
472 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2026

Accelerating ML Inference via Opportunistic
Pre-Loading on Serverless Clusters

Yifan Sui , Hanfei Yu , Yitao Hu , Member, IEEE, Jianxun Li , Senior Member, IEEE,
and Hao Wang , Member, IEEE

Abstract—Serverless computing has emerged as a novel
paradigm in cloud computing, characterized by its agile scalability,
cost-effective pay-as-you-go billing, and user-friendly capabilities
for Machine Learning (ML) inference tasks. Developers wrap
their ML algorithms into serverless functions and run them in
containers. However, the well-known cold-start problem signif-
icantly slows down the response time of functions. To address
cold-starts, the technique of pre-warming, which proactively main-
tains containers in a warm state, has gained widespread adoption
across both research and industry. Nevertheless, we observed that
pre-warming does not address the distinct delays caused by the
loading of ML artifacts. According to our analysis, in ML infer-
ence functions, the time required to load libraries and models
significantly exceeds the time needed to warm containers. Thus,
relying solely on pre-warming is insufficient for mitigating cold-
starts. This paper presents Tyche, an opportunistic pre-loading
approach designed to eliminate the latency associated with load-
ing ML artifacts, enabling near-instant inference and minimizing
function execution time. Tyche fully leverages the idle memory
in warmed containers and GPUs to pre-load required libraries
and models, striking an optimal balance between acceleration and
resource efficiency. Additionally, Tyche is tailored for large-scale
serverless platforms, incorporating cluster-wide scheduling and
lightweight locality-aware load balancing to enhance performance.
We design Tyche to be transparent to providers and compatible with
existing pre-warming solutions. Experiments on OpenWhisk with
real-world workloads show that Tyche reduces up to 93% loading
latency and achieves up to 8× speedup compared to state-of-the-art
pre-warming solutions. Compared with the state-of-the-art server-
less pre-loading solution, Tyche also achieves up to 1.9× speedup.

Index Terms—Serverless computing, cloud computing, cold
start, machine learning.

Received 19 December 2024; revised 27 October 2025; accepted 16 Novem-
ber 2025. Date of publication 28 November 2025; date of current version 22
December 2025. The work of Yifan Sui and Jianxun Li was supported in part
by National Natural Science Foundation of China under Grant 61673265. The
work of Hanfei Yu and Hao Wang was supported in part by NSF under Grant
2527416 and Grant 2534241, and in part by the AWS Cloud Credit for Research
program. An earlier version of this paper was presented in part at the 2024
ACM Symposium on Cloud Computing [DOI: 10.1145/3698038.3698509].
Recommended for acceptance by O. Ozkasap. (Corresponding author: Jianxun
Li.)

Yifan Sui and Jianxun Li are with the Departments of Automation of
the School of Electronic Information and Electrical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China (e-mail: suiyifan@sjtu.edu.cn;
lijx@sjtu.edu.cn).

Hanfei Yu and Hao Wang are with the Department of Electrical and Computer
Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 USA (e-mail:
hyu42@stevens.edu; hwang9@stevens.edu).

Yitao Hu is with the Tianjin Key Laboratory of Advanced Networking of the
Department of Intelligence and Computing, Tianjin University, Tianjin 300350,
China (e-mail: yitao@tju.edu.cn).

Digital Object Identifier 10.1109/TPDS.2025.3638428

I. INTRODUCTION

W ITH the growing adoption of machine learning (ML) ap-
plications, such as image recognition and large language

models (LLMs), the demand for computational resources to
support these applications is booming—Facebook alone serves
over 200 trillion inference queries daily [2]. This rapid growth
necessitates the development of computing architectures that
are both performance- and cost-efficient to handle large-scale
ML inference workloads. Serverless computing, a modern cloud
paradigm, has become increasingly popular for serving ML
inferences due to its flexibility in scaling, cost-effectiveness with
pay-as-you-go pricing, and ease of deployment. Consequently,
numerous ML inference solutions from both academia and
industry have transitioned to serverless architectures, including
Amazon Alexa [3], Azure RAG Chatbot [4], Nuclio [5], and
ServerlessLLM [6].

In serverless platforms, ML inference applications are pack-
aged as lightweight serverless functions, which are invoked on
demand and executed in containers.1 When an invocation occurs
without any pre-initialized (known as “warmed”) containers
available, the system must initiate a new container from scratch,
resulting in what is known as cold-starts [7]. To address this
issue, extensive research has been proposed on mitigating cold-
start [8], [9], [10], [11], [12], [13], [14], [15]. The most widely
adopted solution is known as “pre-warming” [11], [13], [14],
[15], which involves initializing containers and setting up their
runtime environments in advance, then keeping these containers
alive after serving requests.2 By maintaining warmed contain-
ers, pre-warming methods can effectively avoid the container
initialization latency.

The cold-start of a serverless function involves three distinct
phases: 1) container warming, 2) dependency loading (e.g.,
Python libraries), and 3) query processing. Taking an inference
function as an example, Fig. 2 shows the operations performed
in each phase. For general serverless workloads, container
warming represents the primary cold-start bottleneck, while
the overhead from loading dependencies is negligible. Conse-
quently, pre-warming strategies are well-suited for these work-
loads. However, our investigation reveals that for ML inference

1 The term “container” here denotes virtual environments that execute function
invocations in serverless computing, such as Docker containers and Firecracker
MicroVMs.

2 In the context of this paper, we use the term “pre-warming” to encompass
both the techniques of pre-warm and keep-alive.

1045-9219 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0005-2261-5772
https://orcid.org/0000-0001-5790-4981
https://orcid.org/0009-0004-0458-0900
https://orcid.org/0000-0003-4205-8561
https://orcid.org/0000-0002-1444-2657
mailto:suiyifan@sjtu.edu.cn
mailto:lijx@sjtu.edu.cn
mailto:hyu42@stevens.edu
mailto:hwang9@stevens.edu
mailto:yitao@tju.edu.cn

SUI et al.: ACCELERATING ML INFERENCE VIA OPPORTUNISTIC PRE-LOADING ON SERVERLESS CLUSTERS 473

Fig. 1. Cumulative time cost and breakdown of real-world serverless inference
invocations driven by Azure traces [14]. The blue bars indicate the container
warming stage, and the orange bars indicate the ML artifact loading stage.

Fig. 2. The life cycle of a serverless inference function with the ResNet152
model.

functions, the time required for dependency loading—which
falls outside the scope of pre-warming strategies—is notably
significant.

Fig. 1 shows a real-world experiment of serving eight popu-
lar ML inference functions with invocation patterns following
4-hour industrial traces [14], with state-of-the-art pre-warming
methods [13], [14], [15]. To be comprehensive and represen-
tative, these methods include all mainstream pre-warming ap-
proaches: proactive creation, container caching, and container
sharing. We measure the total time cost of each operation in
warming, loading, and inference phases on a 4-GPU serverless
cluster.3 Loading the ML artifacts, including large libraries
(e.g., PyTorch) and model files (e.g., BERT [16]) from disk
into memory, and transferring the model into a GPU, accounts
for 70% of the whole latency before the inference is actually
executed. Such loading latency cannot be simply mitigated by
pre-warming—we argue that pre-warming is not enough for
accelerating serverless ML inferences.

A few recent studies also noticed this issue and proposed to
pre-load ML models [17], [18], [19], allow user-defined warm-
up triggers [20], and enable snapshots [21], [22]. However, they
cannot completely mitigate the ML artifacts loading stage. Some
model loading speedup solutions [17], [18], [19] ignored the
library loading, which accounts for over 40% of loading latency,

3 We follow the same experimental setup in Section VII-C.

and they heavily reliance on layer similarity across diverse
models. The snapshot-based solutions [21], [22] introduces
additional disk IO overhead and are incompatible with GPUs
due to reliance on Linux’s memory mapping. The pre-loading
solutions [20], [23], [24] introduced additional constraints and
delays and are not compatible with Python runtime.

To fully accelerate ML inference functions and achieve a
minimal end-to-end latency, we aim to take a step further beyond
pre-warming—pre-loading the ML artifacts into containers and
GPU instances in advance. Therefore, upon an upcoming invo-
cation, the function can jointly avoid the container warming and
ML artifact loading stages to execute inference immediately.

However, three challenges remain to be addressed in achiev-
ing our goals: 1) Pre-loading is memory costly. For the whole
workload, higher acceleration performance means pre-loading
more functions, leading to huge memory cost due to the large
size of libraries and model files. 2) Pre-loading must avoid any
extra function startup overheads. Serverless functions usu-
ally have critical latency requirements (sub-second level) [14].
Pre-loading libraries and ML artifacts should be lightweight
and transparent to avoid incurring any additional overheads. 3)
Pre-loading introduces additional scheduling burdens on the
cluster. In large-scale clusters, managing pre-loading on each
worker node and directing requests to pre-loaded containers adds
significant overhead to the scheduling process, increasing the
response latency.

This paper proposes Tyche,4 an opportunistic pre-loading
system for serverless inference tasks to tackle these challenges.
To balance the trade-off between minimizing loading latency
and avoiding memory wastage, Tyche pre-loads functions only
in existing warmed containers and GPU instances created by
the platform, rather than proactively reserving memory.5 To
consistently provide cluster-wide optimal function acceleration,
we proposes a scheduling policy that can efficiently utilize
idle resources by dynamically loading and offloading functions
from both containers and GPUs. Besides, Tyche is compatible
with existing pre-warming and keep-alive schemes by avoiding
interfering with the container creation or removal policies.

We summarize Tyche’s key contributions as follows:! We observe the bottleneck of loading ML artifacts in
serverless clusters and propose the opportunistic ML model
pre-loading technique to minimize function startup latency
for the whole workload.! We design a pre-loading scheduling policy that can make
optimal pre-loading decisions across the entire cluster with
minimal scheduling overhead, even in large-scale clusters.
The scheduling policy is compatible with existing pre-
warming solutions.! We implement Tyche atop OpenWhisk, deploy it on an
AWS EC2 cluster, and evaluate it using industrial traces and
popular inference functions. Extensive experiments show
that Tyche reduces the end-to-end function latency by 87%
compared to state-of-the-art pre-warming and pre-loading
solutions.

4 The goddess of opportunities in Greek religion.
5 The warmed containers include both pre-warmed and kept-alive containers

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

474 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2026

II. MOTIVATION AND BACKGROUND

A. Dissecting Serverless Inference

We carefully profile real-world serverless inference invoca-
tions and summarize their lifecycle into three stages: 1) container
warming, 2) ML artifact (e.g., libraries and models) loading,
and 3) ML inference. Fig. 2 shows a dissection of a serverless
inference process invoking a SeBS benchmark function [25]
running the ResNet152 model.

