
AMPERE: A Generic Energy Estimation Approach for

On-Device Training

Jiaru Zhang1 Zesong Wang1 Hao Wang2 Tao Song1 Huai-an Su3

Rui Chen3 Yang Hua4 Xiangwei Zhou5 Ruhui Ma1 Miao Pan3

Haibing Guan1!
1Shanghai Jiao Tong University 2Stevens Institute of Technology

3University of Houston 4Queen’s University Belfast 5Louisiana State University

{jiaruzhang, taihaozesong, songt333, ruhuima, hbguan}@sjtu.edu.cn,

hwang9@stevens.edu, {hsu3, rchen19, mpan2}@uh.edu, Y.Hua@qub.ac.uk, xwzhou@lsu.edu

ABSTRACT

Battery-powered mobile devices (e.g., smartphones, AR/VR glasses,
and various IoT devices) are increasingly being used for AI train-
ing due to their growing computational power and easy access to
valuable, diverse, and real-time data. On-device training is highly
energy-intensive, making accurate energy consumption estimation
crucial for effective job scheduling and sustainable AI. However,
the heterogeneity of devices and the complexity of models chal-
lenge the accuracy and generalizability of existing methods. This
paper proposes AMPERE, a generic approach for energy consump-
tion estimation in deep neural network (DNN) training. First, we
examine the layer-wise energy additivity property of DNNs and
strategically partition the entire model into layers for fine-grained
energy consumption profiling. Then, we fit Gaussian Process (GP)
models to learn from layer-wise energy consumption measurements
and estimate a DNN’s overall energy consumption based on its
layer-wise energy additivity property. We conduct extensive ex-
periments with various types of models across different real-world
platforms. The results demonstrate that AMPERE has effectively
reduced the Mean Absolute Percentage Error (MAPE) by up to
30%. Moreover, AMPERE is applied in guiding energy-aware prun-
ing, successfully reducing energy consumption by 50%, thereby
further demonstrating its generality and potential. 1

1. INTRODUCTION
Artificial Intelligence (AI) applications are shifting from wall-

plug-powered AI devices to battery-powered mobile AI systems,
such as smartphones, tablets, laptops, AR/VR wearables, and IoT
devices. Those mobile AI systems/devices are becoming increas-
ingly powerful and provide easy access to a rich source of diverse,
real-time data, making them highly valuable for training AI mod-
els. Nascent on-device training is gaining traction due to its data
privacy and efficiency benefits, as it circumvents the need to up-
load data to the cloud. Furthermore, it is especially advantageous
in situations with unreliable network connectivity or for providing
personalized services [1] . However, given the fact that almost all
contemporary mobile devices are powered by battery, their energy

1A version with appendix available at arxiv.org/pdf/2501.16397.
Correponding author: Haibing Guan. This work was supported by
the National Key R&D Program of China (2022YFB4402102), and
the Shanghai Key Laboratory of Scalable Computing and Systems.
The work of Hao Wang was supported in part by NSF 2534286.

Copyright is held by author/owner(s).

Actual energy: 71.31 J

Predicted Energy

Total: 71.93 J

4.78 J

37.24 J

12.63 J

7.26 J

10.03 J

m

Input image

Conv In: 3 Out: 10

Conv In: 10 Out: 9

Conv In: 10 Out: 11

Conv In: 11 Out: 15

Fully Connected

Prediction

Bayesian
Optimization

+

+

+

+AMPERE

Figure 1: Illustration of the energy estimation process on a 5-
layer CNN. In: a and Out: b indicate the input channel a and
output channel b for convolutional layers.
consumption is commonly constrained. Therefore, deploying DNN
training onto these devices presents a challenge. It is a high-power
task and requires estimating the overall energy expenditure before-
hand to prevent power failure . Addressing these energy constraints
is critical for developing sustainable AI, promoting efficient energy
use and environmental friendliness.

