meta-graph is subsequently “unfolded” to
generate an optimized circuit, which is finally partitioned into
smaller subcircuits(Algorithm 2, Figure 5). The partitioning
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Algorithm 1 Parallel Folding of Qubit-Level Pattern Graphs

Algorithm 2 Meta-Graph Guided Circuit Partitioning

Input: Qubit-level sequence graphs Gy, Gy, , - - -
Output: Folded meta-graph G’
1: for all min_LCS _len € [max(seq_len)...3] decreasing
do

’ an

2 Gpagem < [Ggo, Ggrs-- -Gy,

3:  while |Gpaen| > 1 do

4: MEP < IdentifyMostEntangledPairs (G pattern )
5: for all (G,,,G,;) € MEP in parallel do

6:

7: if [L;, L;] # 0 then

8: Gmerged <~ ComposeGraphs(Gy,, Gy, )

9: for all (’Ui,’l)j) € [Ll,L]] do

10: Transfer edges from v; to v;

—_

Fold v; into v;

12: Replace G, Gy; With Grerged i Gattern
13:  Compute F' and Vargu (V') via Eq. (2), (3)

14:  if no improvement in F' and Varg,q(V’) then
15: return folded graph G’

16: return Folded graph G’

step reduces hardware demands and sampling overhead, al-
lowing circuits to be executed efficiently on current quantum
devices.

1) Qubit-Level Gate Sequence: Given the graph represen-
tation of input circuit G = (V,E,w), the directed edges
explicitly encode the inherent temporal ordering constraints
imposed by quantum circuit operations. Leveraging these
constraints, we simplify the task of detecting structural patterns
by analyzing sequential gate ordering at the qubit level, thus
avoiding the computational complexity associated with general
subgraph isomorphism searches. Specifically, each qubit g;
yields a qubit-level sequence graph G,,, as illustrated in
Figure 4(b). This extraction can be efficiently parallelized.

Given two qubit gate sequences, we employ dynamic
programming to identify the Longest Consecutive Common
Subsequence (LCCS). A dynamic programming table is ini-
tialized and systematically filled by comparing elements from
both sequences, tracking the longest contiguous match. Only
subsequences longer than a predefined threshold are retained,
ensuring that the identified patterns are significant and suitable
for use in the subsequent folding stage.

2) Folding: Layered Frequent Pattern Discovery: The fold-
ing process identifies repeated gate sequences, consolidating
nodes and edges into a meta-graph. Each meta-node repre-
sents structurally equivalent groups from the original circuit,
preserving gate parameters and connectivity.

Figure 4 demonstrates folding on a 5-qubit circuit. Al-
gorithm 1 details the parallel folding method on qubit-level
graphs [Gy,, G, .. .]. Initially, a sequence-length threshold
is set (Line 1), and pairs of qubits with the most shared
gates (Most Entangled Pairs, MEPs) are identified (Lines 3—
4). The Longest Common Consecutive Subsequence (LCCS)
algorithm detects common sequences (Line 6), enabling node

Input: Circuit graph G, Folded graph G, qubit constraint
qCOIl
Output: Partitioned subgraphs of the circuit graph
1: Initialize VisitedNodes < ()
2: Pt < ModuleFinding(G, Gy) {Initial modules in-
dexed by hash}
3: Construct graph G’ where each subgraph in Py, forms
a single node

[Ls, Lj] <= LCCS(G, .nodes, Gy, .nodes, min_LCS_leny: G < GreedyMerge(qcon, Pitial)

5. P < Refinement(G’, geon, Phnitial)
6: return Final partition P

Algorithm 3 Optimized Initial Partition via Edge Growth

Input: Circuit graph G, Folded meta-graph G
Output: Initial set of partitions Py
1: Initialize visited_nodes <— (), Pi < 0
2: while |visited_nodes| < |G.nodes| do
3. Ufeq ¢ SelectMostFoldedNode(G ¢, visited_nodes)
4 for all v € vgeq.folded_nodes in parallel do
5: Initialize current_subgraph < {v}
6: Identify candidate neighbors of v in G
7 for all neighbors n connected via edge e to v do
8 Add node n and edge e to current_subgraph
9

Compute hash —
WeisfeilerLehman(current_subgraph)

10: Append current_subgraph to Py [hash]

11: Update visited_nodes with nodes in

current_subgraph
12: return P

collapsing (Lines 7-12). Edges are transferred to maintain
structural integrity.