Container warming: Upon an inference request to the model,
the serverless platform begins to prepare and warm up the
container, including pulling the base runtime image to create
the container instance, initializing and binding a GPU to the
container, and configuring the required runtime environment.
The configuration process involves setting up networks (e.g.,
VPC), security configurations (e.g., configuring firewalls, es-
tablishing secure connections), setting environmental variables
(e.g., model path, log level, and API key of remote storage),
and deploying user custom configurations (e.g., timeout and
concurrency settings). Then, the container retrieves and unzips
the function package uploaded by the developer. The package
contains the ResNet152 model’s binary “.pth” file, associated
Python scripts, and dependent libraries.

ML artifact loading: After the container is warmed up, it starts
to load ML artifacts into CPU and GPU memory. Specifically,
each library undergoes an initialization process to be loaded
into memory. Then, the ML inference model, i.e., a pre-trained
ResNet152 model, stored in the binary “.pth” format, is read and
deserialized into the container’s CPU memory to reconstruct the
model structure and weight parameters. The process of reading
and deserializing models is I/O- and CPU-intensive. Finally, if
a GPU is attached to the container, the model will be transferred
from the CPU memory to the GPU memory.

Inference: After the warming and loading stages, the function
executes the inference on the incoming user data with the loaded
ResNet152 model on the GPU. When the user receives the
returned inference results, the function will be either terminated
or kept alive based on the serverless platform’s policy.

Scheduling: Besides the three stages mentioned above, an-
other implicit yet non-negligible stage not shown in Fig. 2 is the
scheduling stage. In serverless clusters, to avoid cold starts, the
scheduler typically traverses a large number of worker nodes to
locate a warmed container corresponding to the invocation.

B. Container Warming vs. ML Artifact Loading

As Fig. 2 shows, a major indicator to distinguish the two
stages, i.e., container warming and ML artifact loading, is
whether the container starts executing user code. General server-
less workloads share the container warming stage, known as
the “cold-start” issues. These issues have prompted extensive
research on mitigating the latency introduced by “cold-starts,”
resulting in various solutions such as container caching [11],
[12], [13], [14], [15], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35] and sharing [9], [13], [35], [36], [37], [38], [39],
snapshotting [8], [21], [22], [30], [40], [41], and virtualization
refactoring [8], [10], [22], [40], [42], [43], [44]. However, the

ML artifact loading stage is specific to serverless ML work-
loads due to the lengthy loading time of increasingly larger
neural network models and their dependent libraries. General
serverless workloads (e.g., web serving and video processing)
also have this loading stage but typically take much less time
than the warming stage. Fig. 1 shows that the loading stage has
dominated the end-to-end latency of serverless ML inference
requests, yet it is overlooked by the aforementioned “cold-start”
solutions, which are designed for general serverless workloads.
Therefore, we argue that pre-warming is not enough for server-
less inference functions.

C. The Motivation of Pre-Loading

To demonstrate that pre-warming alone is insufficient for
eliminating inference functions’ cold-starts, we select the eight
most popular ML models based on GitHub popularity. We con-
duct an experiment using real-world workloads driven by 4-hour
industrial invocation traces from Azure [14]. Four NVIDIA A10
GPUs are used for inference. The Azure trace records the timing
and frequency of real-world function invocations. We sweep
the trace and randomly select eight function traces to build
the workload, mapping each to one benchmark function. The
detailed experimental setup is described in Section VII-B.

We implement OpenWhisk’s default keep-alive policy and
three state-of-the-art pre-warming methods, including His-
togram [14], FaaSCache [15], and Pagurus [13], inside Open-
Whisk as baselines. These strategies are compared against our
proposed method, Tyche, which focuses on pre-loading. We
report the total time spent on warming, loading, and inference
stages for the entire workload for each method.

As shown in Fig. 1, existing pre-warming methods mitigate
warming latency over OpenWhisk. However, loading ML ar-
tifacts dominates overall latency with over 68% of the time,
while only 25% is spent on warming and just 6% for inference.
Thus, existing approaches severely overlooked the pre-loading
opportunity for serverless inference tasks. In contrast, Tyche
reduces the time for the entire workload by over 55% .

Although the loading stage can be accelerated through snap-
shot [21], [22], compressed memory [45], and RDMA [46] to
minimize I/O overhead, these methods cannot enhance library
initialization and model deserialization stages, making them
insufficient for accelerating inference functions.

The most relevant prior work, InstaInfer [1], proposed op-
portunistic pre-loading but suffers from decentralized schedul-
ing where each worker makes independent decisions assuming
uniform request distribution. This prevents globally optimal re-
source allocation. Tyche addresses this with centralized, cluster-
wide scheduling that maintains a global view of idle resources
and invocation patterns. To avoid centralization bottlenecks,
Tyche employs consistent-hashing-based load balancing and
greedy bin-packing for fast placement decisions, making it both
faster and smarter than InstaInfer at scale.

D. The Opportunity of Pre-Loading

A straightforward idea for realizing pre-loading is to load
all inference functions in advance, which is infeasible due to

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

SUI et al.: ACCELERATING ML INFERENCE VIA OPPORTUNISTIC PRE-LOADING ON SERVERLESS CLUSTERS 475

excessive CPU and GPU memory requirements. Therefore, an
ideal solution must seek a balance in reducing loading latency
and resource costs. Fortunately, the existence of idle containers
created by providers and the over-allocation phenomenon of
functions [14], [27], [47], [48], [49], [50], [51], [52] present
an opportunity for pre-loading without extra resource costs.

Serverless providers like Microsoft Azure, AWS, and IBM
usually keep large volumes of idle containers on standby to
serve incoming requests [11], [14], [53]. We only leverage
those existing idle containers for pre-loading, avoiding any extra
containers and additional resource costs.

Furthermore, due to the fixed proportion between function’s
computation ability and memory size [54], numerous stud-
ies [14], [27], [47], [51], [52] have demonstrated that for optimal
execution speed and handling peak workload, inference func-
tions tend to over-provision memory to hold the libraries and
models. Therefore, the vast memory gap between containers’
running and idle states presents another opportunity for our
opportunistic pre-loading.

III. AN OVERVIEW OF TYCHE

A. Objectives & Challenges

Tyche aims to achieve the following objectives:! Instant inference: Minimizing the overall end-to-end (E2E)
latency of ML inference invocations.! Zero wastage: Utilizing only the idle capacities in existing
containers and GPU instances to pre-load functions.! Transparent to providers: Pre-loading should avoid con-
flicts with the platform’s inherent pre-warming mecha-
nism.

To achieve the above objectives, we seek answers to the three
challenging questions:

How to maximize the acceleration performance with limited
idle containers and GPU instances? With only idle containers
and GPU instances, we cannot pre-load all functions simultane-
ously. We must identify and select functions with a high potential
for latency improvement and accurately assign them to each
container instance.

How to avoid extra resource wastage when pre-loading
functions? Holding libraries and models in containers can be
memory-costly. We must seek a balance between memory waste
and more pre-loading for optimal acceleration.

How to enable pre-loading without incurring additional func-
tion startup overheads? Serverless functions typically have
critical latency requirements. For example, over 50% of func-
tions on Azure Functions execute in less than one second [14].
Thus, we must design the pre-loading process in a lightweight
and transparent manner to avoid any extra function startup
overheads.

How to minimize scheduling latency in large-scale clusters?
In large-scale clusters, both managing pre-loading on each node
and directing requests to the pre-loaded containers adds non-
negligible scheduling overhead. Therefore, we should design a
lightweight pre-loading scheduling and routing policy to mini-
mize latency overhead in large-scale clusters.

B. Tyche’s System Architecture

We introduce the design of Tyche, an opportunistic pre-
loading framework to mitigate the loading stage of inference
functions. To achieve optimal acceleration within resource con-
straints, we design a secure instance-sharing mechanism that
allows multiple functions to be pre-loaded simultaneously into
a single container and share a GPU. Tyche includes four princi-
pal components: Proactive Pre-Loader, Pre-Loading Scheduler,
Pre-Loading Agent, and Intra-Container Manager.

The Proactive Pre-Loader handles prediction and request rout-
ing, determining when to pre-load functions. The Pre-Loading
Scheduler makes strategic decisions about where to place pre-
loaded functions across nodes. The Pre-Loading Agent executes
these decisions on worker nodes, focusing on what functions to
pre-load. Finally, the Intra-Container Manager oversees the ac-
tual function loading operations and determines how to allocate
resources across the cluster. We introduce each component’s
functionality as follow:

Proactive Pre-Loader forecasts function invocation arrivals.
The prediction results are then used to determine when to pre-
load each function. To achieve cluster-wide acceleration, when
receiving a request, it routes the request to the optimal container.

Pre-Loading Scheduler makes centralized decisions on func-
tion pre-loading or off-loadings. The decision is based on both
the prediction result and container availability. To optimize ac-
celeration over time, it adjusts pre-loading and off-loading based
on container lifecycle events driven by platform pre-warming
policies.

Pre-Loading Agent on each worker node interfaces with the
Pre-Loading Scheduler, sends commands to the Intra-Container
Manager based on scheduling decisions, and reports container
status changes on its worker node.

Intra-Container Manager independently operates the load-
ing and offloading executions for each function based on the
Pre-Loading Agent’s command. We design a three-tier security
protection mechanism to ensure the security and privacy of each
pre-loaded function that shares the same container.

C. Tyche’s Workflow

Fig. 3 shows the workflow and architecture of Tyche: Before
and upon the arrival of an ML inference function invocation,
Tyche follows a five-step workflow:

Stage 1: The Proactive Pre-Loader records the arrival of each
inference function’s requests. It then predicts the arrival time
of the next invocation to determine the optimal moments for
loading and offloading each function (Step 1© in Fig. 3), and
passes the prediction to the Pre-Loading Scheduler (Step 2©).

Stage 2: Concurrently, in the background, the platform’s cold-
start manager interacts with each worker node’s cold start agent
to control the creation and removal of containers based on the
pre-warming mechanism (Step 2© 3©).

Stage 3: Based on the prediction and each worker node’s idle
resources, the Pre-Loading Scheduler determines which func-
tion to pre-load on each worker node’s pre-warmed containers
and GPUs, and passes the decision to the Pre-Loading Agent
(Step 4©). The Pre-Loading Agent then loads each function in

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

476 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2026

Fig. 3. System overview. Boxes with red bold italic names are new compo-
nents introduced by Tyche.

a suitable idle container, extracting the function’s code, and
unzipping ML artifacts from the platform’s database (Step 5©).