State-of-the-art solutions may not be sufficiently accurate for es-
timating DNN training’s energy consumption. Evaluating a neural
network model’s Floating Point Operations (FLOPs) is a common
energy-estimation practice for most models , based on an assump-
tion that the devices’ working status is fixed. However, in reality,
the energy estimation based on FLOPs may deviate greatly from the
observations. Beyond FLOPs, most simulation-based methods are
limited to specific hardware and frameworks . Developing an accu-
rate and generic energy estimation approach for on-device training
presents the following fundamental challenges:
• System Heterogeneity. Mobile devices have diverse hardware

combinations, leading to potential variations in behavior even
within the same model. Furthermore, the Lookup Table pro-
vided by Neural Architecture Search (NAS) proves impractical
for making estimations across a wide range of devices due to this
variability .

• Model Diversity. DNN models’ energy consumption charac-
teristics can vary greatly, inherently resulting in heterogeneous
resource demands. Some models may primarily rely on com-
putational power as input scale increases, while others remain
largely power-insensitive.

• Runtime Complexity. It arises from optimization techniques
such as kernel fusion and CPU hand-off during model train-

https://arxiv.org/pdf/2501.16397

ing. The unpredictable access patterns from various levels of the
memory hierarchy impede the ability to calculate energy usage
merely as the sum of data movement and computation.
In this paper, we present AMPERE, a novel and generic method

designed to provide precise energy estimates. It is agnostic to both
the running platform and the DNN model, therefore solves the
challenges of system heterogeneity and model diversity. Based
on the observations that layer-associated operators are emitted se-
quentially and the inter-layer effects are insignificant, we present
the layer-wise energy additivity and subtractivity. The total energy
consumption of a DNN is estimated by summing the costs of its
layers, with the cost of each layer derived by subtracting the resid-
ual layers’ costs from the total. The energy consumption data for
individual layers is gathered through layer-wise subtractivity. Pre-
dictive GP models are fitted with these data, hence avoiding the
challenge associated with runtime complexity. Lastly, the total en-
ergy consumption of the entire model can be obtained from sum-
mation through layer-wise additivity. Gaussian Process (GP) mod-
els are fitted using the observed energy consumption of individual
layers. This fitting process is a one-time endeavor as the resulted
models are reusable. Then, the total energy consumption can be
estimated by summing the estimated energy costs of all layers.

We deploy and evaluate AMPERE across multiple models on
five different devices. Compared to the current leading approaches,
AMPERE reduces the Mean Absolute Percentage Error (MAPE)
by up to 30%. Moreover, we use energy-conscious model pruning
to create a leaner architecture with the same performance and 50%
energy consumption, which further verifies the effectiveness and
practicality of AMPERE. The codes will be publicly released if the
paper is accepted.

Our main contributions can be summarized as follows:
• We study the energy consumption characteristics and find the

promising layer-wise additivity of energy consumption dur-
ing DNN training.

• Based on the observations above, we design AMPERE, a
generic method for accurate estimations of energy consump-
tion for training of DNN models.

• We implement AMPERE and conduct tests on various AI
systems. The results indicate a reduction in MAPE by up
to 30%. Moreover, we apply it to guide model pruning and
successfully reduce 50% energy consumption.

2. BACKGROUND AND MOTIVATION

2.1 Modeling Deep Learning’s Energy Con-
sumption

DNN training fundamentally encompasses two primary stages:
forward propagation and backward propagation. During the pro-
cess of forward propagation, the model takes the input data and
calculates the output for each layer. On the other hand, back-

ward propagation involves evaluating the difference between the
model’s output and the target label using a loss function. Subse-
quently, derivatives are computed in a backward manner, leverag-
ing the chain rule, to guide the update of model parameters. Each
of the aforementioned processes necessitates computational opera-
tions, thereby consuming a corresponding amount of energy.

Modeling deep learning energy consumption is a widely studied
topic. Energy consumption essentially stems from computation and
data movement, hence the majority of existing studies primarily
focus on estimating this consumption by considering the number
of FLOPs inferred from a DNN’s framework [9, 10] . In these
methods, the Floating Point Operation per Second (FLOPS) and
FLOPS per watt serve as indicators for computational performance

Estimation
Observation

En
er

gy
 (J

)

0

10

20

Layer Number
2 4 6 8 10 12

Figure 2: Energy consumption from NeuralPower estimation
and from observation for a CNN.
and energy efficiency, respectively. we refer to our Appendix Sec.
A2 for more thorough exploration of this literature.