The folding operates iteratively, halving the number of
graphs each step, thus requiring log, n iterations for n-qubit
circuits. Each iteration maximizes the folding factor F' (Eq. 2)
while minimizing frequency variance (Eq. 3). The threshold
is progressively lowered until no further improvement occurs.

3) Unfolding: Modular Partitioning Search: The meta-
graph encapsulating repeated structures and connectivity for
partitioning. Algorithm 3 details the initial partitioning strat-
egy. An example is shown in Figure 5.

CIFOLD leverages Weisfeiler-Lehman (WL) hashing for ef-
ficiently detecting structurally similar subcircuits. Though WL
hashing does not guarantee exact isomorphism, it sufficiently
discriminates under quantum circuit constraints. Nodes are
selected based on folding frequency, expanded using canonical
edge ordering, and grouped using WL hashes.

Partitions are determined by selecting frequently occurring
WL hashes. These partitions form supernodes for subsequent
global partitioning, employing a METIS-inspired greedy merg-
ing and refinement strategy to minimize sampling overhead.
Nodes near partition boundaries are exchangeable between
partitions, further optimizing partition quality.
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Fig. 5: Ilustration of Circuit Unfolding: The yellow and
red square represents the folded node (go,q1) and (g2,q3) in
(a). (b) illustrates the identified initial subgraphs, partitioned
into two 3-qubit subcircuits. (c) displays the unfolded circuit,
highlighting the cuts determined in (b).

V. EVALUATION

This section evaluates the effectiveness of the proposed
CIFoLD framework against state-of-the-art circuit cutting
methods across multiple dimensions: execution time, number
of cuts, sampling overhead, and reconstruction fidelity.

A. Meta Graph Comparison

Figure 6 shows the graph representation of example 12
and 24-qubit circuit with its meta graph. The corresponding
folding metrics in shown in I. These examples illustrate that
a higher folding factor leads to greater reductions in graph
size and complexity, while a higher folding variance indicates
an uneven distribution of folding. For 12-qubit and 24-qubit
circuit, they can converge to a similar meta-graph structure,
differing only in frequency distributions with higher folding
factor for 24-qubit circuit. Each folded node in the meta-
graph aggregates multiple nodes from the original circuit,
with its frequency count reflecting the extent of consolidation.
Additionally, nodes of the same color correspond to identi-
cal gate types. This folding approach effectively simplifies
large-scale quantum circuits while preserving their essential
structure, facilitating more efficient partitioning and execution
under hardware constraints.

TABLE I: Folding Factor and Folding Variance

Circuit Type | Qubit Count F Vargoq (V)
QAOA 12 7.32 24.00
BV 12 6.64 24.45
QAOA 24 18.08 44.62
BV 24 13.50 91.08

B. Workload, Implementation and Settings

Benchmark Circuits: We evaluate and compare CIFOLD us-
ing five quantum algorithms commonly employed in previous
circuit-cutting studies [1], [2], [4]: (1) QAOA: Hardware-
efficient ansatz for combinatorial optimization [32]; (2) BV:
Bernstein-Vazirani algorithm for exponential oracle-query
speedup [13]; (3) GHZ: Entangled state preparation for quan-
tum communication [36]; (4) W State: Robust multipartite
entanglement; (5) Ising: 2-local Hamiltonian simulation for
optimization [30], [37].

=

(a) 12-q QAOA (b) 12-q QAOA (c) 24-q QAOA (d) 24-q QAOA

S R

(f) 12-q BV (g) 24-q BV (h) 24-q BV

(e) 12-q BV

Fig. 6: Comparison of Original Graph and Meta Graph: Each
node in meta graph consolidates multiple nodes in original
graph with frequency indicated. Additionally, nodes of the
same color correspond to same gate types.

Implementation and Experiment Settings: We implement
the CIFOLD with the following software: Python 3.10 [38],
IBM Qiskit 1.02 [39], Qiskit-Addon-Cutting 0.9.0 [25], and
Networkx 3.3 [40]. The classical components of CIFOLD are
executed on an AMD Ryzen 7 6800H processor running at 3.2
GHz. The quantum processors used are IBM Qiskit Emulators,
using hardware calibration data from real machines including
Auckland, Brisbane, CairoV2, Cusco, WashingtonV2, Syd-
neyV2 and MontrealV2.