Stage 4: When the request arrives, the Proactive Pre-loader
routes the request to a worker node that has pre-loaded the
corresponding function. Then, the node’s Pre-Loading Agent
selects an idle container that pre-loads the function and an idle
GPU that pre-loads the function’s model and kernel. The request
is then sent to the corresponding container’s Intra-Container
Manager (Step 6©).

Stage 5: Once receiving the request, the Intra-Container Man-
ager immediately calls the corresponding function’s pre-loading
process (Step 7©) and off-loads all other pre-loaded function
states (Step 8©). We ensure that only one function can use the
container during inference to guarantee security and privacy.
Meanwhile, the Pre-Loading Scheduler selects other idle con-
tainers and GPUs to migrate the off-loaded functions to serve
future invocations.

IV. PROACTIVE PRE-LOADER

Because one container has limited CPU and GPU memory,
not all functions can be pre-loaded concurrently. Pre-loading
a function too early preempts the loading of other functions
while doing this too late misses serving function invocations.
Therefore, to achieve optimal acceleration, we design a Proactive
Pre-Loader that decides when to pre-load a function based on its

invocation arrival prediction. We offload the function to make
room for pre-loading other functions if mispredictions occur.

A. Function Invocation Prediction

A straightforward approach is to load all functions and never
offload them. However, due to the limited memory capacity, pre-
loading all functions is infeasible. In contrast, we design Tyche to
opportunistically pre-load a function right before the invocation
arrival and offload the function to allow other pre-loadings if
mispredicted.

Existing pre-warming approaches typically hold a predictor
to forecast invocation arrivals (e.g., Histogram in [13], [14],
ARIMA in [14], Poisson Distribution in [35], Variable Order
Markov Model in [33]). Tyche employs the platform’s inher-
ent prediction model to maintain transparency for serverless
providers, avoiding introducing extra operational costs such as
building new models.

B. Function Pre-Loading and Offloading

To effectively manage pre-loading and offloading of a func-
tion, denoted as f , we define two thresholds: a probability
Pload(f) for pre-loading and a probability Poffload(f) for
offloading. As the invocation’s arrival probability increases, the
function is immediately pre-loaded if the probability reaches
Pload(f). Conversely, if the function remains pre-loaded without
being invoked for an extended period, such that the probability
exceedsPoffload(f), Tyche identifies that the prediction is incor-
rect and offloads the function to free up resources for pre-loading
other functions.

Invocation patterns can vary over time [14], [55], and using
outdated data severely degrades the prediction accuracy. To en-
hance pre-loading accuracy, we use a sliding window to capture
each function’s temporal shifts and align predictions with the
latest data. It is compatible with various prediction models, as we
only adjust the temporal scope without altering the underlying
model.

We take the Poisson Distribution model of RainbowCake [35]
as an example to show how to compute optimal timings for
loading and offloading functions. LetW denote the window size
and Tw denote the duration between the last and first invocations
within the window. We can compute the request arrival rate as
λf = W

Tw
. Thus, the probability distribution of the arrival time

for the next request is: F (t; λf) = 1− e−λf t, t ≥ 0.
The future timestamp to load and offload function f , Tload(f)

and Toffload(f) are given by

Tload(f) = − 1

λf
ln (1− Pload(f))

Toffload(f) = − 1

λf
ln (1− Poffload(f))

We set the default Pload(f) and Poffload(f) to be 6% and
94% , respectively. These values are derived from a sensitivity
analysis detailed in Section VII-L.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

SUI et al.: ACCELERATING ML INFERENCE VIA OPPORTUNISTIC PRE-LOADING ON SERVERLESS CLUSTERS 477

Algorithm 1: Consistent-Hashing Based Load Balancing.

C. Consistent Hashing Function Balancing

In the large-scale cluster that contains many worker nodes,
while each node contains numerous idle containers and GPUs,
to minimize the overall E2E latency, we face a new challenge.

When a request arrives, instead of randomly routes the request
to a worker node, the Proactive Pre-Loader should route the
request to the container that has the optimal acceleration. There-
fore, the most straightforward method is to let the Pre-Loader
traverse all worker nodes and search all containers’ pre-loaded
functions. After finding all containers that have pre-loaded the
function, due to the limited capacity of GPUs, only part of
containers can transfer the model to GPU to achieve the best
acceleration performance. Thus, the Pre-Loader must choose an
optimal one from all these containers.

Although this solution is practical and efficient in single-node
clusters, however, in the large-scale cluster that contains many
numerous containers and pre-loaded functions, traversing all of
them introduces high scheduling delay. In Tyche, we propose a
lightweight function load balancing policy based on consistent
hashing that can make a balance between maximizing inference
acceleration and minimizing scheduling delay.

As most scheduling delay is caused by traversing all worker
nodes’ containers, the Proactive Pre-Loader only selects a small
group of worker nodes and select the optimal container from
these nodes. To avoid the situation that the non-selected nodes
contain the optimal container, we need to make sure that for each
inference function, only a group of worker nodes will pre-load
it. Thus, we design a consistent-hashing based load balancing
policy to achieve this goal.

Consistent hashing is primarily used to distribute requests
evenly across a changing set of nodes. In Tyche, each function’s
request is mapped to a “home” worker node based on its hashing
value. This mapping ensures that requests for the same function
are directed to the same node. If the “home” node is overloaded
or lacks the pre-loaded function, the Proactive Pre-Loader will
determine the next node in sequence, following the hashing
circle, until an available node with the requisite pre-loaded
function is found. Therefore, even if there are numerous worker
nodes or the node number are frequently changing, this method
minimizes the changes in node selection, providing stability and
small scheduling delay.

We further explain the load balancing policy in Algorithm 1.
When request arrives, first, the Pre-Loader get the function’s
arrival rate, execution time, and resource cost information. Next,
it uses consistent hashing to preliminarily select worker node set
S. Next, to further reduce traversing latency, we select a subset
S ′ from S (line 14). We estimate the overall resource cost of the
function’s all invocations (line 17) and make sure thatS ′ contains
enough remaining resource to serve all those functions.

Subsequently, we traverse all worker nodes’ containers in S ′

to get the optimal container (line 6). If the GPU binding to
a container has pre-loaded the model data, this container can
provide the maximum acceleration. The Pre-Loader chooses this
container directly (line 8-10). Otherwise, if none of GPU in S ′

has loaded the model, from all containers that has pre-loaded the
function in CPU memory, the Pre-Loader choose the one whose
worker node contains most remaining resource (line 11-13).

V. PRE-LOADING SCHEDULING

The pre-loading scheduling contains two components, a cen-
tralized Pre-Loading Scheduler and a distributed Pre-Loading
Agent. The Pre-Loading Scheduler dynamically selects and as-
signs functions to appropriate instances for optimal acceleration.
To optimize performance over time, the scheduler adaptively
adjusts the pre-loading policy to changes. The Pre-Loading
Agent uses the Pre-Loading Scheduler’s decision to operates
pre-loading and off-loading in each worker node.

A. Latency-Aware Function Mapping

The simplest way to load functions is one-to-one mapping,
where each instance holds only one pre-loaded function. How-
ever, this method cannot fully utilize all idle memory to pre-load
more functions for further acceleration. To strike a balance
between maximum acceleration and avoiding additional costs,
we propose an instance-sharing mechanism that allows multiple
functions to be pre-loaded simultaneously into a single container

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

478 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2026

until its idle memory runs out while their models share the same
GPU.

To select an appropriate container for each function to pre-
load, we propose a Latency-Aware Bin-Packing Policy. Our
goal is to maximize the acceleration of the entire workload,
i.e., to maximize the expected value of the saved loading la-
tency among all selected functions. As function loading la-
tency and container capacity are known, this problem fits well
with the multiple knapsack bin-packing, wherein containers
and functions are treated as bins and items. A bin’s capacity
is the container memory limit, while an item’s weight is the
memory cost for loading the function. The item’s value is
the expected latency saved by pre-loading (calculated as the
product of function arrival probability and the loading latency).
The objective is to maximize the overall value of the assigned
items.

As the Multiple knapsack Bin-Packing problem has already
been proven NP-Hard [56], to get the optimal bin-packing as-
signments, we must exhaust a huge number of possible con-
ditions, even with the help of efficient algorithms like Dy-
namic Programming. Although optimal, in multi-node clus-
ter where there are numerous functions and containers, the
high complexity of exhaustion prevents efficient pre-loading
scheduling.

Thus, we propose a greedy-based bin-packing policy to make
a balance between scheduling efficiency and acceleration perfor-
mance. To reduce the complexity, we first sort functions by their
value-to-weight ratio, and then attempting to place each function
in the container where the container has enough capacity and
where the function adds the most value relative to the container’s
remaining capacity. Through this policy, we can balance the
speed and accuracy in scheduling. By sorting functions and
dynamically adapting to container capacities, it minimizes the
computation overhead while effectively optimizing resource
utilization. Consequently, Tyche can pre-load more functions
in the limited idle containers.

Besides library and model loading, transferring the model
from container CPU memory to GPU memory also introduces
non-negligible overhead due to IO and CUDA operations such
as memory allocation, especially for large models. For fur-
ther acceleration, the model of the pre-loaded function can be
pre-transferred to GPU. As the GPU pool’s capacity is usually
smaller than the container memory pool, only part of the models
can be kept on GPUs. To optimally determine which model
should be kept on GPU, we use the same bin-packing policy
wherein GPUs are treated as bins and models as items. The
item’s value is the expected latency to save, which is calculated as
the product of the function’s arrival probability and the transfer
overhead.

B. Cluster-Wide Scheduling

As the scheduling decision is based on each function’s request
arrival probability, if the Pre-Loading Scheduler runs indepen-
dently on each worker node, it will face an additional challenge
that accurately estimate the request arrival distribution on each
worker node.

According to Tyche’s routing policy, instead of equally (ran-
domly) routing the request to each worker node, the Proac-
tive Pre-Loader priorly chooses from the node that already
pre-loaded the function and has the most remaining resource.
Therefore, due to the uneven distribution, it’s both difficult and
time-costing to accurately estimate each node’s request arrival
probability.

To tackle this challenge, we design a cluster-wide Pre-
Loading Scheduler. It takes into account the overall probability
of incoming requests to the platform, rather than the probability
of requests arriving at each individual worker node. Addition-
ally, it comprehensively considers the availability of all idle
containers and GPUs on every worker node to make globally
optimized bin-packing decisions. While the Pre-Loading Agent,
which runs independently on each worker node, only receives the
Pre-Loading Scheduler’s decisions and operates the pre-loading
and off-loading.