2.2 Existing Methods’ Limitations
Existing methods fall into three categories: Proxy-based meth-

ods estimate energy costs by a model’s FLOPs, parameter size, and
number of layers, with FLOPs-based estimation being the most
common . While adaptable to any model, these methods over-
look device heterogeneity and runtime optimizations, assuming sta-
ble computation performance and performance-per-watt. However,
when the model structure changes, the system utilization will un-
dergo significant changes. The kernel configure tends to launch
fewer threads for pruned models [7]. Upon compilation, the frame-
work generates both forward and backward computational graphs
and fuse operations into a single CUDA kernel. This approach
enhances computation for activation functions, optimizers, custom
RNN cells, etc. Some in-place optimizations, such as
Convolution-BatchNorm-ReLU fusion, are also implemented
and make the execution more like a black box [3] . These factors
contribute to inaccuracies in Proxy-based estimations. Simulation-
based methods simulate the full computation and data movement
process [5, 9] . They require detailed knowledge about the algo-
rithm implementations as well as the energy cont of each hardware
component. These methods allow for the identification of the hard-
ware that incurs the highest energy consumption and help in locat-
ing performance bottlenecks caused by memory stalls. However,
this type of approach loses its generality and is only applicable to
specific devices, models, and Machine Learning (ML) frameworks.
Architecture-based methods utilize framework-provided profilers
during the inference phase to obtain the execution time for specific
layers or kernels, significantly improving the accuracy of energy
prediction [10, 2, 6] . Nevertheless, this type of approach relies on
specific framework and still faces challenges in obtaining energy
costs. As a validation, we extend the forward pass to the whole
training process like NeuralPower [2] and adapt it to the training
phase as shown in Fig. 2. We conduct profiling on the operators in-
volved in each of these stages separately and obtain the final energy
by summing them up. The results show that this method tends to
overestimate the cost of each layer, which indicates the introduction
of systematic biases and verifies our analysis.

3. AMPERE’S DESIGN
3.1 A Bird’s-Eye View

Fig. 3 illustrates an overview of AMPERE. It broadly contains
three processes listed below, where the profiling and the fitting pro-
cesses are carried out in an iterative manner.
Profiling: In AMPERE, all layers are parsed into input layer, hid-
den layer, and output layer. To estimate the energy consumption
of these layers, AMPERE generates 1-layer, 2-layer, and 3-layer
variant NNs with different parameters, respectively. Initially, the
parameters of variant models are selected as the bound value, and

Layer Parsing

DNN Model

Layer Parsing

Pr
ofi

lin
g

Fi
tti

ng
Es

tim
at

io
n New DNN

GP
Models
Fitting

Guide SelectionEnergy Consumption

Prediction Summing+ + +

Predicted
Energy

Figure 3: An overview of AMPERE.
the subsequent parameters are selected and guided by the profiling
stage. Training these variant models provides information about
their consumption.
Fitting: Based on the additivity and subtractivity of the energy con-
sumption, AMPERE separates the model as different layers and fits
with Gaussian Process (GP) models based on the consumption data
from the profiling stage. Moreover, the GP models guide the se-
lection of the next profiling point based on predictive uncertainty
and utilize the returned data to optimize the prediction. Therefore,
the fitting stage can be seen as an active learning process to some
extent.
Estimation: Once sufficient energy consumption data are obtained,
GP models are fitted to predict the energy consumption of each
layer. After that, AMPERE can obtain the energy estimation by
summing the energy from each GP model based on the additivity
of the energy consumption.

The key advantages of our framework are its inherent general-
ity and minimal overhead. By implementing the actual training
workflow without the need for an additional operator-level profiler,
AMPERE can be easily integrated into any training framework and
device to provide accurate estimations. In essence, AMPERE of-
fers a highly adaptable and low-overhead solution for a wide range
of use cases across diverse computing environments.