Baselines: We compare CIFOLD against three state-of-the-
art circuit-cutting frameworks: Qiskit-Addon-Cutting [25]
utilizes a Dijkstra-based best-first search algorithm supporting
both gate and wire cuts. CutQC [2] employs solver-based opti-
mization restricted to wire cuts, guaranteeing optimal solutions
for wire-only partitions. However, its factorial runtime growth
significantly limits scalability. To manage this, a 300-second
time limit is enforced, after which the best available solution
(or none, if unresolved) is returned. FitCut [9], another wire-
only method, combines Louvain community detection with
greedy merging for efficient partitioning.

C. Evaluation Metrics

Relative Fidelity: We assess fidelity through an end-to-end
pipeline as shown on Figure 3. We compare the reconstructed
expectation value for computational Z basis from partitioned
circuits against values obtained by direct, unpartitioned exe-
cution on same noisy emulators.

Execution Time: Execution time reflects the overhead of
partitioning, with faster runtimes indicating better scalability
for large circuits. A red cross marks cases exceeding the 300-
second timeout.

Number of Cuts: The number of cuts directly influences
the exponential classical post-processing overhead (O(4™)
per wire cut). Therefore, fewer cuts indicate more efficient
solutions and reduced post-processing costs.

Sampling Overhead: Sampling overhead measures how many
times subcircuits must be executed to achieve accurate circuit
reconstruction. Hybrid approaches integrating gate and wire
cuts (such as CIFOLD and Qiskit-Addon-Cutting) typically
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Fig. 7: Relative fidelity of CIFOLD compared to direct exe-
cution for three 20-qubit circuits, computed as the normalized
difference from uncut execution. Dashed line denotes baseline
fidelity (uncut execution).

outperform frameworks relying exclusively on wire cuts (e.g.,
CutQC, FitCut).

D. Performance Analysis

Relative Fidelity: In Figure 7, we present the relative fidelity
of reconstructed expectation values for a 20-qubit circuit with
10-qubit constraint across BV, QAOA, and GHZ benchmarks.
The evaluation is conducted on seven IBM backend emu-
lators to account for different noise profiles. The average
relative fidelity improvement factors are 19.8%, 51.8%, 5.3%,
23.2%, 61.2%, and 22.0% for Auckland, Brisbane, CairoV2,
Cusco, WashingtonV2, SydneyV2, and MontrealV2, respec-
tively. Therefore, CIFOLD demonstrates an improvement in
fidelity due to reduced subcircuit width and depth, consistent
with findings from previous studies [2], [4], [23].
Execution Time: As shown in Fig. 8 (left), the dashed line
marks the 1-second threshold, and a red cross indicates a
300-second timeout. CIFOLD consistently maintains runtimes
near or below this mark across all benchmarks, leveraging
parallelized folding and unfolding processes. FitCut consis-
tently demonstrates the lowest runtimes (around 0.1s). This is
because it is exclusively reliant on wire cuts and simplifies
graph complexity compared to the hybrid gate and wire cut
approaches like CIFOLD. Without supporting gate cuts, FitCut
leads to a larger number of cuts and a significant increase in
sampling overhead as shown in Fig. 8(center and right figures).
Besides, CIFOLD outperforms Qiskit-Addon-Cutting sig-
nificantly. For example, the average execution times are
1.13s vs 12.97s (Ising), 0.30s vs 36.91s (GHZ), 1.19s vs
25.76s (W-State), 0.41s vs 9.65s (BV), and 0.68s vs 8.62s
(QAOA) for CIFOLD and Qiskit-Addon-Cutting, respectively.
This represents an average 94.7% reduction. CutQC matches
CIFOLD performance for smaller circuits (typically under 1s),
but suffers prohibitive factorial runtime growth. For example,
CutQC fails to return a cutting solution for many 60-qubit
circuits due to 300s API timeouts. Specifically, with 60-qubit
Ising, Qiskit-Addon-Cutting and CIFOLD return a solution in
37.3s and 1.83, but CutQC fails with 300s timeout. Notably,

CutQC'’s runtime grows from 2.31s to 300s(timeout) for a 10-
qubit constraint with 42- and 66-qubit Ising circuits.
Number of Cuts: Reducing the number of cuts directly de-
creases classical post-processing overhead. As shown in Fig. 8
(center), CIFOLD consistently yields fewer or comparable cuts
than other methods. A red cross indicates that, within the 300-
second timeout, either the best result was found or no result
was returned.

For 24-qubit BV, QAOA, GHZ and Ising circuits, all eval-
vated methods achieve same cut counts due to the relatively
low complexity. Notably, in the 24-qubit W-State benchmark,
CIFoLD and Qiskit-Addon-Cutting only require 4 and 5
cuts respectively compared to 6 cuts for CutQC and FitCut,
attributable to their hybrid gate-wire cutting capability.