C. Optimal Pre-Loading Over Time

Due to time-varying workloads, a series of events will cause
a fixed bin-packing policy to be sub-optimal: pre-loading or
offloading a function, invocation arrivals, container creations,
and container removals. We describe how our scheduler reacts
to these events to maintain the cluster-wide optimal acceleration
over time as follows.

As shown in Fig. 4, Functions A, B, and D are pre-loaded on
worker 1’s containers, while models of Function A and D are
transferred to GPU (For simplicity, Fig. 4 only shows worker 1’s
container pool and GPU pool). In the first case at t1, when Func-
tion A’s invocation arrives, as Function A is loaded on worker 1,
the scheduler first forwards the request to worker 1’s container
that loads Functions A and D. Immediately, Function D is
re-assigned to another container to ensure Function A execution
performance. Since no GPUs are available, Function D’s model
is transferred from the GPU back to the container memory. In
t2, after execution, Function A follows the platform’s keep-alive
mechanism and remains in the GPU container. Note that since
each function has a unique resource configuration, the scheduler
adjusts the container’s resource limitations immediately upon
receiving the invocation to match the function’s configuration.
The second case is function pre-loading. As shown in t3, the
scheduler selects a container along with its GPUs that have
enough space to load Function C. The third case is container
removals. In t4, when terminating the container that loads
Functions B and D, the scheduler is enforced to offload models
of B and D. As worker 2 has idle spaces, Function B, D are
subsequently pre-loaded on worker 2. The fourth case is the
container creations. In t5, once detecting a new idle container is
available, the scheduler pre-loads Functions B and D inside the
new container. The last kind of event is function offloading. The
scheduler offloads Function A from both the container and its
associated GPU directly, as shown in t6. Subsequently, Function
C’s model is transferred to the GPU to utilize the newly freed
resources. The event-driven scheduler dynamically optimizes
the bin-packing policy over time while ensuring compatibility
with the platform’s inherent pre-warming mechanism.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

SUI et al.: ACCELERATING ML INFERENCE VIA OPPORTUNISTIC PRE-LOADING ON SERVERLESS CLUSTERS 479

Fig. 4. The scheduler’s operation after detecting each event.

VI. INTRA-CONTAINER MANAGER

The Intra-Container Manager interfaces with the scheduler
to control the process-level execution of functions, including
loading, off-loading, and model transfer. Besides, for functions
in the same container, it ensures no resource conflicts, and
maintains security.

A. Pre-Loading Management

As each container holds multiple functions’ pre-loading pro-
cesses, the design principle follows three steps: waiting for future
invocations and forwarding them to corresponding processes,
terminating all processes irrelevant to the incoming invocation,
and guaranteeing each function’s security and privacy. Upon
receiving a pre-loading message from the scheduler, the manager
executes the function code to load the library and model. It then
transfers the model to the container’s corresponding GPU based
on the scheduler’s decision. After loading, the process enters a
blocked state, awaiting future invocations.

We describe manager’s workflow by an example. After pre-
loading Functions A and B, upon receiving Function A’s invoca-
tion, the manager forwards the request to Function A process’s
input pipeline, awakening the process to start inference and
return the result. To avoid memory preemption and to guaran-
tee function isolation requirements, the arrival of Function A’s
invocation prompts the immediate termination of all other pre-
loading processes and the clearing of their memory allocations.
This design ensures that the invoked function runs in a clean and
isolated environment.

Similarly, while receiving the off-loading message from the
scheduler, the manager terminates the corresponding function’s
process and erases all related data to protect user privacy. While
functions are served as black-box, user code only needs slight
changes to expose the model and library files to Tyche. We offer
two modification options with different objectives:

Code snippet 1: How to use Tyche

Maximum transparency: As the following Python code
snippet 1 shows, developers only need to modify two lines of
code: First, replace the model loading line (torch.load) with
the Tyche API to expose the model file’s path. Second, add the
sys.stdin.readline() line after loading the model for listening in-
vocations. The function process will be resumed upon receiving
requests.

Maximum privacy: If non-intrusive pre-loading is preferred,
developers can simply implement a LOAD function similar to
Azure Warmup Trigger [20] to hold the pre-loading content. The
manager calls the LOAD API to perform pre-loading without
accessing any function-specific data.

B. Privacy & Security Guarantee

As multiple functions’ code and data are stored in the same
container, it’s necessary to guarantee the privacy and security
of each function. Tyche provides a three-layer security protec-
tion mechanism. In the user layer, only functions belonging
to the same user can be pre-loaded on one container. In the
process layer, when a function’s invocation arrives, all other
functions in the same container are off-loaded. Their data and
code are deleted immediately. In the OS layer, each function’s
pre-loading process and data are allocated with a unique non-root
user managed by Linux privilege domain and privilege control.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

480 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2026

Meanwhile, the isolation is enhanced with jail technique [57].
These designs ensures that a function’s process is restricted
from accessing the data of other processes, both in memory
and on disk. The OS-level isolation also avoids library version
conflicts across functions, as the libraries for each function are
isolated and stored under the path of its specific Linux user.
Furthermore, for the strictest security guarantee that completely
forbids container sharing and only allows a container to pre-
load one function, Tyche still significantly outperforms existing
pre-warming methods (Section VII-K).

VII. EVALUATION

A. Implementation

We implement a prototype of Tyche using Apache Open-
Whisk [53]. We implement the Proactive Pre-Loader, Pre-
Loading Scheduler, and Pre-Loading Agent as OpenWhisk
components using 4 K lines of Scala code and implement the
Intra-Container Manager in each container’s proxy using 2 K
lines of Golang code. We use PyTorch as the ML environment,
although Tyche is compatible with any other ML frameworks
(e.g., TensorFlow).

Proactive Pre-Loader: We implement the Proactive Pre-
Loader in OpenWhisk’s load balancer module where all invoca-
tions pass by. The Proactive Pre-Loader records the timestamp
of invocations, thereby updating each function’s prediction.

Pre-Loading Scheduler: We implement the Pre-Loading
Scheduler in OpenWhisk’s load balancer module. Thereby it
can receive the prediction result directly from the Proactive
Pre-Loader. It interacts with the Pre-Loading Agent to get other
information by a Redis distributed database.

Pre-Loading Agent: OpenWhisk runs a container pool module
in each node to manage each container’s creation and removal.
We implement the agent in this module so that the agent can
acquire all the information it needs for pre-loading. The agent
sends loading and off-loading command to the Intra-Container
Manager through HTTP requests. To make sure containers’
resource limitations match the invoked function’s configuration,
the scheduler specifies limits using the - -memory, - -cpu,
and - -gpus flag when running Docker container.

Intra-Container Manager: We implement the manager in each
container’s proxy, which is used to communicate with Open-
Whisk. The manager is written in Golang. We modify the Action
Proxy module to receive the message from the Pre-Loading
Agent. We modify the Executor module to execute loading and
off-loading. Each pre-loaded function runs as an independent
Python process.

GPU support: As all functions run in Docker containers, we
apply the NVIDIA container toolkit that can let the container
use the CUDA devices without any additional configuration. To
improve GPU resource utilization, we use NVIDIA MPS [58]
to partition a GPU for multiple functions and control the GPU
limitation of each function.

B. Experiment Settings

We describe the experimental settings for evaluating Tyche
and state-of-the-art baselines.

Testbed: We evaluate Tyche on four OpenWhisk clusters: 1)
Single-node CPU cluster on an AWS m5.16xlarge EC2 in-
stance with 64 Intel Xeon Platinum-8175 CPU cores and 256 GB
memory. We perform the E2E latency evaluation, comparisons
with snapshot-based solutions, ablation study, sensitivity anal-
ysis, and scalability tests on this cluster. 2) Single-node GPU
server on an AWS g5.12xlarge EC2 instance with 48 CPU
cores, 196 GB of memory, and 4 NVIDIA A10 GPUs. We
conduct the E2E latency and memory cost evaluation on this
cluster. 3) Multi-node CPU cluster that includes one controller
node and four worker nodes, each an AWS m5.8xlarge EC2
instance with 32 CPU cores and 128 GB of memory. We perform
E2E latency evaluation, large-scale evaluation of 1000 functions,
and prediction evaluation on this cluster. 4) Multi-node GPU
clusters that includes one controller node and 4/8/16 worker
nodes. These four clusters are allocated with the same over-
all resources (256 CPU cores, 1024 GB of memory, and 16
NVIDIA A10 GPUs). We perform the pre-loading scheduling
optimization evaluation and scheduling overhead evaluation on
this cluster.

Workloads: We select the inference function of SeBS bench-
mark [25] to load each model. For simplicity, each function
only runs one model. To optimize subsequent requests and avoid
re-loading if warm containers have cached the function process,
we follow the optimization approach of AWS Lambda [23]. We
place the model and library loading code within the “INIT”
structure and the inference code within the “Handler” structure.

To approximate the real-world invocation patterns, we sample
the invocations from the Azure Function traces [14], which are
collected in production environments. We scan the 14-day Azure
invocation trace files and randomly select eight different 4-hour
traces that satisfy the Coefficient of Variation (CoV) requirement
for each benchmark function. Each trace is then mapped to
an inference function, which drives the invocations during the
evaluation. For generality, we define three patterns based on the
CoV: Predictable (CoV <1), Normal (1<CoV <4), and Bursty
(CoV >4).

Models and Libraries: We use PyTorch as the ML frame-
work. We collect eight most popular ML models in computer
vision (CV) and natural language processing (NLP) as eval-
uation benchmarks based on the number of stars on GitHub:
AlexNet [59], Inception_V3 [60], ResNet18 [61], ResNet50,
ResNet152, VGG19 [62], GoogleNet [63], and Bert-Base [16].
The model size varies from 45 MB to 549 MB, providing
sufficient diversity for evaluating Tyche’s efficiency. We expand
the function type to 1000 for further evaluation in Section VII-I.

TYCHE+∗ Settings: As Tyche can be easily integrated with
pre-warming solutions, TYCHE+∗ indicates integration with
three solutions: Histogram [14], Pagurus [13], and FaaS-
Cache [15]. Tyche pre-loads functions in the warmed containers
created by these solutions.