3.2 Profiling
Layer-wise Energy Additivity of DNN. In the energy cost estima-
tion task, the existing method, NeuralPower [2], estimates energy
costs by profiling the forward, backward, and update stages. How-
ever, this approach tends to overestimate costs due to data reuse
during the DNN training process. In contrast, we view the DNN
model as a combination of different layers and propose that the to-
tal energy consumption of the entire DNN can be obtained by sum-
ming the costs of each layer, a concept we refer to as layer-wise
additivity. This also implies that the cost of a single layer can be
independently assessed by subtracting the cost of the residual lay-
ers from the total sum, a concept we call layer-wise subtractivity.

To validate this, we train a Convolutional Neural Network (CNN)
model on the MNIST dataset, starting with a rudimentary model in-
cluding only an input layer and an output (i.e., FC) layer. After this,
we integrate identical Conv2d layers into the existing structure and
examine the resulting changes in energy consumption. Experimen-
tal results in Fig. 2 empirically illustrate that existing method over-
estimates the costs. Moreover, the trends in energy consumption
corresponding to the increase in the number of layers. This under-
scores that the incremental cost associated with each convolutional
layer remains roughly constant, creating a linear trajectory. This
observation suggests that the energy consumption of each layer is

additive and the positioning of a layer has no impact on the final
outcome.
Layer Parsing. Based on the presented layer-wise energy additiv-
ity pf DNN, we dissect the network model into sub-components of
the three distinct categories: input layers, hidden layers and out-
put layers. A DNN usually contains a single input layer, a single
output layer, and multiple hidden layers organized with Modular

Design, i.e., repeating layers or blocks of layers. Therefore, we
employ a similar strategy to partition them into blocks, where non-
parametric layers are consistently grouped together with preceding
layers. Deduplication is carried out based on the layer type and
the associated hyperparameters, i.e., input height and weight, ker-
nel size, and batch size. This separation rule can hide the effects of
optimization by the framework, therefore, making the estimation
more accurate. The details of our layer characteristics are further
described in Appendix Sec. A3.

In AMPERE, layers are characterized by their output channels
(for input layers), input channels (for output layers), or both input
and output channels (for hidden layers). For an n-layer DNN, the
channels are denoted as C1, Cn→1, and Ci for i = 2, · · · , n → 2,
respectively. Note that layers with different kernel sizes, steps, and
batchsizes are encoded as different layers since their energy cost
patterns have a large gap.
Profiling Process. In AMPERE, we firstly profile the output layer,
treating it as a complete model for training purposes. The energy
consumption of this single-layer model is denoted as Eoutput(C1)
and we fit a GP model in the fitting process to predict the energy
consumption denoted as Êoutput(C1) with varied C1s.

Secondly, the input layer’s energy cost can be obtained by sub-
tracting the output layer’s estimation result from the total measured
cost according to the layer-wise subtractivity:

Einput(C2) = Einput+output(C1, C2)→ Êoutput(C1), (1)

and we fit a GP model in the fitting process to predict the energy
consumption denoted as Êinput(C2) for varied C2s.

Lastly, we assemble the energy consumption of NNs containing
an input layer, a single hidden layer, and an output layer with varied
C1s and C2s. Therefore, the energy costs of the hidden layer can
be obtained by subtracting estimated costs of others:

Ehidden(C1, C2) = Emodel(C1, C2)→ Êinput(C1)→ Êoutput(C2),
(2)

and we fit GP models in the fitting process to predict the energy
cost of each kind of hidden layers denoted by Êhidden(C1, C2).

It is noteworthy that the profiling is guided by the fitting pro-
cess instead of randomly sampling, as shown in detail below. It
improves the efficiency of the whole framework.