Performance differences become more pronounced as circuit
size increases. Qiskit-Addon-Cutting lacks sufficient optimiza-
tion, resulting in significantly higher cut counts—up to 50
cuts for BV and 12 cuts for Ising—compared to CIFOLD’s
5 and 6 cuts. Despite CutQC’s optimality guarantee for wire-
only cutting, CIFOLD achieves fewer cuts for 66-qubit Ising
benchmark with 10-qubit constraint where CutQC requires
7 cuts and CIFOLD identifies 6. CIFOLD shows a clear
advantage in the W-State benchmark, where CutQC times
out on the 60-qubit circuit and yields 14 cuts for the 48-
qubit case under a 15-qubit constraint. In contrast, CIFOLD
efficiently identifies viable solutions with just 6 cuts. These
outcomes emphasize the precision of CIFOLD in identifying
cut locations, consistently minimizing the number of cuts
across various circuit architectures while also significantly
reducing execution time compared to solver-based method.

Overall, CIFOLD achieves an average reduction of 31.6%
in the number of cuts (average of 3.5 cuts), compared to
Qiskit-Addon-Cutting (7.8 cuts, 55.2% reduction), CutQC (3.9
cuts, 10.0% reduction), and FitCut (5.0 cuts, 29.5% reduction).
Specifically, CIFOLD substantially outperforms Qiskit-Addon-
Cutting due to its limited optimization, moderately improves
upon CutQC despite its theoretical wire-only optimality guar-
antees, and consistently surpasses FitCut, whose greedy merg-
ing approach tends to become trapped in suboptimal local
minima. Extending to larger circuits beyond 60 qubits, where
solver-based methods such as CutQC encounter timeouts, we
expect CIFOLD to deliver even greater performance gains.
Sampling Overhead: Figure 8(right figures) present the sam-
pling overhead (computed by Eq.l). It directly quantifies
the computational cost of circuit-cutting methods, growing
exponentially with each additional cut. While strongly cor-
related with the number of cuts, sampling overhead also
depends on the type of cuts chosen, giving hybrid gate-and-
wire approaches such as CIFOLD and Qiskit-Addon-Cutting a
notable advantage. For the 24-qubit QAOA circuit, although
CutQC and FitCut match CIFOLD ’s cut count, their wire-only
sampling overhead of 256 vastly exceeds CIFOLD ’s hybrid
overhead of 81. Similarly, for the 60-qubit QAOA benchmark,
six wire cuts incur a sampling overhead of 1.68 x 107, whereas
CIFOLD s five hybrid cuts require only 5.90 x 10%, further
highlighting the advantage of hybrid gate—wire cutting.
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Fig. 8: Performance Benchmarks. The x-axis labels follow the format {size}_{constraint}, covering circuit sizes from 24 to
66 qubits under 10-qubit and 15-qubit constraints. The dashed line represents the 1-second threshold and red cross indicates

a 300 second timeout.

Overall, CIFOLD’s 31.6% average reduction in cuts cor-
responds to an average sampling overhead of 8.88 x 107,
compared to Qiskit’s 1.28 x 10%6, CutQC’s 1.94 x 10'3,
and FitCut’s 3.00 x 10?2, with an overall reduction factor of
3.55 x 10%(excluding CutQC Timeouts). It underscores the
advantage of hybrid gate—wire circuit-cutting strategies.

VI. CONCLUSION

In this work, we proposed CIFOLD, a hybrid gate- and
wire-cutting framework that leverages modular and repetitive
structures common in quantum circuits. Utilizing graph-based
folding and unfolding strategies, CIFOLD efficiently reduces
circuit partitioning complexity and sampling overhead under

practical hardware constraints. We introduced metrics such
as the folding factor and weighted node folding variance to
quantify and optimize the balance between circuit compression
and reconstruction accuracy.

Empirical evaluations demonstrate that CIFOLD main-
tains high measurement fidelity while outperforming existing
circuit-cutting methods in terms of scalability, overhead, and
runtime efficiency. Future work includes integrating advanced
cutting protocols (e.g., parallel cuts and classical communi-
cation) and developing adaptive strategies for dynamic cir-
cuit partitioning in distributed quantum systems. Ultimately,
CIFOLD presents a promising direction for scalable and robust
quantum computing within realistic hardware environments.
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