Baselines: We compare Tyche with the state-of-the-art base-
lines that mitigate cold-starts in serverless computing: 1) Open-
Whisk [53], the default keep-alive policy of OpenWhisk that
keeps each container alive for a fixed 10 minutes after invoca-
tion. 2) Histogram Policy, a histogram-based container caching
approach to dynamically determine when to pre-warm the con-
tainer and how long the container is kept alive by predicting the

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

SUI et al.: ACCELERATING ML INFERENCE VIA OPPORTUNISTIC PRE-LOADING ON SERVERLESS CLUSTERS 481

inter-arrival time of function invocations. We implemented the
Histogram Policy inside OpenWhisk. 3) FaaSCache proposes a
Greedy-Dual keep-alive caching policy to keep functions alive.
Our evaluation reused FaaSCache’s open-sourced code reposi-
tory in OpenWhisk. 4) Pagurus avoids cold start by “lending”
other functions’ idle containers to the function being invoked.6 5)
REAP [21] is a snapshot-based cold start mitigation method that
stores function completion states as snapshots on disk. 6) Azure
Function with warmup trigger [20] allows pre-loading user-
defined content while scaling up new instances. 7) InstaInfer [1]
is a serverless pre-loading solution for accelerating inference
functions.7

Evaluation Metrics: 1) End-to-End (E2E) latency: the total
time of an invocation from being triggered to returning the
results. 2) Warming+Loading latency: the time period before
the inference is actually executed, including both container
warming and ML artifacts loading. 3) Pre-loading rate: the ratio
of invocations whose function has already been pre-loaded to
the total invocations. 4) Speedup: the acceleration performance
against baselines. 5) Memory & Monetary cost: the platform’s
CPU and GPU memory consumption and the overall monetary
cost for running the whole workload. 6) Scheduling overhead:
The overall scheduling time cost for each invocation is calculated
as the E2E latency minus the function execution time and the
warming latency.

C. Reducing E2E Latency

We evaluate TYCHE+∗ and baselines on the single-node clus-
ter. Fig. 5 shows that integrating TYCHE with the baseline solu-
tions reduces up to 86% E2E latency and 93% warming+loading
latency compared with the pre-warming baselines and vanilla
OpenWhisk, as TYCHE effectively mitigates the latency with
library and model pre-loading.

The Azure Function baseline utilizes the warmup trigger [20]
to pre-load user-defined contents, including libraries and mod-
els. Deviating from the traditional on-demand serverless prod-
ucts, warmup trigger is only available on the Premium plan [65],
which keeps at least one “always-on” container and scales
dynamically. For fair comparisons, we select the “EP2” con-
figuration with two “always-on” containers, each with 4 vCPUs
and 7 GB memory, totaling at least 64 vCPUs, compared to 48
vCPUs in Tyche.

Fig. 5 shows that Tyche outperforms Azure Function when
serving most of the functions. Despite Azure’s minimal warm-
ing latency due to “always-on” containers, it exhibited three
main drawbacks compared with Tyche: 1) The function’s li-
brary files are stored on Azure Files. During loading, reading
many small files incurs heavy overhead (over 10 seconds). 2)
Warmup triggers only work during scaling and never proac-
tively pre-load functions in “always-on” containers, losing the
opportunity to mitigate loading latency. 3) Unlike traditional

6 Pagurus’s original implementation [64] is not for OpenWhisk. We repro-
duced Pagurus in OpenWhisk and tuned its performance to the best for a fair
comparison.

7 As Tyche extends InstaInfer to improve performance in large-scale clusters,
we only evaluate InstaInfer in multi-node evaluations.

Fig. 5. Average E2E latency of TYCHE/INSTAINFER+∗ and baselines running
the Predictable, Normal, and Bursty workloads.

Fig. 6. CDF of TYCHE+∗ and baselines running the Normal workload.

serverless products that charge per use, the Premium plan has
fixed hourly or monthly fees, leading to over 20× higher expense
(Section VII-D).

Table I presents the average E2E latency, warming+loading
latency, speedup, and pre-load rate of each baseline. TYCHE+∗
outperforms each corresponding baseline on each metric. TY-
CHE+Pagurus achieves the best performance due to having more
idle containers for pre-loading. This is because Pagurus removes
fewer containers and keeps more warmed containers over other
baselines.

To further explore E2E latency reduction, we show the E2E
latency’s cumulative distribution function (CDF) of running the
Normal workload for Tyche and each baselines in Fig. 6. The
results show that Tyche can effectively accelerate the workload
without increasing the tail latency.

To show Tyche’s acceleration effect more intuitively, we
present a time breakdown of the E2E latency of Pagurus and
TYCHE+Pagurus running a “Normal” workload in Fig. 7. Pagu-
rus is selected in this case since it outperforms Histogram and

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

482 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2026

TABLE I
THE AVERAGE E2E LATENCY, WARMING+LOADING LATENCY, AND PRE-LOADING RATE OF BASELINES

Fig. 7. E2E latency breakdown of individual invocations served by Pagurus
and TYCHE+Pagurus.

FaaSCache. Fig. 7 shows that TYCHE+Pagurus eliminates the
latency of not just the warming stage but also the library and
model loading stage for most invocations.

Note that in Pagurus’s timeline in Fig. 7, several functions are
invoked multiple times within a minute and are required to load
everything from scratch due to two main reasons: First, if the
request concurrency of a function exceeds the number of cached
containers, additional warmed containers must be spawned to
serve the extra requests. Second, to share the container among
multiple functions, Pagurus transforms a dedicated container
into a shareable one, which clears the cached states inside the
container. Thus, if a request is served by a shared container, it
must re-load the ML artifacts even if it’s already warm-started.

D. Memory and Monetary Cost

We evaluate the monetary cost of Tyche, baseline pre-warming
methods, and naive pre-loading while running the same Azure
trace workload. In the evaluation, Tyche is combined with each
baseline. In the OpenWhisk Pre-loading baseline, each container
can only hold one pre-loaded function. To achieve the same
acceleration performance as Tyche, more containers are created
proactively for pre-loading. Shown in Fig. 8, the container and

Fig. 8. Average memory cost of TYCHE+∗ and baselines running the same
workload.

Fig. 9. Monetary cost of TYCHE+∗ and other baselines running the same
workload.

GPU memory consumption of TYCHE+∗ are nearly identical
to those of corresponding baselines alone. That’s because Tyche
only reuses the idle container created by the baseline method and
does not proactively create new containers. Consequently, Tyche
does not incur additional resource costs. In contrast, to achieve
comparable acceleration performance, OpenWhisk Pre-loading
creates more containers than Tyche, resulting in at most 2.4×
the memory cost and 2× the GPU cost compared to Tyche.

Then we evaluate the monetary cost of running the above
4-hour workload using Azure Function pricing model [66]. Fig. 9
shows that the monetary cost of TYCHE+∗ is nearly identical
to that of the corresponding baseline alone. Although Azure
Premium Plan achieves lower E2E latency for several functions
according to Fig. 5 than Tyche, its expense is 20 times higher
than other methods.

E. Multi-Node Evaluation

We evaluate the scalability of Tyche by conducting experi-
ments on the multi-node cluster. We evaluate the E2E latency
using the same benchmarks, metrics, baselines, and workloads
from Section VII-C. Fig. 10 shows that integrating Tyche with
baselines reduces up to 90% E2E latency. The performance

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

SUI et al.: ACCELERATING ML INFERENCE VIA OPPORTUNISTIC PRE-LOADING ON SERVERLESS CLUSTERS 483

TABLE II
MULTI-NODE CLUSTER’S AVERAGE E2E LATENCY, WARMING+LOADING LATENCY, AND PRE-LOADING RATE OF BASELINES

Fig. 10. Average E2E latency of TYCHE+∗ and other baselines running on the
multi-node cluster.

evaluated on the multi-node cluster is similar to the results
observed from the single-node cluster. This consistency suggests
that Tyche efficiently maintains low loading latency for a variety
of workloads in a distributed cluster. Table II details the average
E2E latency, warming+loading latency, speedup, and pre-load
rate for each baseline. The data shows TYCHE+∗ consistently
outperforms existing baselines across all the metrics.

F. Pre-Loading Scheduling Optimization Evaluation

To evaluate whether the centralized Pre-Loading Scheduler
+ distributed Pre-Loading Agent design can continuously make
the optimal bin-packing decision, we compare Tyche with In-
staInfer, which operates pre-loading scheduling independently
on each worker node. Its scheduler assumes that the request’s
arrival probability to each worker node is equal. Consequently,
the scheduler directly utilizes the prediction result from the
Proactive Pre-Loader to make bin-packing decisions and reacts
to the node’s container creation and removal events. We run
the same 4-hour workload in three clusters : a 4-node cluster,

Fig. 11. Scheduling performance of TYCHE and INSTAINFER under the same
workload.

a 8-node cluster, and a 16-node cluster separately. The total
number of vCPU, memory, and GPU in each cluster is the same.

As shown in Fig 11(a) and (b), with the increase of cluster
size, Tyche maintains a similar pre-loading rate and average
E2E latency. In contrast, although the performance of InstaInfer
is similar to Tyche in the 4-node cluster, when the cluster size
increases, the pre-loading rate decreases significantly. Subse-
quently, its average E2E latency increases. In the 16-node cluster,
Tyche further accelerates the workload 1.9× over InstaInfer.

This difference in performance is due to InstaInfer assuming
that requests are evenly spread across all worker nodes. However,
this assumption is incorrect because, in reality, requests are more
likely to be sent to nodes that have pre-loaded the necessary
functions. As a result, InstaInfer fails to achieve globally opti-
mal scheduling: Some worker nodes end up pre-loading many
functions that are never invoked, while others fail to pre-load
sufficient function instances to meet all incoming requests. In
contrast, the centralized scheduling design of Tyche can make
decisions based on all worker nodes’ idle instances and the
overall arrival probability of each function. Therefore, Tyche
can make decisions more wisely, optimally utilizing the limited
resources to achieve a higher pre-loading hit rate and thereby
achieves better acceleration.

G. Scheduling Overhead Evaluation

To evaluate whether the consistent hashing-based load balanc-
ing policy can reduce scheduling overhead, we compare Tyche
with InstaInfer. We evaluate the scheduling overhead of the two
solutions () in the same setup and workload as Section VII-D.

As shown in Fig. 11(c), Tyche benefits from a lightweight load
balancing policy that avoids traversing all containers across all
worker nodes, accelerates the overall scheduling process up to
2.3×, compared with InstaInfer. This efficiency arises primarily

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

484 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2026

Fig. 12. E2E latency of TYCHE, REAP, and Histogram running benchmark
functions with different model sizes.

because, on the one hand, the lightweight scheduling is less
complex than that of InstaInfer. On the other hand, since the
Proactive Pre-Loader communicates with each Scheduler via the
Redis database, the smaller number of traversed nodes requires
less information to communicate between the Pre-Loader and
each node, significantly reducing the communication overhead.