3.3 Fitting
Gaussian Process Model. A Gaussian Process (GP) model is a
non-parametric, probabilistic model popularly used in machine learn-
ing and statistics. In AMPERE, we employ GP as the model to fit
the energy consumption characteristics of each kind of layers. GP
solely demands the consumption data for fitting, making it align
well with the diverse requirements posed by system heterogeneity
and model diversity. It is also capable of handling noise, which
is unavoidable due to the potential awakening of background pro-
cesses in practice. Moreover, its probabilistic nature provides em-
pirical confidence intervals, allowing adaptive data fitting and as-
sisting in determining termination conditions.
Fitting Accurately. The GP models are fitted with energy con-
sumption data from the profiling process. As illustrated in Fig. 5, an
increase in the input channel directly correlates to a linear increase

Figure 4: GP after 4 and 5 steps for FC layer on OPPO taking
500 batches of (10, input channel, 28, 28) input.

0e6

2e6

4e6

6e6

FLOPs
Groundtruth
Profiled
Estimation
FLOPs

En
er

gy
 (J

)

0
2
4
6
8

10
12

Input Channel
0 10 20 30 40 50 60

Figure 5: Energy consumption of a Fully Connected (FC) layer
taking 500 batches of (4, input channel, 50, 50) input on Xavier.

in FLOPs. However, the energy consumption does not follow the
same linear pattern. Hence, utilizing FLOPs to estimate the energy
could result in inaccurate performance predictions, while the GP
model aptly fits the energy prediction task.
Kernel Selection. In GP, the prior’s covariance is given by a ker-
nel, which can describe how similar two neighbor points are. In
AMPERE, we utilize the Matérn kernel [8]:

k (xi, xj) =

(↑
2ω
l d (xi, xj)

)ω
Kω

(↑
2ω
l d (xi, xj)

)

!(ω)2ω→1
,

(3)

where d(·, ·) is the Euclidean distance, Kω(·) is a modified Bessel
function and !(·) is the gamma function. This kernel is generally
robust to misspecification of the length-scale parameter [8]. It has
an additional parameter ω to control the smoothness of the resulting
function. Considering the runtime optimization and cache thrash-
ing, we choose ω = 2.5 which only requires twice differentiable.
Experiments provided in Appendix Sec. A6.2 support the superi-
ority of the Matérn kernel.
Guided Profiling. GP has the unique ability to model the uncer-
tainty hence can guide the selection of the next point in the profil-
ing process. As our main purpose is to obtain accurate estimation,
we choose the point with the largest variance to eliminate the un-
certainty. Fig. 4 illustrates how GP selects the next point and fits
the data. After fitting the point with the largest variance, the un-
certainty is diminished. Therefore, it can be seen as an instance
of active learning to some extent, where the acquisition function
guides the selection of the most informative points for fitting in the

Pearson Corr: 0.7370

En
er

gy
 (J

)

20

40

60

80

100

Time (s)
3 4 5 6 7 8 9 10

Figure 6: The relationship between the time and energy con-
sumption for 5-layer CNN. They have an obvious positive rela-
tionship.

Pr
ed

ic
tio

n
(J

)

20
40
60
80

100
120

Observation (J)
20 40 60 80 100 120

FLOPs-based
AMPERE

Figure 7: Estimation results of FLOPs-based method and AM-
PERE for a 5-layer CNN.

next step.
However, the real-time energy consumption acquisition is chal-

lenging in certain devices like smartphones. As a solution, we ar-
gue there exists a direct correlation between time consumption and
energy consumption. It is verified by experiments conducted on a
5-layer CNN model, as illustrated in Fig. 6. Therefore, we utilize
the time uncertainty as a practical surrogate for energy uncertainty
to guide profiling.
Starting Points and End Condition. To cover the full range of
channels, we use the the upper and lower bounds as the starting
points. On the other hand, as GP is designed for the continuous
situation while the channel number is discrete, the whole process
may fall into a dead loop and fails to converge. Therefore, we set
two end conditions to prevent the worst case: When the number of
profiled points exceeds the limits or when the variance is smaller
than 5% of the profiled data, we terminate the profiling and fitting
process.

3.4 Estimation
After finishing the profiling and fitting process, we obtain the

GP models for energy cost estimation of each kind of DNN layers.
According to the layer-wise energy additivity, we dissect any given
n→layer DNN model model into three distinct sub-components:
input layers, hidden layers and output layers, based on the layer
parsing rules described in Sec. 3.2. Hence, the total energy con-
sumption of the DNN can be estimated by summing the estimated
energy costs of all layers:

Êmodel = Êinput(C1) +
n→1∑

i=2

Êhidden(Ci→1, Ci) + Êoutput(Cn→1),

(4)

where Êinput, Êhidden, and Êoutput represent GPs to estimate en-
ergy costs of input, hidden, and output layers, respectively.

As discussed in Sec. 1, system heterogeneity and model diversity
result in significant variations in energy consumption across differ-
ent systems. Therefore, GP models trained on one device or system
cannot be directly transferred to estimate energy consumption on
other devices or systems. Nevertheless, our AMPERE framework
is generic and broadly applicable, as demonstrated in Sec. 4.

4. EVALUATION

Energy

28

46

24

41

4.8
14 12 6.4

43 45
33 37

11
18

11 6.3

29

46
36 35

3.7 8.7 6.6
1.4

31
43

10 9.9

33

57

32
40

11 8.5 5.8 3.6

M
A

PE
 (%

)

0

20

40

60

80

OPPO
CNN-4 HAR LeNet5LSTM

iPhone
CNN-4 HAR LeNet5 LSTM

Xavier
CNN-4 HAR LeNet5 LSTM

TX2
CNN-4 HAR LeNet5 LSTM

Server
CNN-4 HAR LeNet5 LSTM

FLOPs-based
AMPERE

34 37

14 11

Figure 8: End-to-end energy estimation for five devices.

70

5

M
A

PE
 (%

)

0

20

40

60

80

Energy
Server Xavier

FLOPs-based
AMPERE

23

5.1

Figure 9: Energy estimation of Transformer.

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1.0

MAPE
0 0.5

Energy of Server

ResNet-20
ResNet-56
ResNet-110

Pr
ob

ab
ili

ty

0

0.2

0.6

0.8

1.0

MAPE
0 0.5

Energy of Xavier

THOR
FLOPs-based
AMPERE

Figure 10: ResNet evaluation on Server and Xavier.

We conduct an evaluation of AMPERE using multiple represen-
tative models on five distinct, realistic devices, including OPPO,
iPhone, Xavier, TX2, and Server. Details about the data, model ar-
chitectures, devices, and implementation are provided in Appendix
Sec. A5. AMPERE significantly decreases the relative errors, with
reductions of up to 30% when compared to previous studies. We
also apply AMPERE in a case study focusing on energy-aware
model pruning, where it demonstrates a remarkable ability to re-
duce energy consumption by 50% without compromising the level
of accuracy.

4.1 End-to-End Estimation Evaluation
In real-world scenarios, the estimation should be capable of han-

dling unseen models, such as new architectures and parameters. To
comprehensively evaluate the performance of AMPERE, we ran-
domly sample the DNN architectures across channels ranging from
1 to the original channel. For the Transformer model, we randomly
sample the number of encoder layers and hidden dimensions.
Intuitive Comparison. To visualize the strengths of AMPERE
compared to the FLOPs-based method, we illustrate the energy
consumption for a 5-layer CNN in Fig. 7. In the experiment, we
generate 100 models with different channels using random sam-
pling. Alignment with the line indicates an accurate result. This
reveals that the FLOPs-based method neglects system utilization
changes; hence, it tends to overestimate when FLOPs are lower and
underestimate otherwise. In contrast, AMPERE maintains high ac-
curacy across all ranges.
Quantitative Comparison. As illustrated in Fig. 8, our approach
has successfully reduced the MAPE from an average of approxi-

Table 1: Time cost (sec) of profiling and fitting.