We evaluated our greedy bin-packing policy against the opti-
mal ILP solution using 1,000 functions and 100 idle containers.
Tyche achieved near-optimal performance with only 1.4% opti-
mality loss while delivering a 295,210× speedup, demonstrating
effective scalability for large-scale serverless environments.

H. Comparisons With Snapshot Methods

To mitigate cold start, some approaches [21], [22] capture the
function’s complete state as a snapshot and store the snapshot on
disk. For ML inference functions, as the snapshot can store the
state after loading the libraries and model, it can also eliminate
the loading delay. Thus, we conduct an evaluation between Tyche
and REAP [21], a snapshot-based serverless method.

We evaluated the E2E latency of four representative bench-
mark ML inference functions with small (GoogleNet), medium
(Inception_v3), large (ResNet152) and extra-large (Bert-Base)
models respectively in Tyche, REAP, AsyFunc, and Histogram
in the same setup. Fig. 12 shows REAP outperforms Histogram,
while Tyche further enhances execution by 1.5 to 2.5× over
REAP.

The reason for Tyche outperforming REAP is that Tyche does
not need to load and restore the snapshot from disk to memory.
As REAP’s snapshots are all stored in disks, when a request
arrives, a snapshot must be read into memory and restored to
process, introducing additional latency. Based on the experiment
result, the latency is high for inference functions (300–600 ms)
due to the large size of model and library files. In contrast, Tyche
keeps functions in memory and achieves negligible latency
(5–14 ms in Section VII-M).

I. Large-Scale Evaluation

To further evaluate the performance of Tyche in a more re-
alistic scenario, we extend the workload to 1000 functions on
the multi-node cluster. According to Azure [14], the top 18.6%
functions make up 99.6% calls. Thus, we selected 50 often-used
functions’ traces, 150 ones with a once-per-minute call rate,
and 800 rarely-called ones. All functions are created based on
the eight benchmark models. We give each function a unique
identifier (such as ResNet50-1, ..., ResNet50-125) to create 125

TABLE III
AVERAGE E2E LATENCY IN LARGE-SCALE EVALUATION

TABLE IV
COMPARISON OF DIFFERENT PREDICTION METHODS UNDER VARYING

WORKLOADS, METRICS INCLUDING PRE-LOADING RATE (%) AND SPEEDUP
(×)

different functions that run the same model. Since Tyche treats
the function code as black-box, all functions created are uniquely
different.

We evaluate the E2E and warming+loading latency of Ty-
che+Pagurus, Pagurus, and vanilla OpenWhisk using the same
workload. The result is shown in Table III. Besides, we evaluate
the pre-loading rate of Tyche. For the 50 functions that are
frequently invoked, the pre-load rate is 73% . For the 150
less-frequently invoked functions, the pre-load rate is 28% . For
the 800 rarely invoked functions, the pre-load rate is less than
1% . Thus, Tyche can effectively pre-load the frequently invoked
functions and accelerate the workload in large-scale scenarios.

J. Prediction Performance Evaluation

To evaluate the robustness of Tyche, we choose four prediction
models: Poisson distribution, Histogram policy-based predic-
tion [14], Random Forests (RF), and Auto-Regressive Integrated
Moving Average (ARIMA) modeling. Each model is used to
decide when to load and offload a function. We randomly select
200 function traces from predictable, normal, and bursty work-
loads, respectively. As shown in Table IV, Poisson achieves the
best performance in predictable and normal workloads, whereas
Histogram performs best in bursty workloads. Tyche pre-loads
over 40% of functions and speeds up workloads by over 1.5×.

K. Ablation Study

We conduct an ablation experiment on the single-node cluster
to evaluate the effectiveness of the Proactive Pre-Loader and Pre-
Loading Scheduling, including both the Pre-Loading Scheduler
and Agent. Three variants of Tyche are evaluated and compared
with Histogram Policy, Pagurus, and FaaSCache:! TYCHE_NP: Tyche without the Proactive Pre-Loader. This

variant lacks the Proactive Pre-Loader, so it does not predict
the arrival probabilities of the function. Thus, this variant
never determines pre-loading and off-loading proactively,
only reacting to container creation, container removal, and
invocation arrival.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

SUI et al.: ACCELERATING ML INFERENCE VIA OPPORTUNISTIC PRE-LOADING ON SERVERLESS CLUSTERS 485

Fig. 13. The CDF of E2E latency for ablation of TYCHE+∗ and baselines.

Fig. 14. The average E2E latency with different Pload and sliding window
size.

! TYCHE_NS: Tyche without Scheduling. This variant can-
not make optimal assignments and dynamically schedule
loading and unloading. For TYCHE_NS, a function is only
pre-loaded under two situations: 1) when receiving the
pre-load message from the Proactive Pre-Loader and 2)
when a container is idle, its corresponding function will be
loaded (i.e., one-to-one mapping).! TYCHE_NPS: Tyche without either the Proactive Pre-
Loader or Scheduler. Each container only pre-loads its own
function’s libraries and models.

Fig. 13 shows the CDF of E2E inference latency under 2-hour
“Normal” traces randomly selected from Azure. Regardless
of the pre-warming method used, Tyche always outperforms
other variants due to its full utilization of both the Proactive
Pre-Loader and Scheduler. The synergy between these two
components ensures the maximum loading latency reduction
despite dynamic changes in invocation pattern and the number
of idle containers.

On average, Tyche accelerates the workload by 1.16-1.28×,
1.21-1.49×, and 1.48-1.73× when compared with Tyche-NP,
Tyche-NS, and Tyche-NPS.

L. Sensitivity Analysis

We conduct an experiment to evaluate the impact of two Tyche
hyper-parameters: Pload, which decides when to load libraries
and models, and the size of the Proactive Pre-Loader’s sliding
window, used to adapt to recent invocation changes. Fig. 14
shows their impact on the average E2E latency of a workload
from Azure Trace.

Fig. 15. Scalability comparison of Tyche and other serverless solutions.

Fig. 16. Robustness to limited memory budgets.

As observed, the performance of Tyche is not sensitive to
the size of the Proactive Pre-Loader’s sliding window. Mean-
while, we observed that the value of Pload converges to 0.06.
Furthermore, the optimal value of Pload is not affected by the
sliding window size. Although a lower Pload means loading a
model earlier, leading to a higher hit rate for future invocations.
However, pre-loading a function too early risks wasting the
available resources, which might be utilized for loading other
functions, leading to a sub-optimal acceleration. Conversely,
pre-loading a function too late (high Pload) makes requests miss
the opportunity of being accelerated. We set Tyche’s Pload to be
0.06 to achieve the optimal acceleration.

M. Scalability and Overhead

To evaluate the scalability of Tyche, TYCHE + Pagurus is given
increasingly heavier workloads, varying from 10 to 180 requests
per minute. The performance is shown in Fig. 15(a). Tyche con-
sistently outperforms Pagurus across different scales. Further-
more, we evaluate Tyche’s scalability with increased function
numbers. We keep the memory budget and overall request rate
unchanged while increasing the number of functions from 10
up to 1000 (The functions are created using the same manner as
Section VII-I). As Fig. 15(b) shows, Tyche consistently outper-
forms Pagurus across different functions numbers. Besides, the
performance gap widens significantly as the number of functions
grows, showing the Pre-Loading Scheduler’s effectiveness in
selecting the most valuable functions to pre-load.

Then we evaluate the performance of Tyche against other
baselines under constrained resource budgets by varying the
container pool’s size. As Fig. 16 shows, Tyche consistently

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

486 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2026

outperforms other baselines under different memory budgets,
showing stronger robustness. InstaInfer is not compared here
because its performance is identical to Tyche’s in this test.
This experiment evaluates the pre-loading logic under memory
pressure, which is shared by both systems.

Next, we report the latency and resource overhead of each
component.

Under peak load, Tyche’s Proactive Pre-Loader adds 3 ms
latency, while the Intra-Container Manager adds 2 ms to 11 ms
when clearing memory for an incoming invocation, which is
negligible compared to the 1500 ms to 5000 ms saved. Resource
overhead is minimal: the Proactive Pre-Loader uses less than
0.3 CPU cores and 72 MB memory; the scheduler uses 0.3
CPU cores and 135 MB; the Intra-Container Manager uses
0.1 CPU cores and 9 MB; and the multiple non-root user
security mechanism uses 1 MB memory. Energy overhead is
negligible since GPU loading is required for inference regardless
of pre-loading. Our in-memory approach avoids the disk I/O
overhead of snapshot-based alternatives. A misprediction of
unused pre-loaded functions only results in a lost opportunity
for further acceleration but does not cause additional resource
cost, as Tyche only utilized the idle instances’ unused memory.
Overall, the combined overhead of all Tyche’s components is
negligible compared to the demands of the workloads.

VIII. RELATED WORK

Serverless inference: Serverless computing has been applied
to ML inference [17], [18], [67], [68], [69], [70], [71], but they
overlook the substantial loading latency. Some methods increase
throughput by batching requests [72], [73], complemented by
Tyche’s batch handling. AsyFunc [19] pre-loads layers to miti-
gate bursts but doesn’t address cold starts, covering only 52% of
ML artifact loading time, as indicated in Fig. 1. Tetris [18] and
Optimus [17] share layers between models but miss library and
GPU overheads.

Cold-start mitigation: Many studies attempt to address cold-
start issues, which can be classified into four major cate-
gories: 1) Pre-warming that predictively pre-warms container
in advance [12], [14], [27], [32], [33], [34] and keeps them
warmed [11], [13], [14], [15], [26], [28], [29], [30], [31]. 2)
Virtualization Refactoring [8], [22], [40], [42], [43], [44] that use
new virtualization technique to accelerate warming. 3) Container
Sharing [9], [13], [37], [38], [39] that shares container among
functions. 4) Snapshot based methods [8], [21], [22], [30] that
stores snapshots of functions. Among them, pre-warming, virtu-
alization refactoring, and container sharing overlook the unique
loading stage for ML inference functions. Snapshot methods
store inference states and dependencies, but snapshot loading
causes 100-1000 ms startup delays and do not support GPUs.

Pre-loading in serverless: Several works [20], [23], [24]
enable user-defined pre-loading during instance startup. Azure
warmup trigger [20] pre-loads primitives during scaling but fails
for cold starts and pre-warmed containers. AWS Lambda static
initialization [23] executes components once per container but
cannot pre-load before first invocation. Work [24] executes prim-
itives on pre-warmed containers but underutilizes idle resources

and does not support GPUs. InstaInfer [1], closest to Tyche,
reduces inference latency via opportunistic pre-loading but sac-
rifices efficiency for accuracy, causing scheduling overhead and
suboptimal decisions in large-scale clusters.