LeNet5 5-layer CNN HAR LSTM

OPPO 694 1688 2188 1615
iPhone 1201 1012 2446 1168
Xavier 184 421 740 1145
TX2 285 1211 4433 422

Server 235 268 562 436

mately 40% to around 10%. This significant decrease in MAPE
suggests that our method provides more accurate and stable results.
The performance of the final estimations varies across devices be-
cause of their inherent heterogeneity. Among the tested devices, the
Jetson series, which allows for a fixed frequency, exhibits the most
favorable results. The estimations for various models on smart-
phones show a degree of disparity, with some cases, like the HAR
model, demonstrating larger errors. This might be due to the influ-
ence of Dynamic Voltage and Frequency Scaling (DVFS) policies
and power throttling effects. On the Server, predictions for differ-
ent models are relatively consistent, though they have higher error
rates compared to other devices.
Time Costs. Tab. 1 presents the time costs for AMPERE profiling
and fitting for various DNNs. Most of these tasks are completed
within 20 minutes, demonstrating both the efficiency and practical
feasibility of the AMPERE method.
More Results on Transformers. To further demonstrate the su-
periority of AMPERE, we present the energy estimation results
for the Transformer architecture using both AMPERE and FLOPs-
based methods in Fig. 9. Due to memory restrictions, only the
Xavier and Server platforms can fully execute the Transformer model.
AMPERE consistently outperforms FLOPs-based methods in en-
ergy estimation of the Transformer, further underscoring the effec-
tiveness and generality of AMPERE.
CDF Plot of ResNets. To further assess the scalability of AM-
PERE, we conduct experiments on the ResNet family of models.
Due to memory constraints, we can only execute these experiments
on the Xavier and Server devices. During the profiling phase, we
sample ten different layers based on existing rules in Sec. 3.2. The
resultant Cumulative Distribution Function (CDF) plot is shown in
Fig. 10. A step curve closer to the top-left corner indicates higher
prediction accuracy. The results from both the Xavier and Server
devices show improved performance compared to the FLOPs-based
approach. Moreover, as the number of layers increases, the predic-
tion accuracy does not appear to decrease.

4.2 Layer Characteristics
We present the energy consumption of Conv2d layers in the

5-layer CNN model, as they account for the majority of computa-
tional costs. The relevant sampling and estimation results across
different devices are illustrated in Fig. 11, where H and W repre-
sent height and width, respectively, and Cin and Cout denote the
input and output channels. The batch size is set as 10. We use
additional random points to test the estimation results, and the dif-

(a) H=W=42, N=10 (b) H=W=21, N=10 (c) H=W=10, N=10 (a) H=W=42, N=10 (b) H=W=21, N=10 (c) H=W=10, N=10(a) Xavier, H=W=42 (b) Xavier, H=W=21 (c) Xavier, H=W=10 (d) Server, H=W=42 (e) Server, H=W=21 (f) Server, H=W=10
Figure 11: Profiled v.s. estimated energy for Xavier and Server (The blue · represents the profiled samples, the red ↑ represents the
test samples, and the surface represents the estimated data).

(a) Xavier (b) Server

En
er

gy
 (J

)

−5

0

5

Input Height
42 21 10

Input Height
42 21 10

Figure 12: Differences of energy estimation and observation for
Xavier and Server.
ferences are shown in Fig. 12. The energy consumption exhibits a
non-linear variation with respect to the input and output channels.
In these scenarios, the energy consumption is relatively smooth
when H and W are large. For Xavier, the energy does not ini-
tially change significantly with the input channel and remains at a
plateau. However, after Cin exceeds 20, there is a noticeable in-
crease. When H and W are at their smallest values, the energy of
Server fluctuates around the average, while Xavier demonstrates a
distinct ridge in the middle. The power consumption characteris-
tics of the Server are more complex, leading to poorer estimation
results. Although the relative error may be small when the input
size is large, it may still contribute the most to the final absolute
error. We also compare the energy efficiency of these devices, with
Xavier and Server exhibiting similar performance for these layers.
Once we have identified these characteristics, we can compute the
corresponding gradients. This allows us to more effectively guide
the model pruning and architecture search, while avoiding extreme
outcomes like increased energy consumption after pruning.