Function data caching: Some studies [74], [75] cache
ephemeral data of functions in local storage or cloud server,
while others [76], [77] keep data in containers. Tyche focuses
on pre-loading libraries and models into memory, which is
orthogonal to these data caching techniques.

IX. CONCLUSION

This paper proposed Tyche, a pre-loading technique for server-
less inference that alleviates the ML artifacts loading overhead
of ML inference functions by opportunistically pre-loading their
libraries and models rather than relying on popular cold-start
mitigation approaches. Tyche comprises a Proactive Pre-Loader
to estimate when to load each function and schedules load
balancing, a Pre-Loading Scheduler to assign to-be-loaded func-
tions to suitable idle containers and GPUs, a Pre-Loading Agent
to operate the pre-loading decisions, and an Intra-Container
Manager for controlling the loading and off-loading of each
function. Our extensive experimental evaluation demonstrates
four key contributions. Tyche achieves substantial latency re-
duction, decreasing end-to-end latency by up to 90% and out-
performing snapshotting methods by up to 2.5×. These gains
come with remarkable cost-efficiency, requiring negligible extra
resource cost while proving to be over 20× more cost-effective
than comparable commercial solutions. Our centralized sched-
uler demonstrates exceptional scalability, achieving up to 1.9×
speedup over distributed alternatives in multi-node clusters. Fi-
nally, Tyche maintains robust large-scale performance, achieving
a 73% pre-load hit rate for the most active functions in our
1000-function evaluation.

ACKNOWLEDGMENT

Preliminary results have been presented in the ACM
SoCC’24 [1]. This work was performed when Yifan Sui was a
remote intern student advised by Dr. Hao Wang at the IntelliSys
Lab of Stevens Institute of Technology. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of the funding agencies.

REFERENCES

[1] Y. Sui, H. Yu, Y. Hu, J. Li, and H. Wang, “Pre-warming is not enough:
Accelerating serverless inference with opportunistic pre-loading,” in Proc.
2024 ACM Symp. Cloud Comput., 2024, pp. 178–195.

[2] K. Lee, V. Rao, and W. Arnold, “Accelerating Facebook’s infrastruc-
ture with application-specific hardware,” 2019. Accessed: Jul. 07, 2024.
[Online]. Available: https://engineering.fb.com/2019/03/14/data-center-
engineering/accelerating-infrastructure/

[3] “Alexa skills - serverless applications lens,” 2023. Accessed: Jul. 07, 2024.
[Online]. Available: https://docs.aws.amazon.com/wellarchitected/latest/
serverless-applications-lens/alexa-skills.html

[4] Azure Samples, “Serverless AI chat with RAG using LangChain.js,” 2024.
Accessed: Jul. 07, 2024. [Online]. Available: https://learn.microsoft.com/
en-us/samples/azure-samples/serverless-chat-langchainjs/serverless-
chat-langchainjs/

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/alexa-skills.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/alexa-skills.html
https://learn.microsoft.com/en-us/samples/azure-samples/serverless-chat-langchainjs/serverless-chat-langchainjs/
https://learn.microsoft.com/en-us/samples/azure-samples/serverless-chat-langchainjs/serverless-chat-langchainjs/
https://learn.microsoft.com/en-us/samples/azure-samples/serverless-chat-langchainjs/serverless-chat-langchainjs/

SUI et al.: ACCELERATING ML INFERENCE VIA OPPORTUNISTIC PRE-LOADING ON SERVERLESS CLUSTERS 487

[5] Nuclio, “Nuclio: Serverless platform for automated data science,” 2024.
Accessed: Jul. 12, 2024. [Online]. Available: https://nuclio.io/

[6] Y. Fu et al., “ServerlessLLM: Locality-enhanced serverless inference for
large language models,” 2024, arXiv:2401.14351.

[7] E. Jonas et al., “Cloud programming simplified: A berkeley view on
serverless computing,” 2019, arXiv: 1902.03383.

[8] D. Du et al., “Catalyzer: Sub-millisecond startup for serverless computing
with initialization-less booting,” in Proc. 25th Int. Conf. Architectural
Support Program. Lang. Operating Syst., 2020, pp. 467–481.

[9] I. E. Akkuset al., “{SAND }: Towards { High-Performance} serverless
computing,” in Proc. 2018 Usenix Annu. Tech. Conf., 2018, pp. 923–935.

[10] Z. Shen et al., “X-Containers: Breaking down barriers to improve perfor-
mance and isolation of cloud-native containers,” in Proc. 24th Int. Conf.
Architectural Support Program. Lang. Operating Syst., 2019, pp. 121–135.

[11] M. Brooker, M. Danilov, C. Greenwood, and P. Piwonka, “On-demand
container loading in AWS Lambda,” in Proc. 2023 USENIX Annu. Tech.
Conf., 2023, pp. 315–328.

[12] J. Stojkovic, T. Xu, H. Franke, and J. Torrellas, “SpecFaaS: Accelerating
serverless applications with speculative function execution,” in Proc. 2023
IEEE Int. Symp. High- Perform. Comput. Archit., 2023, pp. 814–827.

[13] Z. Li et al., “Help rather than recycle: Alleviating cold startup in serverless
computing through {Inter-Function} container sharing,” in Proc. 2022
USENIX Annu. Tech. Conf., 2022, pp. 69–84.

[14] M. Shahrad et al., “Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider,” in Proc. 2020 USENIX
Annu. Tech. Conf., 2020, pp. 205–218.

[15] A. Fuerst and P. Sharma, “FaasCache: Keeping serverless computing alive
with greedy-dual caching,” in Proc. 26th ACM Int. Conf. Architectural
Support Program. Lang. Operating Syst., 2021, pp. 386–400.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” 2018, arXiv:
1810.04805.

[17] Z. Hong et al., “Optimus: Warming serverless ML inference via inter-
function model transformation,” in Proc. 19th Eur. Conf. Comput. Syst.,
2024, pp. 1039–1053.

[18] J. Li, L. Zhao, Y. Yang, K. Zhan, and K. Li, “Tetris: Memory-efficient
serverless inference through tensor sharing,” in Proc. 2022 USENIX Annu.
Tech. Conf., 2022, pp. 473–488.

[19] Q. Pei, Y. Yuan, H. Hu, Q. Chen, and F. Liu, “AsyFunc: A high-performance
and resource-efficient serverless inference system via asymmetric func-
tions,” in Proc. ACM Symp. Cloud Comput., 2023, pp. 324–340.

[20] Microsoft, “Azure functions warmup trigger,” 2023. Accessed: Jun.
12, 2024. [Online]. Available: https://learn.microsoft.com/en-us/azure/
azure-functions/functions-bindings-warmup

[21] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion, and B. Grot, “Benchmark-
ing, analysis, and optimization of serverless function snapshots,” in Proc.
ACM Int. Conf. Architectural Support Program. Lang. Operating Syst.,
2021, pp. 559–572.

[22] L. Ao, G. Porter, and G. M. Voelker, “FaaSnap: FaaS made fast using
snapshot-based VMs,” in Proc. 17th Eur. Conf. Comput. Syst., 2022,
pp. 730–746.

[23] Web Amazon Services, “Optimizing static initialization - AWS Lambda,”
2023. Accessed: Jun. 12, 2024. [Online]. Available: https://docs.aws.
amazon.com/lambda/latest/operatorguide/static-initialization.html

[24] E. Hunhoff, S. Irshad, V. Thurimella, A. Tariq, and E. Rozner, “Proactive
serverless function resource management,” in Proc. 2020 6th Int. Workshop
Serverless Comput., 2021, pp. 61–66.

[25] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and T. Hoefler,
“SeBS: A serverless benchmark suite for function-as-a-service comput-
ing,” in Proc. 22nd Int. Middleware Conf., 2021, pp. 64–78.

[26] R. B. Roy, T. Patel, and D. Tiwari, “IceBreaker: Warming serverless func-
tions better with heterogeneity,” in Proc. 27th ACM Int. Conf. Architectural
Support Program. Lang. Operating Syst., 2022, pp. 753–767.

[27] J. R. Gunasekaran, P. Thinakaran, N. Chidambaram, M. T. Kandemir, and
C. R. Das, “Fifer: Tackling underutilization in the serverless ERA,” in
Proc. 21st Int. Middleware Conf., 2020, pp. 280–295.

[28] L. Pan, L. Wang, S. Chen, and F. Liu, “Retention-aware container caching
for serverless edge computing,” in Proc. IEEE Conf. Comput. Commun.,
2022, pp. 1069–1078.

[29] R. B. Roy, T. Patel, and D. Tiwari, “DayDream: Executing dynamic
scientific workflows on serverless platforms with hot starts,” in Proc. Int.
Conf. High Perform. Comput., Netw., Storage Anal., 2022, pp. 1–18.

[30] J. Cadden, T. Unger, Y. Awad, H. Dong, O. Krieger, and J. Appavoo,
“SEUSS: Skip redundant paths to make serverless fast,” in Proc. 15th Eur.
Conf. Comput. Syst., 2020, pp. 1–15.

[31] Z. Lin, K.-F. Hsieh, Y. Sun, S. Shin, and H. Lu, “FlashCube: Fast provi-
sioning of serverless functions with streamlined container runtimes,” in
Proc. 11th Workshop Program. Lang. Operating Syst., 2021, pp. 38–45.

[32] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhom-
linov, “Agile cold starts for scalable serverless,” in Proc. 11th USENIX
Workshop Hot Topics Cloud Comput., 2019, Art. no. 21.

[33] V. M. Bhasi, J. R. Gunasekaran, P. Thinakaran, C. S. Mishra, M. T.
Kandemir, and C. Das, “Kraken: Adaptive container provisioning for
deploying dynamic DAGs in serverless platforms,” in Proc. ACM Symp.
Cloud Comput., 2021, pp. 153–167.

[34] X. Cai et al., “Incendio: Priority-based scheduling for alleviating cold start
in serverless computing,” IEEE Trans. Comput., vol. 73, no. 7, pp. 1780–
1794, Jul. 2024.

[35] H. Yu et al., “RainbowCake: Mitigating cold-starts in serverless with
layer-wise container caching and sharing,” in Proc. 29th ACM Int. Conf.
Architectural Support Program. Lang. Operating Syst., 2024, pp. 335–350.

[36] T. Elgamal, “Costless: Optimizing cost of serverless computing through
function fusion and placement,” in Proc. 2018 IEEE/ACM Symp. Edge
Comput., 2018, pp. 300–312.

[37] A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety, S. Chaterji, and S. Bagchi,
“{ORION } and the three rights: Sizing, bundling, and prewarming for
serverless { DAGs},” in Proc. 16th USENIX Symp. Operating Syst. Des.
Implementation, 2022, pp. 303–320.

[38] E. Oakes et al., “SOCK: Rapid task provisioning with serverless-optimized
containers,” in Proc. USENIX Conf. Usenix Annu. Tech. Conf., 2018,
pp. 57–70.

[39] T. Schirmer, J. Scheuner, T. Pfandzelter, and D. Bermbach, “FUSION-
IZE: Improving serverless application performance through feedback-
driven function fusion,” in 2022 IEEE Int. Conf. Cloud Eng., 2022,
pp. 85–95.

[40] D. Saxena, T. Ji, A. Singhvi, J. Khalid, and A. Akella, “Memory dedu-
plication for serverless computing with medes,” in Proc. 17th Eur. Conf.
Comput. Syst., 2022, pp. 714–729.

[41] K.-T. A. Wang, R. Ho, and P. Wu, “Replayable execution optimized for
page sharing for a managed runtime environment,” in Proc. 17th Eur. Conf.
Comput. Syst., 2019, pp. 1–16.

[42] A. Agache et al., “Firecracker: Lightweight virtualization for serverless
applications,” in Proc. USENIX Symp. Networked Syst. Des. Implementa-
tion, 2020, pp. 419–434.

[43] Google, “gVisor,” 2018. [Online]. Available: https://gvisor.dev/
[44] P. Silva, D. Fireman, and T. E. Pereira, “Prebaking functions to warm the

serverless cold start,” in Proc. 21st Int. Middleware Conf., 2020, pp. 1–13.
[45] D. Saxena, T. Ji, A. Singhvi, J. Khalid, and A. Akella, “Memory dedu-

plication for serverless computing with medes,” in Proc. 17th Eur. Conf.
Comput. Syst., 2022, pp. 714–729.

[46] X. Wei et al., “No provisioned concurrency: Fast {RDMA-codesigned}
remote fork for serverless computing,” in Proc. USENIX Symp. Operating
Syst. Des. Implementation, 2023, pp. 497–517.

[47] Y. Zhang et al., “Faster and cheaper serverless computing on harvested
resources,” in Proc. ACM SIGOPS 28th Symp. Operating Syst. Princ.,
2021, pp. 724–739.

[48] H. Yu, C. Fontenot, H. Wang, J. Li, X. Yuan, and S.-J. Park, “Libra:
Harvesting idle resources safely and timely in serverless clusters,” in
Proc. 32nd Int. Symp. High- Perform. Parallel Distrib. Comput., 2023,
pp. 181–194.

[49] H. Yu, H. Wang, J. Li, X. Yuan, and S.-J. Park, “Accelerating serverless
computing by harvesting idle resources,” in Proc. ACM Web Conf., 2022,
pp. 1741–1751.

[50] Z. Zhou, Y. Zhang, and C. Delimitrou, “Aquatope: Qos-and-uncertainty-
aware resource management for multi-stage serverless workflows,” in
Proc. 28th ACM Int. Conf. Architectural Support Program. Lang. Op-
erating Syst., 2022, pp. 1–14.

[51] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “{INFaaS}: Auto-
mated model-less inference serving,” in Proc. 2021 USENIX Annu. Tech.
Conf., 2021, pp. 397–411.

[52] J. Enes, R. R. Expósito, and J. Touriño, “Real-time resource scaling
platform for Big Data workloads on serverless environments,” Future
Gener. Comput. Syst., vol. 105, pp. 361–379, 2020.

[53] Apache OpenWhisk, 2024. Accessed: Jul. 07, 2024. [Online]. Available:
https://openwhisk.apache.org

[54] AWS Lambda, “Configure lambda function memory,” 2024. Accessed:
Jul. 07, 2024. [Online]. Available: https://docs.aws.amazon.com/lambda/
latest/dg/configuration-memory.html/

[55] T. Yu et al., “Characterizing serverless platforms with serverlessbench,”
in Proc. 11th ACM Symp. Cloud Comput., 2020, pp. 30–44.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

https://nuclio.io/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-warmup
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-warmup
https://docs.aws.amazon.com/lambda/latest/operatorguide/static-initialization.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/static-initialization.html
https://gvisor.dev/
https://openwhisk.apache.org
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html/

488 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2026

[56] R. M. Karp, Reducibility Among Combinatorial Problems. Berlin, Ger-
many: Springer, 2010, pp. 219–241.

[57] B. Cheswick, “An evening with berferd in which a cracker is lured,
endured, and studied,” in Proc. Winter USENIX Conf., San Francisco,
1992, pp. 20–24.

[58] N. Corporation, “NVIDIA multi-process service,” Softw. Available From
NVIDIA, 2024. Accessed: May 30, 2024. [Online]. Available: https://docs.
nvidia.com/deploy/mps/index.html

[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 84–90.

[60] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[62] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[63] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[64] Z. Li, “GitHub—Pagurus,” 2022. Accessed: Oct. 26, 2023. [Online].
Available: https://github.com/lzjzx1122/Pagurus

[65] Microsoft, “Azure functions premium plan,” 2024, Accessed: Jul.
12, 2024. [Online]. Available: https://learn.microsoft.com/en-us/azure/
azure-functions/functions-premium-plan?tabs=portal

[66] “Pricing - microsoft azure function,” 2024. Accessed: Jul. 12, 2023.
[Online]. Available: https://azure.microsoft.com/en-us/pricing/details/
functions/

[67] J. Jarachanthan, L. Chen, F. Xu, and B. Li, “AMPS-Inf: Automatic model
partitioning for serverless inference with cost efficiency,” in Proc. 50th
Int. Conf. Parallel Process., 2021, pp. 1–12.

[68] J. Cho, D. Zad Tootaghaj, L. Cao, and P. Sharma, “SLA-driven ML
inference framework for clouds with heterogeneous accelerators,” in Proc.
Mach. Learn. Syst., vol. 4, pp. 20–32, 2022.

[69] J. Jiang et al., “Towards demystifying serverless machine learning train-
ing,” in Proc. 2021 Int. Conf. Manage. Data, 2021, pp. 857–871.

[70] V. Dukic, R. Bruno, A. Singla, and G. Alonso, “Photons: Lambdas on a
diet,” in Proc. 11th ACM Symp. Cloud Comput., 2020, pp. 45–59.

[71] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Optimizing inference serv-
ing on serverless platforms,” Proc. VLDB Endowment, vol. 15, no. 10,
pp. 2071–2084, 2022.

[72] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: Machine learning
inference serving on serverless platforms with adaptive batching,” in Proc.
IEEE Int. Conf. High Perform. Comput., Netw., Storage Anal., 2020, pp. 1–
15.

[73] Y. Yang et al., “Infless: A native serverless system for low-latency, high-
throughput inference,” in Proc. 27th ACM Int. Conf. Architectural Support
Program. Lang. Operating Syst., 2022, pp. 768–781.

[74] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis,
“Pocket: Elastic ephemeral storage for serverless analytics,” in Proc. 13th
USENIX Symp. Operating Syst. Des. Implementation, 2018, pp. 427–444.

[75] D. Mvondo et al., “OFC: An opportunistic caching system for faas plat-
forms,” in Proc. 16th Eur. Conf. Comput. Syst., 2021, pp. 228–244.

[76] A. Wanget al., “{InfiniCache }: Exploiting ephemeral serverless functions
to build a { Cost-Effective} memory cache,” in Proc. 18th USENIX Conf.
File Storage Technol., 2020, pp. 267–281.

[77] F. Romero et al., “Faa$: A transparent auto-scaling cache for serverless
applications,” in Proc. ACM Symp. Cloud Comput., 2021, pp. 122–137.

Yifan Sui received the BEng degree in communica-
tion engineering from the Beijing University of Posts
and Telecommunications, Beijing, China, in 2021. He
is currently working toward the PhD degree in the
School of Electronic Information and Electrical En-
gineering, Shanghai Jiao Tong University, Shanghai,
China. His research interests include cloud computing
and serverless computing.

Hanfei Yu received the BE degree in electronic
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2019, and the MS degree in
computer science from the University of Washington,
Tacoma, WA, USA, in 2021. He is currently working
toward the PhD degree in computer engineering with
the Stevens Institute of Technology, Hoboken, NJ,
USA. His research interests include cloud computing,
serverless computing, reinforcement learning, and AI
systems.

Yitao Hu (Member, IEEE) received the BS de-
gree from the Department of Electrical Engineering,
Shanghai Jiao Tong University, China, in 2014, and
the PhD degree from Networked Systems Lab (NSL),
University of Southern California, US, in 2021. He
is currently an assistant professor with the College
of Intelligence and Computing, Tianjin University,
China. His research focuses on developing inference
systems capable of deploying LLM and DNN models
in large-scale cloud clusters, aiming for peak perfor-
mance, efficiency and scalability. He has published

papers at the leading conferences/journals, including SoCC, Ubicomp, INFO-
COM, IWQoS, ASPLOS, SIGCOMM and TPDS.

Jianxun Li (Senior Member, IEEE) received the Dr.
Eng. degree in control theory and engineering with
highest honors from Northwestern Polytechnical Uni-
versity, Xian, China, in 1996. He is a professor with
the Department of Automation, Shanghai Jiao Tong
University, Shanghai, China. From 1997 to 1999, he
joined the Key Laboratory of Radar Signal Processing
of Xidian University, Xian, China, as a postdoctoral
fellow. He was a visiting professor with the Imperial
College London, London, U.K., from 2006 to 2007.
His main research interests include information fu-

sion, infrared image processing and parameter estimation.

Hao Wang (Member, IEEE) received the BE degree
in information security, from Shanghai Jiao Tong Uni-
versity, in 2012, the ME degree in software engineer-
ing from Shanghai Jiao Tong University, Shanghai,
China, in 2015, and the PhD degree in the Department
of Electrical and Computer Engineering, University
of Toronto, Canada, in 2020. He is an assistant pro-
fessor in the Department Electrical and Computer
Engineering with Stevens Institute of Technology,
Hoboken, NJ, USA. His research interests include
distributed ML systems, AI security and forensics,

privacy-preserving data analytics, serverless computing, and high-performance
computing. He is a recipient of the NSF CRII Award.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on January 30,2026 at 13:19:29 UTC from IEEE Xplore. Restrictions apply.

https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://github.com/lzjzx1122/Pagurus
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan%7B?%7Dtabs$=$portal
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan%7B?%7Dtabs$=$portal
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/