4.3 Case Study: Energy-Aware Pruning
To verify AMPERE meets the objective of being easy to com-

bine with other methods, we undertake the task of gender identifi-
cation from the real-world CelebA dataset on Xavier. The original
model’s total energy consumption stands at approximately 20,000J
over 2,000 iterations. We simulate an energy-constrained environ-
ment where the available energy for consumption is curtailed to
50% of its initial level. To achieve this, we apply random prun-
ing as suggested by Li et al. [4]. We incorporate AMPERE and
FLOPs-based methods to guide the process until the energy con-
sumption per iteration drops to 50% of its original value. As il-
lustrated in Fig. 13, both methods effectively reduce the total en-
ergy consumption. However, only the AMPERE approach man-
ages to keep the total energy consumption below the allotted bud-
get (49.2%). The AMPERE method demonstrates superior perfor-
mance by effectively keeping the total energy consumption within
the defined budget. This result ensures efficient resource allocation
and highlights the potential of AMPERE as a revolutionary tool in
energy-constrained scenarios. Consequently, it presents AMPERE
as a more viable solution compared to the traditional FLOPs-based
method.

5. CONCLUSION

Te
st

A
cc

ur
ac

y

0.5
0.6
0.7
0.8
0.9

Te
st

Lo
ss

0.2

0.4

0.6

Energy (J)
0 10,000 20,000

AMPERE
FLOPs-based
Original

Figure 13: Test loss and accuracy for different models.
This paper proposes AMPERE, a generic method to estimate

the energy consumption of DNN training. GP is used to fit lay-
erwise consumptions, then the end-to-end estimation is obtained
by summing the predictions of each layer based on the presented
layer-wise energy additivity. We demonstrate the effectiveness of
AMPERE for different DNN architectures and real-world devices.
Moreover, AMPERE can be easily integrated into existing training
frameworks to guide energy-aware job scheduling.

References

[1] Dongqi Cai et al. “Towards Ubiquitous Learning: A First
Measurement of On-Device Training Performance”. In: EMDL

Workshop. 2021.
[2] Ermao Cai et al. “Neuralpower: Predict and Deploy Energy-

efficient Convolutional Neural Networks”. In: ACML. 2017.
[3] Zhihao Jia et al. “TASO: Optimizing Deep Learning Compu-

tation with Automatic Generation of Graph Substitutions”.
In: SOSP. 2019.

[4] Yawei Li et al. “Revisiting Random Channel Pruning for
Neural Network Compression”. In: CVPR. 2022.

[5] Linyan Mei et al. “A Uniform Latency Model for DNN Ac-
celerators with Diverse Architectures and Dataflows”. In:
DATE. 2022.

[6] Dimitrios Stamoulis et al. “Hyperpower: Power- and Memory-
Constrained Hyper-Parameter Optimization for Neural Net-
works”. In: DATE. 2018.

[7] Yunsong Wang et al. “Time-Based Roofline for Deep Learn-
ing Performance Analysis”. In: IEEE/ACM Workshop on Deep

Learning on Supercomputers. 2020.
[8] Christopher KI Williams et al. Gaussian Processes for Ma-

chine Learning. Vol. 2. 3. MIT press Cambridge, MA, 2006.
[9] Tien-Ju Yang et al. “Designing Energy-Efficient Convolu-

tional Neural Networks using Energy-Aware Pruning”. In:
CVPR. 2017.

[10] Li Lyna Zhang et al. “nn-Meter: Towards Accurate Latency
Prediction of Deep-Learning Model Inference on Diverse
Edge Devices”. In: MobiSys. 2021.

	Introduction
	Background and Motivation
	Modeling Deep Learning's Energy Consumption
	Existing Methods' Limitations

	AMPERE's Design
	A Bird's-Eye View
	Profiling
	Fitting
	Estimation

	Evaluation
	End-to-End Estimation Evaluation
	Layer Characteristics
	Case Study: Energy-Aware Pruning

	Conclusion
	More discussions on the Necessity of Accurate Estimation
	Related Work
	Layer Characteristics
	Discussions and Limitations
	Experimental Details
	Experimental Settings
	System Implementation

	Sensitivity Analysis and Ablation Test
	Varying Profiling Points
	Selection of Different GP Kernels and Efficiency of GP

